
Avertec Tools

Yagle
Reference Guide

Software Release 3.4p5

June 7th, 2010

Avertec Copyright (c) 1998-2006 All Rights Reserved

Yagle Reference Guide

1

About this Document

This document explains:

• The input formats supported

• How to perform the functional abstraction

• The VHDL generated

• User constraints

• Pattern recognition for analog blocks

• The Primary Data Structure

Documentation issued and compliant with Avertec Tools Release 3.4p5.

Please contact support@avertec.com for comments relating to this manual.

Yagle Reference Guide

2

Table of Contents

1. Input Files ... 7
1.1. Netlist ... 7
1.1.1. SPICE .. 7
Expressions and Values .. 7
User-defined Functions ... 8
MOSFET .. 8
MOSFET Models ... 9
JFET .. 11
Junction Diode ... 12
Resistance ... 12
Capacitance ... 13
Subcircuit Instance .. 13
Independant Voltage Source ... 13
Supported Voltage Sources: Scenario 1 ... 14
Supported Voltage Sources: Scenario 2 ... 15
Supported Voltage Sources: Scenario 3 ... 15
Supported Voltage Sources: Scenario 4 ... 15
Supported Voltage Sources: Scenario 5 ... 15
Supported Voltage Sources: Scenario 6 ... 16
File Inclusion ... 16
Subcircuit ... 16
Parameters .. 17
Temperature .. 17
Scale Factor .. 17
Global Nodes ... 17
1.1.2. VERILOG .. 18
1.1.3. VHDL ... 18
1.2. Parasitics .. 18
1.2.1. DSPF Used for Connectivity ... 18
1.2.2. DSPF Used for Back-Annotation ... 18
1.2.3. SPEF ... 18
1.3. INF - Design Specific Configuration ... 18
1.3.1. Description .. 18
SDC input file .. 19
User-defined INF file ... 19
1.3.2. General .. 19
1.3.3. Disassembly Directives ... 19
IGNORE .. 19
CONSTRAINT ... 20
MUTEX .. 20

Yagle Reference Guide

3

INPUTS ... 20
STOP ... 20
DIROUT ... 21
DLATCH .. 21
CKLATCH .. 22
PRECHARGE .. 22
NOTLATCH ... 22
MARKSIG .. 23
MARKTRANS .. 23
1.3.4. Behavioral Model Directives .. 24
SUPPRESS ... 24
SENSITIVE .. 24
1.3.5. Correspondencies INF / Tcl .. 25
2. Output Files ... 26
2.1. VHDL - Generated Behavior .. 26
2.1.1. Description .. 26
2.1.2. Latches and Registers .. 26
2.1.3. High impedance or Conflictual Nodes ... 27
2.1.4. Vectorization .. 28
2.1.5. Example .. 28
2.2. Verilog - Generated Behavior .. 29
2.3. CNS - Cone Netlist Structure ... 29
2.3.1. Reason for CNS .. 29
2.3.2. CNS in Circuit Disassembly .. 30
2.3.3. CNS Terminology .. 31
The Global CNS Figure ... 31
A Cone and its Elements .. 31
Grouping of Cones .. 32
The CNS Figure Hierarchy .. 32
2.4. CNS - Data Structures ... 33
2.4.1. The CNS Figure .. 33
2.4.2. The Link List ... 33
Link Structure Fields ... 33
Standard Link Types ... 34
2.4.3. The Branch List ... 35
Branch Structure Fields ... 35
Standard Branch Types .. 35
2.4.4. The Link List ... 36
Link Structure Fields ... 36
Standard Link Types ... 36
2.4.5. The Edge List .. 37
Edge Structure Fields .. 37
Standard Branch Types .. 38
2.4.6. The Transistor List .. 38
2.4.7. The Connector List .. 39
2.4.8. The Cell List .. 39

Yagle Reference Guide

4

Cell Structure Fields .. 39
Standard Cell Types .. 40
3. Log Files ... 41
3.1. REP - Report File .. 41
3.1.1. Warning Messages ... 41
3.1.2. Error Messages ... 42
3.1.3. Fatal Errors ... 43
3.2. User-defined Log File ... 43
4. Configuration Variables ... 45
4.1. License Server ... 45
4.2. Environment ... 45
4.3. Names .. 45
4.4. Technology ... 47
4.5. Input Netlist and Parasitics .. 48
4.6. SPICE Parser ... 49
4.7. SPICE Driver .. 54
4.8. VHDL Parser/Driver ... 56
4.9. VERILOG Parser/Driver ... 57
4.10. DSPF/SPEF Parser .. 57
4.11. General Configuration .. 59
4.12. Disassembly ... 61
4.12.1. Functional Analysis ... 61
4.12.2. Transistor Orientation .. 62
4.12.3. Latch Recognition ... 63
4.12.4. Pattern Matching ... 67
4.12.5. Behavioral Model Generation .. 67
4.12.6. Cone Output Files ... 70
4.13. Output Configuration .. 71
4.14. Pattern Matching .. 72
4.15. Hierarchical Pattern Matching .. 73
4.16. API Specific .. 74
4.17. GUI ... 75
5. Tcl Interface .. 76
5.1. General ... 76
5.1.1. Configuration ... 76
avt_Config ... 76
avt_GetConfig .. 76
5.1.2. File Loading ... 76
avt_SetBlackBoxes .. 76
avt_LoadBehavior .. 77
avt_DriveBehavior ... 77
avt_LoadFile .. 77
avt_EncryptSpice ... 78
avt_SetCatalog .. 78
avt_GetCatalog .. 78
avt_CheckTechno .. 78

Yagle Reference Guide

5

5.1.3. Netlist Modification .. 79
avt_GetNetlist .. 79
avt_FlattenNetlist ... 79
avt_DriveNetlist .. 79
avt_DisplayNetlistHierarchy ... 80
avt_DisplayResistivePath .. 80
avt_RemoveResistances ... 80
avt_RemoveCapacitances ... 81
5.1.4. Statistics .. 81
avt_StartWatch .. 81
avt_StopWatch .. 81
avt_PrintWatch .. 81
avt_GetMemoryUsage ... 82
avt_RegexIsMatching .. 82
5.2. Design Specific Configuration .. 82
5.2.1. General .. 82
inf_SetFigureName .. 82
inf_AddFile ... 82
inf_Drive .. 83
inf_ExportSections ... 83
inf_CleanFigure ... 83
5.2.2. Netlist .. 84
inf_DefineIgnore .. 84
5.2.3. Disassembly .. 84
inf_DefineMutex ... 84
inf_DefineInputs ... 84
inf_DefineDirout ... 85
inf_DefineDLatch ... 85
inf_DefineNotDLatch .. 85
inf_DefineNotLatch .. 85
inf_DefineKeepTristateBehaviour .. 85
inf_DefinePrecharge .. 86
inf_DefineNotPrecharge .. 86
inf_DefineModelLatchLoop .. 86
inf_DefineMemsym .. 86
inf_DefineRS .. 87
inf_MarkSignal ... 87
inf_MarkTransistor ... 87
inf_DefineSensitive .. 88
inf_DefineSuppress ... 88
5.3. Disassembling .. 88
5.3.1. yagle .. 88
6. Error Codes ... 89
6.1. API ... 89
6.2. AVT .. 92
6.3. BEF .. 96

Yagle Reference Guide

6

6.4. BEG .. 96
6.5. BEH .. 97
6.6. BHL .. 99
6.7. BGL .. 99
6.8. BVL .. 101
6.9. CBH .. 103
6.10. CGV .. 103
6.11. CNS .. 103
6.12. GNS .. 104
6.13. INF .. 111
6.14. LOG .. 113
6.15. MBK .. 113
6.16. MCC ... 117
6.17. MGL .. 119
6.18. SLIB .. 120
6.19. SPF .. 120
6.20. STM .. 122
6.21. TAS .. 124
6.22. TRC .. 128
6.23. VAL ... 132
6.24. YAG .. 132
Index .. 134

Yagle Reference Guide

7

Chapter 1. Input Files

1.1. Netlist

1.1.1. SPICE

The syntax of the SPICE subset supported by Yagle is given here in Backus-Naur Form. The meta-
symbols of BNF are:

::= meaning "is defined as"

| meaning "or"

<> angle brackets used to surround category names. The angle
brackets distinguish syntax rules names (also called non-
terminal symbols) from terminal symbols which are written
exactly as they are to be represented.

[] Enclose optional items

{} Enclose repetitive items (zero or more times)

Expressions and Values

A value is refered to as <val>. A value can be associated with the following units, and is scaled
accordingly:

ff 1e-15

pf 1e-12

f 1e-15

p 1e-12

n 1e-9

u 1e-6

m 1e-3

k 1e+3

meg 1e+6

mi 25.4e+6

g 1e+9

Yagle Reference Guide

8

v 1

ns 1e-9

ps 1e-12

s 1

An expression is refered to as <expr>, and should appear enclosed in '', () or {}. Carriage returns
are ignored within expressions and treated as white spaces, which means that an expression can be
continued on subsequent lines without using the + sign.

The following mathematical functions supported within <expr> are valif, max, dmax, min, dmin,
trunc, int, sqrt, exp, log, sin, cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh, log10, ceil,
floor, fabs, abs, pow and pwr

User-defined Functions

Yagle supports user-defined functions when specified through the .FUNC card. The example below
illustrates the syntax supported:

.FUNC my_func(a,b) a*b+pow(2,a)

MOSFET

Mxx <ND> <NG> <NS> <NB> <MNAME> [L=<val>] [W=<val>]
+ [AD=<val>] [AS=<val>] [PD=<val>] [PS=<val>]
+ {[<param>=<val>|<expr>]} [$X=<val>] [$Y=<val>]

Parameters:

xx MOS transistor name

<ND> Drain node

<NG> Gate node

<NS> Source node

<NB> Bulk node

<MNAME> Model name, described in a .MODEL card

Optional parameters:

L=<val> Channel length in meters (unless specified unit)

W=<val> Channel width in meters (unless specified unit)

AD=<val> Drain area in sq. meters (unless specified unit)

AS=<val> Source area in sq. meters (unless specified unit)

Yagle Reference Guide

9

PD=<val> Drain Perimeter in meters (unless specified unit)

PS=<val> Source Perimeter in meters (unless specified unit)

$X=<val> X coordinate

$Y=<val> Y coordinate

<param>=<val>|<expr> Instantiation specific parameters, for example nrs, nrd,
mulu0, delvt0, sa, sb, sd, nf, nfing, m

If AD, AS, PD or PS are not specified, they are calculated with the GEOMOD parameter (only BSIM4,
otherwise value is 0).

MOSFET Models

.MODEL <MNAME> <nmostype>|<pmostype>
+ [(] [<param>=<val>|<expr>] [)]

<nmostype> ::= NMOS|NMOSBSIM3|NMOSBS32|NMOSBS4|
+ NMOSBS41|NMOSBS42|NMOSBS43|NMOSBS44|NMOSBS45|NMOSBS46

<pmostype> ::= PMOS|PMOSBSIM3|PMOSBS32|
+ PMOSBS4|PMOSBS41|PMOSBS42|PMOSBS43|PMOSBS44|PMOSBS45|PMOSBS46

MOS types

NMOS,PMOS N-Channel, P-Channel MOSFET model

NMOSBSIM3,PMOSBSIM3 N-Channel, P-Channel BSIM3v3.0 Berkeley MOSFET
model

NMOSBS32,PMOSBS32 N-Channel, P-Channel BSIM3v3.2.4 Berkeley MOSFET
model

NMOSBS4,PMOSBS4 N-Channel, P-Channel BSIM4.0 Berkeley MOSFET model

NMOSBS41,PMOSBS41 N-Channel, P-Channel BSIM4.1 Berkeley MOSFET model

NMOSBS42,PMOSBS42 N-Channel, P-Channel BSIM4.2 Berkeley MOSFET model

NMOSBS43,PMOSBS43 N-Channel, P-Channel BSIM4.3 Berkeley MOSFET model

NMOSBS44,PMOSBS44 N-Channel, P-Channel BSIM4.4 Berkeley MOSFET model

NMOSBS45,PMOSBS45 N-Channel, P-Channel BSIM4.5 Berkeley MOSFET model

NMOSBS46,PMOSBS46 N-Channel, P-Channel BSIM4.6 Berkeley MOSFET model

Supported BSIM and PSP levels:

Yagle Reference Guide

10

LEVEL=8 NGSPICE Berkeley BSIM3v3 model, up to BSIM3v3.2.4
(VERSION=32)

LEVEL=49 HSPICE BSIM3v3 model, up to BSIM3v3.2.4
(VERSION=32)

LEVEL=53 ELDO BSIM3v3 model, up to BSIM3v3.2.4 (VERSION=32)

LEVEL=14 NGSPICE Berkeley BSIM4 model, up to BSIM4.3
(VERSION=43)

LEVEL=54 HSPICE BSIM4 model, up to BSIM4.3 (VERSION=43)

LEVEL=60 ELDO BSIM4 model, up to BSIM4.3 (VERSION=43)

TOOL hspice
BSIM3V3 param level 49
BSIM3V3 param level 53
BSIM4 param level 54
PSP param level 1020
PSPB param level 1021

TOOL eldo
BSIM3V3 param level 49
BSIM3V3 param level 53
BSIM4 param level 60
PSP param level 1020
PSPB param level 1021

TOOL ngspice
BSIM3V3 param level 8
BSIM4 param level 14

TOOL titan
BSIM3V3 model BSM3 setdefault version 3.0
BSIM3V3 model BS32 setdefault version 3.24
BSIM4 model BS4 setdefault version 4.2
BSIM4 model BS41 setdefault version 4.1
BSIM4 model BS42 setdefault version 4.21

Different industry-standard electrical simulators have different interpretations of the parameters
of .MODEL statement, which also deviate from the Berkeley model (see Berkeley's BSIM3v3.2.4 or
BSIM4.3.0 MOSFET Model User's Manual). This can lead to significant differences in the results
given by different simulators.

With no simToolModel variable set, Yagle uses the HSPICE model. Otherwise, Yagle interprets the
parameters in the .MODEL statement with regard to the value of the simToolModel variable, and
uses the model of the corresponding simulator.

The HSPICE BSIM3v3 model (LEVEL=49, simToolModel = HSPICE) used by Yagle deviates from
the Berkeley BSIM3v3 model with regard to the following parameters (only if parameter ACM=0-3):

CJSWG ignored, CJGATE used instead

Yagle Reference Guide

11

MJSWG ignored, MJSW used instead

PBSW ignored, PHP used instead

PBSWG ignored, PHP used instead

NF the W of the is divided by NF to choose the appropriate model
in the techno file

The ELDO BSIM4 (LEVEL=60, simToolModel = ELDO) model used by Yagle deviates from the
Berkeley BSIM4 model with regard to the initialization of the binning parameters of LPEB (lateral
non uniform doping on K1):

LLEPB=0 instead of LLEPB=LLPE0

WLEPB=0 instead of WLEPB=WLPE0

PLEPB=0 instead of PLEPB=PLPE0

NF the W of the is not divided by NF to choose the appropriate
model in the techno file

The TITAN BSIM models used by Yagle are fully compliant with Berkeley BSIM models. The only
special behavior relates to NF

NF the W of the is not divided by NF to choose the appropriate
model in the techno file

JFET

Jxx <ND> <NG> <NS> <MNAME> {[<param>=<val>|<expr>]}
+ [$X=<val>] [$Y=<val>]

Parameters:

xx JFET transistor name

<ND> Drain node

<NG> Gate node

<NS> Source node

<MNAME> Model name, described in a .MODEL card

Optional parameters:

$X=<val> X coordinate

$Y=<val> Y coordinate

Yagle Reference Guide

12

<param>=<val>|<expr> Instantiation specific parameters

Warning: JFETs are parsed but are not suuported as transistors. They can only be interpreted as
resistances. See avtSpiJFETisResistance.

Junction Diode

Dxx NP NN MNAME [AREA=<val>] [PJ|PERI=<val>]
+ {[<param>=<val>|<expr>]} [$X=<val>] [$Y=<val>]

Parameters:

xx Diode name

<NP> Positive node

<NN> Negative node

<MNAME> Model name, described in a .MODEL card

Optional parameters:

$X=<val> X coordinate

$Y=<val> Y coordinate

<param>=<val>|<expr> Instantiation specific parameters

Resistance

Rxx N1 N2 [R=]<val>|<expr> [TC1=<val>|<expr>]
+ [TC2=<val>|<expr>] {[<param>=<val>|<expr>]}

Parameters:

xx Resistance name

<N1>, <N2> Resistance nodes

[R=]<val>|<expr> Value of resistance in Ohm

Optional parameters:

TC1=<val>|<expr> Parsed but not supported

TC2=<val>|<expr> Parsed but not supported

<param>=<val>|<expr> Parsed but not supported

Yagle Reference Guide

13

Capacitance

Cxx <N1> <N2> [C|VALUE=]<val>|<expr> [POLY=<val>|<expr>]
+ {[<param>=<val>|<expr>]}

Parameters:

xx Capacitance name

<N1>, <N2> Capacitance nodes

[C|VALUE=]<val>|<expr> Value of capacitance in Farads

Optional parameters:

POLY=<val>|<expr> Parsed but not supported

<param>=<val>|<expr> Parsed but not supported

Subcircuit Instance

Xxx {<NN>} <MNAME> {[<param>=<val>|<expr>]}
+ [$X=<val>] [$Y=<val>] [$T=<Tx> <Ty> <R> <A>]

Parameters:

xx Instance name

{<NN>} list of nodes. Number must be the same as the subcircuit
being instantiated

<MNAME> Subcircuit being instantiated

Optional parameters:

$X=<val> X coordinate

$Y=<val> Y coordinate

$T=<Tx> <Ty> <R> <A> Transform of the placement (X translation, Y translation,
reflexion and rotation). Parsed but not supported

<param>=<val>|<expr> Instantiation specific parameters, updating subcircuit
parameters

Independant Voltage Source

Vxx <NP> <NN> DC [=]
+ <expr>|<pwl_function>|<pulse_function>

<pwl_function> ::= PWL (<TN> <VN> {<TN> <VN>} [TD] [SHIFT=<val>])

<pulse_function> ::= PULSE (<V0> <V1> <TD> <TR> <TF> <PW> <PER>)

Yagle Reference Guide

14

Parameters:

xx Voltage source name

<NP> Positive node. The node may be hierarchical, up to one level
of hierarchy

<NN> Negative node. The node may be hierarchical, up to one
level of hierarchy

Piece Wise Linear function parameters:

<TN> Time Ti in seconds (unless specified unit)

<VN> Value Vi of the source in volts at time Ti

<TD> Negative node

SHIFT=<val> Value added to all time values specified in the PWL card

Pulse function parameters:

<VO> Initial value in volts of DC voltage

<V1> Pulse magnitude in volts

<TD> Delay time in seconds (unless specified unit)

<TR> Rise time in seconds (unless specified unit)

<PW> Pulse width in seconds (unless specified unit)

<PER> Pulse period in seconds (unless specified unit)

The PWL and PULSE functions can be used to define clocks as an alternative to the INF or SDC
constraint files. However, care should be taken to ensure that enough of the waveform is specified for
the parser to be able to deduce the rise/fall clock instants and the period.

The DC function can be used to specify power supply values. If the specified negative node is the
node 0, or a node for which a supply value has been associated, then the supply value given by the
sum of the DC value and the negative node supply value is associated to the positive node. Fairly
complex multi-voltage configurations are possible, since multiple Vcards are possible and they can
be resolved in any order.

The DC function, especially in combination with the .GLOBAL directive is a powerful mechanism
for specifying which nodes are power supplies. Supplies can be completely determined using these
cards without using any configuration variables. A node for which the supply value is superior to
avtVddVssThreshold is considered to be a VDD node, else the node is considered to be a VSS node.

Supported Voltage Sources: Scenario 1

.GLOBAL inh_VDD inh_GND

Yagle Reference Guide

15

Vsup inh_VDD inh_GND 1.2V
Vgnd inh_GND 0 0V

.SUBCKT inv A B inh_VDD inh_GND
MP0 B A inh_VDD inh_VDD PCH
MN0 B A inh_GND inh_GND NCH
.ENDS

Supported Voltage Sources: Scenario 2

Vgnd GND 0 0V
Vsup VDD GND 1.2V

.SUBCKT INV A B inh_VDD inh_GND
MP0 B A inh_VDD inh_VDD PCH
MN0 B A inh_GND inh_GND NCH
.ENDS

Xinv0 A B VDD GND INV

Supported Voltage Sources: Scenario 3

Vgnd GND 0 0V

.SUBCKT INV A B inh_VDD inh_GND
Vsup inh_VDD inh_GND 1.2V
MP0 B A inh_VDD inh_VDD PCH
MN0 B A inh_GND inh_GND NCH
.ENDS

Xinv0 A B VDD GND INV

Supported Voltage Sources: Scenario 4

Vgnd GND 0 0V
Vsup12 VDD GND 1.2V

.SUBCKT INV A B inh_VDD inh_GND
Vsup14 inh_VDD inh_GND 1.4V
MP0 B A inh_VDD inh_VDD PCH
MN0 B A inh_GND inh_GND NCH
.ENDS

Xinv0 A B VDD GND INV

Vsup14 is ignored

Supported Voltage Sources: Scenario 5

Vgnd GND 0 0V
Vsup12 VDD GND 1.2V
Vsup14 VDD GND 1.4V

.SUBCKT INV A B inh_VDD inh_GND
MP0 B A inh_VDD inh_VDD PCH
MN0 B A inh_GND inh_GND NCH
.ENDS

Xinv0 A B VDD GND INV

Yagle Reference Guide

16

Vsup12 is ignored

Supported Voltage Sources: Scenario 6

Vgnd Xinv0.inh_GND 0 0V
Vsup12 Xinv0.inh_VDD 0 1.2V

.SUBCKT INV A B
MP0 B A inh_VDD inh_VDD PCH
MN0 B A inh_GND inh_GND NCH
.ENDS

Xinv0 A B INV

The following syntax is not supported:

Vsup12 Xinv0.inh_VDD Xinv1.inh_GND 1.2V

File Inclusion

.LIB|.LIBRARY LNAME [<LIBTYPE>]

.INCLUDE <FILENAME>

Yagle has a limited support of relative paths: when the path is not absolute, the path is assumed to be
relative to the working directory of Yagle (the directory where it has been invoked from). Contrary to
other simulators, it is not assumed to be relative to the directory of the file which makes the inclusion.
This limitation can be overwhelmed by the variable avtLibraryDirs

Subcircuit

.SUBCKT <NAME> <NN> {<NN>} [PARAM:]{[<param>=<val>|<expr>]}

{<component>}

.ENDS [<NAME>]

<component> ::= M|J|D|R|C|X|V|.SUBCKT|.LIB|.INCLUDE|.MODEL|.PARAM

Parameters:

<NAME> Name of the subcircuit

<NN> Node name. Nodes with the same name followed by period
and number are considered to be on the same net, even if
they are not connected in the subcircuit. For example, in
.SUBCKT nand2 in out out.1 out.2 vss vdd out.3

the nodes out, out.1, out.2 and out.3 are considered to
be the same signal. See also avtSpiMergeConnector and
avtSpiConnectorSeparator.

<param>=<val>|<expr> Default parameters

Yagle Reference Guide

17

Yagle supports the declaration of subcircuits within subcircuits. However, if subcircuit A is defined
within a subcircuit, instantiations of subcircuit A must not occur before in the file. This is not true if
subcircuit A is defined at top-level.

Parameters

.PARAM {<param>=<val>|<expr>}

Temperature

.TEMP <val>|<expr>

.OPTION TEMP <val>|<expr>

Scale Factor

.SCALE <val>|<expr>

Scales MOSFET parameters.

L=L*<val>

W=W*<val>

PD=PD*<val>

PS=PS*<val>

SA=SA*<val>

SB=SB*<val>

SD=SD*<val>

AD=AD*<val>*<val>

AS=AS*<val>*<val>

Global Nodes

.GLOBAL {node}

When using the TCL interface, one should take care that the validity of .GLOBAL statement is limited
to the context of the avt_LoadFile function call. For example, let's suppose a .GLOBAL statement
defined in globals.spi, and a netlist defined in netlist.spi:

avt_LoadFile globals.spi spice
avt_LoadFile netlist.spi spice

With such a script, the .GLOBAL statement will not be available in netlist.spi. If it is not the intended
behavior, prefer .INCLUDE globals.spi in netlist.spi.

Yagle Reference Guide

18

1.1.2. VERILOG

Yagle supports the structural subset of the Verilog Hardware Description Language. For more
information see the IEEE P1364 standard

1.1.3. VHDL

Yagle supports the structural subset of the VHDL Hardware Description Language. For more
information see the IEEE P1076 standard.

1.2. Parasitics

1.2.1. DSPF Used for Connectivity

If the DSPF is used for connectivity purpose (the SPICE netlist is not connected without the DSPF,
connectivity is ensured by the R elements), use .INCLUDE parasitics.dspf inside .SUBCKT

1.2.2. DSPF Used for Back-Annotation

If there is no BUSBIT construct, only identifiers containing [] or < > are considered as vectors.

1.2.3. SPEF

Yagle supports the Standard Prasitic Exchange Format Language, used for parasitic back-annotation
putpose. For more information see the IEEE 1481-1999 standard.

1.3. INF - Design Specific Configuration

1.3.1. Description

The .inf file is an ASCII file with different sections. Blank lines, lines starting with '#' or any character
between '/*' and '*/' are considered as comments. Most of the sections, except the header, are defined
with a section name and the information related to this section are enclosed with Begin and End;. The
syntax for each section depends on the section itself. The sections are not depending on each other so
they can be declared out of order and several times.

The syntax is case insensitive for the keywords. The signal names can be given without quotes but
to enable the use of signal names with special characters or unfortunately matching a keyword, they
are required.

It is also possible to use units. For timing values with no specified unit, the Pico-second will be used.
Valid units are: ps, ns, ms. For the capacitance values with no unit is specified, the Femto-farad will
be used. Valid units are: pf, ff.

Yagle Reference Guide

19

The information file gives information for the abstraction, database construction and static timing
analysis tools. The information file name does not need to be related to a subcircuit name. In fact, the
first token that should be set in the information file is "name" followed by the subcircuit name the
information are given for. If this information is not given, the information file parser will guess the
name of the subcircuit from the file name.

For a subcircuit, several information files can be given. They will be loaded in a particular order and
the information will be merged. Actually, there are 2 different information files that can be generated
by our tools and loaded, by default, with the following precedence:

SDC input file

The SDC command will be translated in the appropriate information file sections.

User-defined INF file

The order of loading and the files to load can be set by modifying the variable
avtReadInformationFile. The files are separated by commas and the special character '$' will be
replaced by the subcircuit name. Regular expressions can be used there to handle more complicated
naming. Its default value is $.spice.inf,$.sdc.inf,$.inf. The '\' before the '.' simply indicates
to the regular expression matching algorithm not to interpret '.' as any characters but as the character
'.'. The names are from the less priority to the more priority. If the value is set to no, no information
file will be loaded.

1.3.2. General

It is necessary to specify the design name. This is done by using the section "name". Optionally, a
version for the information file can be given.

NAME mysubckt;
VERSION 1.2;

1.3.3. Disassembly Directives

IGNORE

If some components must be removed from the original netlist for any reason, it is possible to
specify the component type and names in the IGNORE section. Th ere are 4 component types:
Instances, Transistors, Resistances, Capacitances. Th e component names can be given using regular
expressions.

IGNORE
BEGIN
 Instances: *fake, top.instancetoremove;
 Capacitances: toolowcapa*;
 ...
END;

At the moment, it is possible to remove resistances and capacitances only in the top level figure. To
overcome this limitation, an information file can be wr itten for the sub-circuits.

Yagle Reference Guide

20

CONSTRAINT

To perform analysis in a specific case, the user can apply static logic levels on the input connectors
with the CONSTRAINT section. It contains internal or external signals constrained by "one" or "zero".
The static logic levels are propagated through the netlist before databse construction.

CONSTRAINT
BEGIN
 sig1: 0;
 sig2: 1;
 sig3: 0;
 ...
END;

MUTEX

If some of the input connectors are mutually exclusive, this should be indicated in the MUTEX section
using:

muxUP{term1, term2, ...} to express that one port at most in the list is "one".

muxDN{term1, term2, ...} to express that one port at most in the list is "zero".

cmpUP{term1, term2, ...} to express that one and only one port in the list is "one".

cmpDN{term1, term2, ...} to express that one and only one port in the list is "zero".

MUTEX
BEGIN
 muxUP{a,...,d};
 muxDN{m,...,p};
 cmpUP{i,...,l};
 cmpDN{x,...,z};
 ...
END;

INPUTS

User can specify connectors which should be considered as inputs. The disassembling process uses
this information to inhibit the construction of cone branches from these connectors. This directive is
essentially useful when dealing with RAMs, when the user wants to inhibit the construction of the
reading bus.

INPUTS
BEGIN
 connector0;
 connector1;
 ...
END;

STOP

User can specify a list of signals which should be considered as stop points for the functional analysis
phase of the disassembly. This means that any logic preceding the stop points will not be used in order
to analyze the behavior of any gate following the stop point.

Yagle Reference Guide

21

STOP
BEGIN
 sig1;
 sig2;
 sigs*;
 ...
END;

It is possible to use the wildcard '*' as for signal renaming.

DIROUT

In order to orient transistors, user can specify a list of signals, each one identifying the source or
drain of a transistor. Transistors are then oriented towards these signals. Orientation of successive
transistors is done by associating a level with each signal identifying a source or drain. Transistors
are then oriented from higher level signals to lower level signals.

Transistor orientation is useful to avoid false branches construction, especially when dealing with
pass-transistors.

DIROUT
BEGIN
 sig2: "1";
 sig3: "2";
 ...
END;

If no DIROUT level is specified, default level is -1.

It is possible to use the wildcard '*' as for signal renaming.

The DIROUT directive is equivalent to the NETOUTPUT directive in FCL. If a signal name is
preceded by the '~' character then this signal will not be treated as an output, this is to deal with the
case of signals whose names end in "_s" and must not be considered as output terminals.

DLATCH

Some internal tri-state nodes have to be considered to be dynamic latches for functional modeling
and timing analysis purposes.

If only a few number of that tri-state nodes have to be taken into account, specify the
list of corresponding signals into a DLATCH section. On the contrary, if the variable
yagleMarkTristateMemory is set to yes in the configuration file and a few of tri-state nodes must
not be taken into account, specify the list of corresponding signals into a DLATCH section, preceding
each signal by a '~' character.

DLATCH
BEGIN
 sig1;
 ~ sig2;
 ...
END;

It is possible to use the wildcard '*' as for signal renaming.

Yagle Reference Guide

22

CKLATCH

By default the latch recognition phase performed during the circuit disassembly does not require that
external clocks be specified. Latches are identified either by structure (yagleStandardLatchDetection)
or by Boolean analysis of combinatorial loop stability (yagleAutomaticLatchDetection).

However, it is sometimes necessary to constrain the latch recognition to identify only those latches for
which the local clocks lie on a genuine clock path. To do this, specify the list of external connectors
(or internal signals) in a CKLATCH section.

It is also possible to specify that an external connector (or internal signal) is definitely not a clock
by preceding the name by a '~' character. In this case, any latch input at the end of a timing path
originating from this connector (or signal) is considered to be a data input.

CKLATCH
BEGIN
 connector1;
 sig1;
 ~ sig2;
 ...
END;

It is possible to use the wildcard '*' as for signal renaming.

PRECHARGE

Signals whose names end in "_p" are considered to be precharged and therefore dealt with differently
by the tool. If any other signals should be considered precharged these can be specified in the
PRECHARGE section.

PRECHARGE
BEGIN
 sig1;
 ~ sig2;
 ...
END;

If a signal name is preceded by the '~' character then this signal will not be treated as a precharge, this
is to deal with the case of non-precharge signals whose names end in "_p".

NOTLATCH

Disables the detection of latch on given signal.

NOTLATCH
BEGIN
 sig1;
 ...
END;

If a signal name is preceded by the '~' character then this signal will not be treated as a precharge, this
is to deal with the case of non-precharge signals whose names end in "_p".

Yagle Reference Guide

23

MARKSIG

Allows to set special markings on signals (nets). Especially useful for custom latch recognition.
Available markings are:

LATCH Signal corresponds to a latch memory-point.

FLIPFLOP Signal corresponds to a flip-flop memory-point.

MASTER Signal corresponds to the master memory-point of a flip-
flop.

SLAVE Signal corresponds to the slave memory-point of a flip-flop.

MEMSYM Signal corresponds to one side of a symmetric memory.

RS Signal corresponds to one side of an RS bistable.

VDD Signal corresponds to an alimentation.

VSS Signal corresponds to ground.

BLOCKER No branch of a cone can go through the signal.

STOP Cannot exploit logic beyond this point for functional
analysis in the disassembler.

SENSITIVE Marks the signal as a particularly sensitive signal. If a timed
behavioral model of this signal is produced then the most
precise (but cumbersome) model will be generated.

Example:

MARKSIG
BEGIN
 sig1: LATCH+MASTER
 sig2: STOP
 ...
END;

MARKTRANS

Allows to set special markings on transistors. Especially useful for custom latch recognition. Available
markings are:

BLEEDER Transistor corresponds to a bleeder.

FEEDBACK Transistor corresponds to a feedback transistor of a
memory-point.

COMMAND Transistor corresponds to a command transistor of a
memory-point, i.e driven by command signal.

Yagle Reference Guide

24

NOT_FUNCTIONAL Transistor should be ignored when calculating gate
functionality.

BLOCKER No branch of a cone can contain this transistor unless it is
the first transistor of the branch.

UNUSED No branch of a cone can contain this transistor.

SHORT The transistor is considered short-circuited, the gate signal
no longer contributes to the list of inputs.

Example:

MARKTARNS
BEGIN
 trans1: FEEDBACK+NOT_FUNCTIONAL
 trans2: COMMAND
 ...
END;

1.3.4. Behavioral Model Directives

SUPPRESS

The user can specify a list of signals which to be eliminated by Boolean simplification of the final
behavioral description.

SUPPRESS
BEGIN
 sig1;
 sig2;
 sigs*;
 ...
END;

It is possible to use the wildcard '*' as for signal renaming.

SENSITIVE

This directive is useful in the case of functional abstraction with timing information. The user can
specify a list of bussed signals for which the most precise timed behavioral model will be used. This
is only required for certain critical signals.

SENSITIVE
BEGIN
 sig1;
 sig2;
 sigs*;
 ...
END;

It is possible to use the wildcard '*' as for signal renaming.

Yagle Reference Guide

25

1.3.5. Correspondencies INF / Tcl

Yagle Reference Guide

26

Chapter 2. Output Files

2.1. VHDL - Generated Behavior

2.1.1. Description

The VHDL which is automatically generated by Yagle is an RTL level zero delay data-flow
description. It contains a list of concurrent assignment statements which represent the behavior of the
simple gates which are neither high impedance nor conflictual. Distinct VHDL process blocks are
used to describe those gates which represent identified memory elements as well as those gates for
which Yagle was unable to verify the duality.

The declarations within the VHDL file conform to those of the IEEE STD_LOGIC package. This
makes the VHDL readily exploitable by most commercial simulation, formal proof and synthesis
tools.

The VHDL produced if FCL is used remains similar since a given behavioral description is parsed to
generate an internal behavioral model, however this model can contain delay information, specified
through the use of the AFTER attribute. However, if the full hierarchical pattern recognition is used,
then any kind of behavioral description can be produced. Here we can only describe the VHDL which
is automatically generated.

2.1.2. Latches and Registers

Latches and registers are described using separate VHDL processes, to allow easy latch inference by
any subsequent parser. A cascaded "IF ... THEN ... ELSIF END IF" statement is used to represent
separate driving conditions. For example a latch with two clocks would be represented by :

REG1: PROCESS (ck1,ck2)
BEGIN
 IF ck1 = '1' THEN
 latch <= data1;
 ELSIF ck2 = '1' THEN
 latch <= data2;
 END IF;
END PROCESS;

It should be noted that the lexical construction guarantees that the latch is not conflictual, and that the
memory signal is incompletely assigned. This allows straightforward latch inference.

Registers are differentiated from latches through the use of the EVENT attribute on one (and only
one) of the clock signals. For example, a positive-edge triggered flip-flop with an asynchronous reset
would be represented by :

REG1: PROCESS (ck,reset)
BEGIN
 IF reset = '1' THEN
 reg <= '0';

Yagle Reference Guide

27

 ELSIF (ck = '1' and ck'EVENT) THEN
 reg <= data;
 END IF;
END PROCESS;

2.1.3. High impedance or Conflictual Nodes

Both high impedance and conflictual nodes are modeled by two process blocks. One process describes
the condition for the assignment of logic '1', whilst the other describes the condition for the assignment
of logic '0'. For example a simple tri-state gate would be described as follows :

BUS0: PROCESS (enable,data)
BEGIN
 IF (enable = '1' and data = '1') THEN
 out <= '1';
 ELSE
 out <= 'Z';
 END IF;
END PROCESS;

BUS1: PROCESS (enable, data)
BEGIN
 IF (enable = '1' and data = '0') THEN
 out <= '0';
 ELSE
 out <= 'Z';
 END IF;
END PROCESS;

The "IF ... THEN ... ELSE ... END IF" configuration is used to ensure that the tri-state signal is
completely defined. This is necessary to avoid the tri-state node being mistaken for a latch.

Yagle Reference Guide

28

2.1.4. Vectorization

No additional vectorization is deduced by Yagle. Connector and signal declarations can be optionally
vectorized or devectorized. All assignment expressions are given on a bit by bit basis.

2.1.5. Example

The following example of a VHDL file generated by Yagle illustrates the typical structure :

-- VHDL data flow description generated from `addaccu`
-- date : Tue Jul 18 20:08:28 2000

library IEEE;
use IEEE.std_logic_1164.all;

-- Entity Declaration

ENTITY addaccu IS
 PORT (
 a : in std_logic_vector (3 DOWNTO 0);
 b : in std_logic_vector (3 DOWNTO 0);
 ck : in std_logic;
 s : inout std_logic_vector (3 DOWNTO 0);
 sel : in std_logic;
 vdd : in std_logic;
 vss : in std_logic
);
END addaccu;

-- Architecture Declaration

ARCHITECTURE RTL OF addaccu IS
 SIGNAL accu : STD_LOGIC_VECTOR (3 DOWNTO 0);
 SIGNAL oper : STD_LOGIC_VECTOR (3 DOWNTO 0);
 SIGNAL carry : STD_LOGIC_VECTOR (2 DOWNTO 1);

BEGIN
 carry (1) <= ((oper (1) and ((oper (0) and (a (1) or a (0))) or a (1))) or
(oper (0) and a (1) and a (0)));
 carry (2) <= ((a (2) and (carry (1) or oper (2))) or (carry (1) and oper (2)));
 oper (0) <= ((b (0) and (accu (0) or not (sel))) or (accu (0) and sel));
 oper (1) <= ((b (1) and (accu (1) or not (sel))) or (accu (1) and sel));
 oper (2) <= ((b (2) and (accu (2) or not (sel))) or (accu (2) and sel));
 oper (3) <= ((b (3) and (accu (3) or not (sel))) or (accu (3) and sel));

REG0: PROCESS (ck)
BEGIN
 IF (ck = '0' and ck'EVENT) THEN
 accu (0) <= s (0);
 END IF;
END PROCESS;

REG1: PROCESS (ck)
BEGIN
 IF (ck = '0' and ck'EVENT) THEN
 accu (1) <= s (1);
 END IF;
END PROCESS;

REG2: PROCESS (ck)
BEGIN
 IF (ck = '0' and ck'EVENT) THEN
 accu (2) <= s (2);
 END IF;
END PROCESS;

Yagle Reference Guide

29

REG3: PROCESS (ck)
BEGIN
 IF (ck = '0' and ck'EVENT) THEN
 accu (3) <= s (3);
 END IF;
END PROCESS;

 s (0) <= not ((a (0) xor oper (0)));

 s (1) <= (a (1) xor oper (1) xor (not (oper (0)) or not (a (0))));

 s (2) <= (a (2) xor oper (2) xor not (carry (1)));

 s (3) <= (a (3) xor oper (3) xor not (carry (2)));

END;

2.2. Verilog - Generated Behavior

2.3. CNS - Cone Netlist Structure

In this section, we provide details of the main underlying data structure manipulated by Yagle.
The heart of the disassembly procedure is, in fact the transformation of a transistor netlist into the
disassembled gates represented by this so-called CNS data structure. It is this data structure which is
functionally characterized in order to automatically generate the VHDL from a transistor net-list.

These details are provided to help the reader understand the task performed by Yagle and to aid in the
comprehension of the information provided in the CNS output file.

2.3.1. Reason for CNS

The CNS (acronym for Cone Net-list Structure) data structure is designed to represent extracted gate
net-lists. It has evolved out of the need for a common data structure for CAD-VLSI verification tools
such as: formal verification, timing and power analysis, and logico-temporal simulation.

These tools require efficient data structures which can directly support fast algorithms, since the
volume of data to be treated is generally very high. Yet they also require enough structural and
electrical details of the circuit for the verification results to accurately reflect the final circuit. An
extracted transistor net-list effectively contains all the electrical characteristics required, however, the
lack of orientation of the net-list renders unfeasible the verification of circuits of any reasonable size.

The CNS data structure attempts to combine the precision advantage of a transistor net-list with the
speed advantage of a logical gate net-list. This is achieved by representing the circuit as a directed
acyclic graph representing signal-flow within the circuit. Each node of this graph is a type of pseudo
logical gate known as a cone. A graph representation of the circuit allows the direct implementation
of rapid traversal algorithms useful in simulation and timing analysis.

Yagle Reference Guide

30

The fundamental element of this data structure is the Cone. The Cone represents a means of cutting-
up the transistor net-list such that the influences on every transistor gate are well-defined. In effect,
a cone contains the set of current paths to the power supplies or external connectors for the gate of
every transistor. Since transistor gates represent the cone to cone boundaries, and the gate current of
MOS transistors is negligible, there is no current transfer between cones. This characteristic makes
the cone conceptually ideal for the analysis of any kind of circuit behavior which depends on charge
transfer, for example timing and power consumption.

2.3.2. CNS in Circuit Disassembly

Since the most common means of obtaining a CNS representation of a circuit is through the
disassembly of a transistor net-list, an understanding of the principles of disassembly is useful in the
comprehension of the CNS data structure. This section, therefore, briefly explains the basics of the
disassembly process.

The disassembly of a circuit is based on the principle of obtaining the equations which define the
state of each transistor gate. In order to obtain these equations, the circuit representation is converted
from a transistor net-list to a cone net-list (see figure 9.1), it is this representation which is stored in
the CNS data structure.

A cone is defined as being, for each circuit node which is connected to at least one transistor gate, the
set of branches which, from this node, attain a power supply or an external connector on the traversal
of transistor source-drain junctions. Each branch consists of links which correspond to the transistors
traversed. These branches therefore reveal the signals which govern the state of the transistor gate(s)
for which the cone is being constructed.

A set of cones is therefore obtained (completely defining the state of all transistor gates and drivable
external connectors), each of which contain a set of branches. For the example of figure 9.1, the two
cones E and F are made up of the branches shown in figure 9.2.

Yagle Reference Guide

31

This set of branches allows us to express the behavior of the cone and hence generate a Boolean
expression for the state of the corresponding transistor gate. This expression is in fact composed of
two parts: the function which represents the conditions necessary for Vdd to impose (Sup), and the
equivalent for Vss (Sdn).

In reality these conditions have to verified globally, this means that Sup and Sdn are expressed in
terms of the logic surrounding the cone. The depth, in terms of logic gates, used for the expansion
is defined by the user.

2.3.3. CNS Terminology

The Global CNS Figure

The top-level data structure of CNS is called the CNS figure and is declared in 'C' as a cnsfig_list. This,
in common with all the other CNS objects, is a linked-list structure, the first element of the structure
being a pointer to the next element in the list. This is provided mainly for memory management
purposes, since it allows block allocation of cnsfig_list structures.

The CNS figure is the global description of the entire disassembled circuit. In common with the
MBK lofig_list logical net-list representation, it contains the list of external connectors, and the list of
transistors. However, the internal structure of the circuit is represented by the list of cones as opposed
to a list of instances.

In addition to the above, the CNS figure also contains a number of optional fields. The first of these
is a list of cells, each cell corresponding to a grouping of cones. The next two fields are filled in by
the circuit disassembler if requested, but are currently not supported by the parser of the CNS figure.
These are: a pointer to a global behavioral figure for the circuit, and a logical net-list for the circuit.
The logical net-list is hierarchical since each instance of the logical figure corresponds to a cone,
and cones of similar physical structure are grouped into identical models for which the disassembler
generates separate behavioral descriptions. The final field is the USER field, which allows the addition
of user-defined information to the structure.

A Cone and its Elements

The fundamental object of CNS is the cone, this is the disassembled equivalent of a logical gate. It
is made up (as described in §9.3.2) of branches, a branch corresponding to a path from the node on
which the cone is built to an external port across transistor source-drain junctions.

Yagle Reference Guide

32

Each cone contains up to four sets of branches but at least one. These sets correspond to the type of
external port on which the branch ends. The four types are: VDD, VSS, EXT and GND, corresponding
to branches terminating on Vdd or Vss power supplies, external connectors, or ground (for GaAs
compatibility) respectively. Note that for external connector branches, the final link of the branch
points to the corresponding connector.

The connectivity between cones is represented by edges. Each cone contains two lists of edges:
one for the inputs, and one for the outputs. An edge contains a pointer to an object to which the
cone is connected (cone or external connector) and a type indicating the type of object and certain
characteristics of the connection.

Grouping of Cones

CNS contains a mechanism for the grouping of cones, this is useful in the detection of complex gates
by pattern recognition. This mechanism is accommodated by means of the list of cells in the CNS
figure. Each cell contains the list of cones contained within the cell, a type indicating what the grouping
correspond to, and an optional behavioral figure.

The CNS Figure Hierarchy

The CNS data structure is an inhomogeneous, hierarchical data structure, that is each level of the
hierarchy contains specific types of objects, which are different to the types found on other levels.
The complete hierarchy is shown in figure 9.3.

The most notable feature revealed in figure 3 is the looped nature of the hierarchy. It is this
characteristic which gives CNS its flexibility in traversal, hence allowing implementation of efficient
algorithms.

Yagle Reference Guide

33

2.4. CNS - Data Structures

2.4.1. The CNS Figure

A detailed explanation of the various parts of the CNS figure is given in §9.4.1. The figure is defined
as a cnsfig_list structure which is summarized in table 9.1.

Field Name Description

NEXT link to next CNS figure in list

NAME name of the figure

LOCON list of external connectors

LOTRS list of transistors

CONE list of cones

CELL list of cells (cone groups)

LOFIG hierarchical logical net-list

BEFIG global behavioral figure

USER user-defined

Table 9.1: Summary of the CNS figure

This, in common with all the other CNS objects is a linked-list data structure, for reasons of memory
management. The last four fields can be NULL.

2.4.2. The Link List

Link Structure Fields

The link object, of type link_list, is made up of the following fields:

struct link *NEXT Pointer to the following link in the branch's list of links.

long TYPE The logical sum of masks indicating the type and nature of
the link.

union ulink ULINK Pointer to the object to which the link refers, LOTRS,
LOCON or PTR.

float CAPA The capacitance of the node at which the link is built.

struct ptype *USER User defined information.

Yagle Reference Guide

34

Note that the ULINK field is a union since it can point to a transistor (field LOTRS of type lotrs_list*)
or a connector (field LOCON of type locon_list*). In addition the union contains a field for a generic
pointer (PTR of type void*) to facilitate pointer comparison.

Standard Link Types

CNS_IN An external connector link corresponding to an input only
connector.

CNS_INOUT An external connector link corresponding to a bidirectional
connector.

CNS_2EQUIP A generic type corresponding to devices with only two
equipotentials, e.g. diode or resistance links.

CNS_3EQUIP A generic type corresponding to devices with three
equipotentials, e.g. MOS transistors.

CNS_SWITCH A link corresponding to part of a CMOS transmission gate.

CNS_COMMAND A link corresponding to a transistor, within a latch cone,
whose gate is driven by the command signal of the latch.

CNS_ACTIVE A generic type corresponding to any active device.

CNS_PASSIVE A generic type corresponding to any passive device.

CNS_DOWN CNS_UP Generic types indicating the orientation of non-symmetric
devices links, e.g. diodes. UP corresponding to towards the
power supply, and DOWN corresponding to away from the
power supply.

CNS_SW A generic type indicating any active switching device,
usually a transistor.

CNS_PULL A link corresponding to a passive pull up or pull down
resistance.

CNS_DRIV_PULL A link corresponding to an active pull-up or pull-down
resistance.

CNS_DIODE_UP
CNS_DIODE_DOWN

A link corresponding to a diode oriented according to the
generic orientation masks.

CNS_RESIST A link corresponding to a passive resistance, e.g. an MOS
transistor whose gate is connected to a power supply.

CNS_CAPA A link corresponding to a capacitance, e.g. an MOS
transistor whose source and drain are connected to the same
equipotential.

Yagle Reference Guide

35

CNS_DIPOLE A link corresponding to a dipole.

A large number of the above masks are generic types, they are rarely used in the affectation of a type
to a link since the are included in the non-generic types. For example the type CNS_RESIST includes
the masks CNS_PASSIVE and CNS_2EQUIP.

The generic types are included to facilitate the testing of links, since they allow certain type groups
of links to be tested for using a comparison with a single mask.

2.4.3. The Branch List

Branch Structure Fields

The branch object, of type branch_list, is made up of the following fields:

struct branch *NEXT Pointer to the following branch in the cone's list of branches.

long TYPE The logical sum of masks indicating the type and nature of
the branch.

struct link *LINK The list of links which make up the branch.

struct ptype *USER User defined information.

Standard Branch Types

CNS_VSS CNS_VDD
A branch corresponding to a path from the cone output node to the Vdd(Vss) power
supply.

CNS_VDD
A branch corresponding to a path from the cone output node to the Vdd(Vss) power
supply.

CNS_GND
A branch corresponding to a path from the cone output node to ground (exists only
in GaAs).

CNS_EXT
An external connector branch, i.e. a path from the cone output node to an external
connector. Note that the final link of the branch is the external connector.

CNS_NOT_FUNCTIONAL
A branch which does not contribute to the functionality of the cone, for example: a
pull-up resistance or a bleeder.

CNS_BLEEDER
A branch corresponding to one of the forms of figure 5a.

Yagle Reference Guide

36

CNS_DEGRADED
A branch which degrades the output level of the cone, i.e. a Vdd branch containing an
N-type transistor or a Vss branch containing a P-type transistor.

CNS_PARALLEL
A branch for which there exists one or more parallel branches within the cone. See
§9.3.2 for the definition of parallel branches

CNS_PARALLEL_INS
For any given set of parallel branches, all but one are marked with the type
PARALLEL_INS. This allows algorithms which traverse the list of branches to
consider only one of the set of parallel branches by ignoring those of type
PARALLEL_INS.

CNS_FEEDBACK
A branch which corresponds to part of the feedback loop in a latch cone.

2.4.4. The Link List

Link Structure Fields

The link object, of type link_list, is made up of the following fields:

struct link *NEXT Pointer to the following link in the branch's list of links.

long TYPE The logical sum of masks indicating the type and nature of
the link.

union ulink ULINK Pointer to the object to which the link refers, LOTRS,
LOCON or PTR.

float CAPA The capacitance of the node at which the link is built.

struct ptype *USER User defined information.

Note that the ULINK field is a union since it can point to a transistor (field LOTRS of type lotrs_list*)
or a connector (field LOCON of type locon_list*). In addition the union contains a field for a generic
pointer (PTR of type void*) to facilitate pointer comparison.

Standard Link Types

CNS_IN An external connector link corresponding to an input only
connector.

CNS_INOUT An external connector link corresponding to a bidirectional
connector.

CNS_2EQUIP A generic type corresponding to devices with only two
equipotentials, e.g. diode or resistance links.

Yagle Reference Guide

37

CNS_3EQUIP A generic type corresponding to devices with three
equipotentials, e.g. MOS transistors.

CNS_SWITCH A link corresponding to part of a CMOS transmission gate.

CNS_COMMAND A link corresponding to a transistor, within a latch cone,
whose gate is driven by the command signal of the latch.

CNS_ACTIVE A generic type corresponding to any active device.

CNS_PASSIVE A generic type corresponding to any passive device.

CNS_DOWN CNS_UP Generic types indicating the orientation of non-symmetric
devices links, e.g. diodes. UP corresponding to towards the
power supply, and DOWN corresponding to away from the
power supply.

CNS_SW A generic type indicating any actice switching device,
usually a transistor.

CNS_PULL A link corresponding to a passive pull up or pull down
resistance.

CNS_DRIV_PULL A link corresponding to an active pull-up or pull-down
resistance.

CNS_DIODE_UP
CNS_DIODE_DOWN

A link corresponding to a diode oriented according to the
generic orientation masks.

CNS_RESIST A link corresponding to a passive resistance, e.g. an MOS
transistor whose gate is connected to a power supply.

CNS_CAPA A link corresponding to a capacitance, e.g. an MOS
transistor whose source and drain are connected to the same
equipotential.

CNS_DIPOLE A link corresponding to a dipole.

A large number of the above masks are generic types, they are rarely used in the affectation of a type
to a link since the are included in the non-generic types. For example the type CNS_RESIST includes
the masks CNS_PASSIVE and CNS_2EQUIP.

The generic types are included to facilitate the testing of links, since they allow certain type groups
of links to be tested for using a comparison with a single mask.

2.4.5. The Edge List

Edge Structure Fields

The edge object, of type edge_list, is made up of the following fields:

Yagle Reference Guide

38

struct link *NEXT Pointer to the following edge in the cone's list of edges.

long TYPE The logical sum of masks indicating the type and nature of
the edge.

union uedge UEDGE Pointer to the object to which the edge refers, CONE,
LOCON or PTR.

struct ptype *USER User defined information.

Note that the UEDGE field is a union since it can point to a transistor (field CONE of type cone_list*)
or a connector (field LOCON type locon_list).

Standard Branch Types

CNS_VSS CNS_VDD An edge corresponding to a cone built on a Vdd(Vss) power
supply node.

CNS_GND An edge corresponding to a cone built on a ground node
(exists only in GaAs).

CNS_EXT Indicates that the edge is an external connector and hence
that the pointer in the UEDGE union is of type locon_list*.

CNS_CONE Indicates that the edge is a cone and hence that the pointer
in the UEDGE union is of type cone_list*.

CNS_BLEEDER Indicates that the edge corresponds to the input, or
corresponding output of a bleeder loop (see figure 5a).

CNS_COMMAND Indicates that the edge corresponds to a command input of
a latch cone.

CNS_LOOP Indicates that the edge forms part of a two cone loop.

CNS_FEEDBACK Indicates that the edge corresponds to the input, or
corresponding output of a latch feedback loop

2.4.6. The Transistor List

The CNS transistor object uses the same data structure as MBK, the lotrs_list structure, hence the
reader is referred to the MBK documentation for details. CNS does however define its own TYPE
masks as well as additional USER types for the transistors.

The TYPE masks are:

CNS_TN defined as TRANSN

CNS_TP defined as TRANSP

The additional USER types are:

Yagle Reference Guide

39

CNS_INDEX
A unique number for the transistor wihin the circuit, used by the parser/driver in order
to refer to individual transistors.

CNS_LINKTYPE
Contains the TYPE affected to any links referring to the transisitor.

CNS_DRIVINGCONE
Contains a pointer to the cone built on the equipotential to which the transistor gate
is connected.

CNS_CONE
Contains a chain_list of the cones containing links referring to the transistor. This field
is rarely created due to reasons of memory efficiency.

2.4.7. The Connector List

The CNS connector object uses the same data structure as MBK, the locon_list structure, hence the
reader is referred to the MBK documentation for details. CNS does, however, define additional USER
types for the connectors.

The additional USER types are:

CNS_INDEX A unique number for the connector within the circuit,
used by the parser/driver in order to refer to individual
connectors.

CNS_EXT Contains a pointer to the cone built on the equipotential
connected to the external connector.

CNS_CONE Contains a chain_list of the cones containing links referring
to the external connector. This field is rarely created due to
reasons of memory efficiency.

2.4.8. The Cell List

Cell Structure Fields

The cell object, of type cell_list, is made up of the following fields:

struct link *NEXT Pointer to the following cell in the figure's list of cells.

long TYPE The logical sum of masks indicating the type of the cell.

chain_list *CONES The list of cones contained within the cell.

struct befig *BEFIG The behavioral description of the cell.

struct ptype *USER User defined information.

Yagle Reference Guide

40

Standard Cell Types

A number of standard cell types have been defined in the CNS header to deal with the recognition
of GaAs cone configurations, it is possible that this list will be extended to include certain standard
CMOS forms.

The convention for adding a user defined cell type so that it is recognized as such by the CNS driver is
to sum a desired type reference number with the constant CNS_UNKNOWN. This allows the driver
to identify that the cell is not defined within CNS but is nonetheless a legal type, hence the cell is
identified within the CNS file by the index and not by a name as is the case for the predefined types.

Yagle Reference Guide

41

Chapter 3. Log Files

3.1. REP - Report File

Each execution of Yagle results in the generation of a report file. This file is given the name
<input_name>.rep. It contains a list of diagnostics (warnings and error messages) attributed to
particular signals or transistors within the input net-list. Here we explain in more detail the particular
messages which you may come across in this report file.

3.1.1. Warning Messages

"[WAR] Possible unconnected supply ?"
Means that an internal signal whose name contains avtVddName or avtVssName has
been found. Verify if this signal should be connected to an external supply, or if
avtGlobalVddName and avtGlobalVssName should be positioned.

"[WAR] Transistor used as a resistance"
Indicates that a transistor P-channel (resp. N-channel) with gate connected to the
ground (resp. power supply) has been found in the circuit.

"[WAR] Transistor used as a diode"
Indicates that a transistor with drain (or source) connected to gate has been found in
the circuit, and the signal connecting them is neither power supply nor ground.

"[WAR] Transistor is always off"
Indicates that a transistor P-channel (resp. N-channel) with gate connected to power
supply (resp. ground) has been found in the circuit.

"[WAR] Transistor used as a capacitance"
Indicates that a transistor with drain and source connected together has been found in
the circuit.

"[WAR] Gate of transistor is not connected"
Indicates that a transistor gate which is connected to nothing has been found in the
circuit.

"[WAR] Drain of transistor is not connected"
Indicates that a transistor drain which is connected to nothing has been found in the
circuit.

"[WAR] Source of transistor is not connected"
Indicates that a transistor source which is connected to nothing has been found in the
circuit.

Yagle Reference Guide

42

"[WAR] Transistors are not used in the circuit"
This means that these transistors are not used to pull up or pull down any transistor
gate in the circuit, or any external connector. This occurs for example if the output of
a gate does not drive anything: In this case Yagle considers the transistors of the gate
to be unused.

"[WAR] Loop between 2 gates (bleeder found)"
This means that a loop corresponding to a bleeder has been found in the circuit.

"[WAR] Loop between 2 gates (latch found)"
This means that a loop corresponding to a latch has been found in the circuit.

"[WAR] Loop between 2 gates (bi-stable found)"
This means that a loop corresponding to a bi-stable has been found in the circuit.

"[WAR] Loop between 2 gates (nothing found)"
This means that a two gate loop which does not correspond to a latch, bleeder or bi-
stable has been found in the circuit.

"[WAR] Conflict may occur on signal"
This means that the signal may be pulled-up and pulled-down simultaneously. This
is a warning since this message may disappear with a greater depth for the functional
analysis process. Or it may not be possible to resolve the conflict given the logic within
the circuit.

"[WAR] HZ state may occur on signal"
This means that the signal is not pulled up or pulled down for any set of input stimuli
on the cone entries. This is a warning for the same reason as a conflict.

"[WAR] Signal does not drive anything"
This means that the signal is not used as the input to any gate or used to drive any
external connector.

"[WAR] Connector unused"
This means that the external connector is neither the input nor the output of any of the
extracted transistor gates.

3.1.2. Error Messages

The presence of any of the following errors will disable the generation of the VHDL or Verilog
description. If this behavior is not desired then Yagle must be executed with the yagleNotStrict
variable.

"[ERR] Bad direction on connector"
Indicates that the orientation of an external connector after disassembly does not
correspond to that specified in the input netlist.

Yagle Reference Guide

43

"[ERR] Transistor gate signal is not driven"
Indicates that a transistor gate can not be pulled up or down.

3.1.3. Fatal Errors

The following error messages will not be found in the report file. These errors are fatal and will
abruptly stop the execution of Yagle.

"[FATAL] No VDD/VSS connector in the circuit"
This means that Yagle did not find any external ports whose name is the name of the
power supply in the circuit. Do avtVddName and avtVssName have the right value?

"[FATAL] Connector is power supply and ground"
This means that Yagle found a connector whose name includes avtVddName and
avtVssName.

"[FATAL] No VDD/VSS signal in the circuit"
This means that Yagle did not find any signal whose name is the name of the power
supply in the circuit.

"[FATAL] Several external connectors on signal"
This means that Yagle found several external connectors connected to the same
equipotential, a configuration which Yagle considers illegal.

3.2. User-defined Log File

A global log file can be generated, logging the proccessing of all the components of the software. This
file is customizable, and user can choose which component to log, and the level of log to apply.

Each line in the log file is beginning with the code related to the logged software component:

FAC file access tracing

MCH disk cache tracing (used for .stm, .rcx and .spef files)

MCC MOSFET characterization

RCN RC networks construction

TRC RC networks characterization

YAG transistor netlist disassembly

TAS information related to delay calculation

STM information related to delay models

EFG spice deck generation

Yagle Reference Guide

44

GSP automatic stimuli generation

TLF .tlf file generation

LIB .lib file generation

ERR error redirection in log file

PRS statistics related to netlist parsing

SPI detailed logging of the spice netlist and technology file
parser

The avtLogFile variable activates the creation of the log file. The avtLogEnable variable selects the
software components to log and the level of log. Please refer to the 'Configuration Variables' chapter
for more details.

Yagle Reference Guide

45

Chapter 4. Configuration Variables

4.1. License Server

avtLicenseServer
<string> Hostname of the machine running the license server

avtLicenseProject
<string> Project name. Used in license logging.

4.2. Environment

avtLibraryDirs
<string> The set of library directories which are scanned for required

subcircuits.

avtBlackboxFile
<string> Name of the file containing the cells to exclude of analysis.

avtCatalogueName
<string> File containing a list of subcircuits to be considered as leaf cells

when flattening a design. Each line in this file refers to a single
subcircuit, with the format <subcircuit> C. The default value
is CATAL.

4.3. Names

avtVddName
<string> Name of any signal or connector which is to be considered as

power supply (a * in the name matches any string). Several names,
separated by :, may be specified.

avtVssName
<string> Name of any signal or connector which is to be considered as

ground (a * in the name matches any string). Several names,
separated by :, may be specified.

Yagle Reference Guide

46

avtGlobalVddName
<string> Name of an internal signal to be considered as power supply (a *

in the name matches any string). Signals in different subcircuits
of a hierarchical netlist with a name given here will be considered
as equipotential and this name will be used in the flattened netlist.
This is identical to the use of the .GLOBAL directive in a spice
netlist. Several names, separated by :, may be specified.

avtGlobalVssName
<string> Name of an internal signal to be considered as ground (a * in

the name matches any string). Signals in different subcircuits of a
hierarchical netlist with a name given here will be considered as
equipotential and this name will be used in the flattened netlist.
This is identical to the use of the .GLOBAL directive in a spice
netlist. Several names, separated by :, may be specified.

avtCaseSensitive
yes Upper and lower case characters are distinct

no Upper and lower case characters are seen as identical

preserve Default, upper and lower case characters are seen as identical but
the original case is preserved

avtInstanceSeparator
<char> Character used to separate instance names in a hierarchical

description. Default value is .

avtFlattenKeepsAllSignalNames
yes When flattening a netlist, each signal keeps all its names through

the hierarchy.

no Default, only one name (the shortest) is kept per signal.

avtVectorize
Controls the internal representation of vector-signals.

Yagle Reference Guide

47

yes Default, vector-signals are represented internally as vectors, as far
as the vector indexation is one of [], <>, _. For example, if both
foo[1], foo<1> and foo_1 appear in the source file, they will all
be represented internally as foo 1

no Vector signals are represented internally as they appear in the
source file.

<string> Explicits the vector-signals indexations that will be interpreted
as vectors, and the represented internally as vectors. string is a
comma-separated list of single or paired delimiters. For example,
if string is set to "[],_", only foo[1] and foo_1 will be
represented internally as foo 1.

Special attention should be paid to the Verilog case. Verilog only accepts [] as
legal vector indexation. Legal verilog vectors are represented internally as vectors if
avtVectorize is different to no.

Illegal Verilog vectors are supported and controlled by avtVectorize as far as they
are escaped and avtStructuralVerilogVectors is set to yes. For example, \foo<1>
is represented internally as a vector if avtStructuralVerilogVectors is set to yes
and avtVectorize is set to <>.

4.4. Technology

avtElpCapaLevel
Allows the user to compute differents kind of input capacitance.

0 Input capacitance is the average between up and down capacitance

1 Default, nominal up and nominal down capa are used to compute
timing

2 Same behavior as if set to 1 but also minimal and maximal
capacitances are computed for both transitions (6 capacitances at
all).

avtTechnoModelSeparator
<char> Character that will be used as a separator between the model name

and the model index. Default value is .

Yagle Reference Guide

48

avtElpDriveFile
yes A ELP file specified by avtElpGenTechnoName will be printed

after transistor electrical characterization.

no default

avtElpGenTechnoName
<string> Name of the generated ELP file. Default is techno.elp.

4.5. Input Netlist and Parasitics

avtInputFilter
<string> Shell command line used to decompress an input netlist

avtOutputFilter
<string> Shell command used to compress an output file

avtFilterSuffix
<string> Suffix of the compressed files

avtDisableCompression
<string> Space separated filename list for which compression must be

ignored. EXAMPLE: "*.rcx *.rep"

avtAnnotationKeepCards
transistor M character is kept before the transistor name

diode D character is kept before the diode name

resistance R character is kept before the resistance name

instance X character is kept before the instance name

capacitance C character is kept before the capacitor name

none No character is kept

all M, R, X, C, D characters are kept

Yagle Reference Guide

49

avtMaxCacheFile
<int> If cache mechanisms are used, sets the maximum number of files

that can be opened at the same time. Larger the value is, faster is
the disk access. Default value is 128. Maximum value depend on
your system (see UNIX command limit).

avtParasiticCacheSize
<int>[Kb|Mb|Gb] Size (bytes) of the memory cache for all applications dealing with

parasitics. Value represents the maximum amount of information
stored in memory. Increase this value to lessen disk access and
speed-up application. avtParasiticCacheSize cannot be used
together with compressed files.

10Mb Default

0 Disable cache and load all the parasitic information

avtFlattenForParasitic
yes Yagle flattens a hierarchical netlist in order to annotate the

netlist with SPEF or DSPF parasitics. To be used together with
avtCatalogueName

no default

avtVddVssThreshold
<float> Value (in volts) defining the absolute voltage value level above

which a node is considered to be a power supply node. Default
value is 0.5.

4.6. SPICE Parser

avtSpiCreateTopFigure
yes Default, parser automatically creates a top-level for all elements

outside of SUBCKT definition. All equipotentials are made into
external connectors. The name of the top-level is the same as the
filename without the extension unless a subcircuit of this name
exists, in which case the name is prefixed by top_

no No top-level is created

Yagle Reference Guide

50

avtSpiParseFirstLine
yes First line of all SPICE files are taken into account, unlike the

behavior in standard SPICE

no First line of all SPICE files are ignored

include Default, first line of the top-level SPICE file is ignored, but the
first line of included files are parsed normally

avtSpiReplaceTensionInExpressions
yes Avoids expression evaluation errors due to unhandled dynamic

tensions in expression. The voltage is considered to be 0.

no Default.

avtEnableMultipleConnectorsOnNet
yes By default, there can only be one external connector per net after

a netlist parse. If multiple connectors are found, they are merged
into one. This can have a big drawback. Connectors required
on the interface of a top level netlist can be missing. There can
also be issues for ignoring instances with transparencies using
hierarchical names as transparences are analysed to build nets
prior to check ignored instance resistors. Setting this variable to
yes allows multiple external connectors on nets so transparences
are analysed during the resistor removal step without the nets
being shorted already. This has an effect on ignored instances
containing transparences. It affects Yagle behaviour and may
make it not work in hierarchical mode.

no Default.

avtSpiMergeConnector
yes Default, connectors with the same radical, but different node

indexes, will be merged (they are supposed to belong to the
equipotential outside the subcircuit). The separator between the
radical and the index is given by avtSpiConnectorSeparator.

no Connectors are not merged

avtSpiConnectorSeparator
<char> Character used to separate a connector radical name from its node

index (ck.1, ck.2 ... for example).

Yagle Reference Guide

51

avtSpiKeepNames
transistor Transistor name is kept in the database

diode Diode name is kept in the database

resistance Resistance name is kept in the database

allnodes All node names are kept for signals in the database

none No name is kept in the database

all All names are kept in the database

avtSpiKeepCards
transistor M character is kept before the transistor name

diode D character is kept before the diode name

resistance R character is kept before the resistance name

instance X character is kept before the instance name

capacitance C character is kept before the capacitor name

none No character is kept

all M, R, X, C, D characters are kept

avtSpiNameNodes
yes Default, nodes names are used rather than the node numbers

no Only node numbers are used

avtSpiNodeSeparator
<char> Character that will be used as a separator between the node name

and the node number. The default value is _

avtSpiInstanceMultiNode
yes Default, allows two or more identical nodes to be declared in a

subckt interface

no Only the first node declared is taken into account

avtSpiIgnoreDiode
yes Diodes are ignored by the SPICE parser.

no Diodes are characterized.

Yagle Reference Guide

52

avtSpiMergeDiodes
yes Diodes are merged with neighboring transistors if the transistor is

of the same type and area of the connected source or drain is 0.

no Diodes are characterized independantly.

avtSpiIgnoreVoltage
yes Voltage sources are ignored by the SPICE parser.

no Voltage sources are not ignored.

avtSpiIgnoreModel
yes Model directives are ignored by the SPICE parser.

no Model directives are not ignored.

avtSpiIgnoreCrypt
yes Encryption directives (used to indicate encrypted data) are

ignored.

no The default. Encryption directives must surround encrypted test
obtained by avt_EncryptSpice function.

avtSpiJFETisResistance
yes JFETs are considered to be resistances. Values are resolved by the

SPICE parser.

no

avtSpiShortCircuitZeroVolts
yes Voltage sources with a value of 0 are modeled by the SPICE parser

as resistances of 0 Ohms.

no

avtSpiMaxResistance
<float> If a resistance's value is greater than float (in Ohms), then the

resistance is considered to be open circuit.

avtSpiMinResistance
<float> If a resistance's value is less than float (in Ohms), then the

resistance is considered to be short circuit.

Yagle Reference Guide

53

avtSpiMinCapa
<float> If a capacitance's value is less than float (in Ohms), then the

capacitance is ignored

avtSpiOneNodeNoRc
no Removes on all nets containing only one node all parasitics

information at the end of the parse.

yes

avtSpiOrderPinPower
yes Uses the name (in the same manner as avtSpiDspfBuildPower)

of the instance nodes to ensure a correct order for power supply
connectors.

no

avtSpiFlags
This configuration is used to control the behavior of the spice parser/driver. The values
(flags) are added separated with commas.

DriveInstanceParameters Enables the drive of the instances with all their
parameters

IgnoreGlobalParameters Works with DriveInstanceParameters and
removes all the global parameters from the instance
parameters to drive. Useful when the netlist has been
flattened and the parameters inherited by the leaf
instances.

KeepBBOXContent Will keep the content of the figures set as blackboxes
whereas by default only the interfaces are kept.

TransfertTopLevelVcards Will transfert voltage sources connected to instances,
who are defined out of a subckt in the spice file, in
their corresponding circuit subckt so the Vcards can
be taken into account when working on one of this
instance circuit. This option is enabled by default. It
can be unset by adding '!' in front of the option: '!
TransfertTopLevelVcards'.

ExplicitInstanceNames If enabled then instance names specified in the netlist
are prefixed by the subckt name in order to create the
internally used name.

Yagle Reference Guide

54

avtSpiTolerance
This variable tunes the tolerance of the SPICE parser regarding unrecognized syntaxes
for R (resistances) and C (capacitances) devices.

low Parser exits when encountering unknown syntax

medium Parser continues and tries to keep only the nominal value of the
device, issuing a warning message

high Same as in the medium configuration, but no warning message is
issued

avtSpiHandleGlobalNodes
yes Default, global nodes defined in spice netlist without resistances

will be considered equipotential.

no

4.7. SPICE Driver

avtSpiVector
_ Default, vectors are of the shape foo_1 in output spice files

[] Vectors are of the shape foo[1] in output spice files

() Vectors are of the shape foo(1) in output spice files

<> Vectors are of the shape foo<1> in output spice files

avtSpiDriveDefaultUnits
<string> Its behavior is to indicate the parameter units to

be used when instantiating a transistor. For instance,
avtSpiDriveDefaultUnits = W:1e-6;L:1 will set the spice
driver to drive parameter W value in micron and parameter L in
meter.

avtSpiUseUnits
yes Allows the use of units in driven spice files. This is the default.

no

Yagle Reference Guide

55

avtSpiDriveParasitics
yes A SPEF file will be generated while parsing a SPICE file. The

loaded file will be stripped of all resistors and capacitors. The
SPEF file can be used as a parasitic cache file.

no

avtSpiDriveTrsInstanceParams
no Specifics instances parameters for the models of transistors will

not be driven.

yes

avtSpiDriveCapaMini
<float> When driving a Spice netlist, doesn't drive capacitances below

float (in Pico-farads). Default is 10-6 pF.

avtSpiDriveResiMini
<float> When driving a Spice netlist, fix minimum value for resistances

to float (in Ohms). Default is 10e-3 Ohms.

avtSpiRCMemoryLimit
<int> Amount of memory in MB allowed to creating a .SPEF file from

a spice file. This option influences avtSpiDriveParasitics
speed. The default value is 100.

avtSpiFlags
This configuration is used to control the behavior of the spice parser/driver. The values
(flags) are added separated with commas.

Yagle Reference Guide

56

DriveInstanceParameters Enables the drive of the instances with all their
parameters

IgnoreGlobalParameters Works with DriveInstanceParameters and
removes all the global parameters from the instance
parameters to drive. Useful when the netlist has been
flattened and the parameters inherited by the leaf
instances.

KeepBBOXContent Will keep the content of the figures set as blackboxes
whereas by default only the interfaces are kept.

TransfertTopLevelVcards Will transfert voltage sources connected to instances,
who are defined out of a subckt in the spice file, in
their corresponding circuit subckt so the Vcards can
be taken into account when working on one of this
instance circuit. This option is enabled by default. It
can be unset by adding '!' in front of the option: '!
TransfertTopLevelVcards'.

4.8. VHDL Parser/Driver

avtVhdlMaxError
<int> Maximum number of errors before the VHDL structural parser

abandons.

avtStructuralVhdlConfigure
yes VHDL structural driver generates the appropriate configuration

statement to allow simulation.

no Default

avtStructuralVhdlSuffix
<string> Suffix of VHDL structural (netlist) file. The default is vhd

avtBehavioralVhdlSuffix
<string> Suffix of VHDL behavioral file. The default is vhd

Yagle Reference Guide

57

4.9. VERILOG Parser/Driver

avtVerilogKeepNames
yes When generating Verilog output, any internal names which are

not legal verilog names are preceded by a double backslash.

no Default. Illegal names are modified to create a legal name.

avtStructuralVerilogVectors
Affects the parsing of illegal Verilog vector-signals in a netlist, i.e. vector-signals that
are not indexed using the [] characters. Illegal Verilog vector-signals are supported
as long as they are preceded by \, otherwise the Verilog parser issues a syntax error.
Legal Verilog vector-signals are controlled by avtVectorize.

yes Force illegal Verilog vector-signals to be represented as vectors in
the internal database, with regard to the value of avtVectorize.
For example, \foo<1> is represented internally as foo 1 if
avtVectorize is set to <1>

no Default, illegal Verilog vector-signals are represented in the
internal database as they appear in the file. For exemple, \foo<1>
is represented internally as foo<1>

avtStructuralVerilogSuffix
<string> Suffix of Verilog structural (netlist) file. The default is v

avtBehavioralVerilogSuffix
<string> Suffix of Verilog behavioral file. The default is v

avtVerilogMaxError
<int> Maximum number of errors before the Verilog parser abandons.

4.10. DSPF/SPEF Parser

avtAnnotationPreserveExistingParasitics
yes Existing parasitics on nets annotated in a DSPF/SPEF file won't

be overridden by the parasitics in the DSPF/SPEF file. The DSPF/
SPEF information will rather be added to the existing ones.

no Default

Yagle Reference Guide

58

avtAnnotationDeviceConnectorSetting
<string> Overrides the internal tool known device connector names

used in DSPF/SPEF annotation. The string must contain
10 items in the following order: transistor source name,
transistor gate name, transistor drain name, transistor bulk name,
resistor positive connector, resistor negative connector, capacitor
positive connector, capacitor negative connector, diode positive
connector, diode negative connector. By default, the tool knows
of "s g d b 1 2 1 2 1 2" and "s g d b pos neg 1 2 1 2".
Example:

avt_config avtAnnotationDeviceConnectorSetting "src

gate drn blk 1 2 1 2 1 2"

avtSpiDspfBuildPower
yes Only used for DSPF annotation. When creating a

figure from DSPF information, use the avtGlobalVddName,
avtGlobalVssName, avtVddName and avtVssName to detect
power connections on the instance, so they are created on
the boundary of it instead of being merged with all unknown
connectors.

no

avtSpiDspfLinkExternal
yes Only used for DSPF annotation. When an external connector is

not connected to anything, and if there is an internal signal with
the same name, then the connector is assumed to be on this signal.

no

avtSpiPinDspfOrder
yes Only used for DSPF annotation. Order of connector of an instance

is the one described in the DSPF instead of the one described for
the instance interface.

no

Yagle Reference Guide

59

4.11. General Configuration

yagHierarchicalMode
yes Activates the hierarchical disassembly mode.

no Default

yagWriteStatistics
yes Statistics of detected power supplies and particular transistor

configurations are saved in a file with the suffix .stat.

no Default

yagMutexHelp
yes An algorithm which attempts to guess any misssing MUTEX

constraints is activated. Groups of signals which could have
constraints are reported in a file of suffix .mutex.

no Default

yagSearchLoops
yes An algorithm to detect combinatorial loops of more than two gates

is activated. Any loops detected are reported in a file of suffix
.loop.

no Default

yagDebugCone
<string> If set to the name of a cone, then additional debug information for

that cone is displayed.

yagNotStrict
yes Certain aspects of the net-list coherency are not verified, such as

un-driven transistor gates.

no Default

yagElpCorrection
yes Updates the capacitances to take into account technology

dependant factors, such as diffusion capacitance, gate capacitance
and shrink.

no Default

Yagle Reference Guide

60

yagSuppressBlackboxes
yes Reads a hierarchical net-list in which some of the instances

are considered to be black boxes (i.e. their internal structure is
unavailable). The list of these instances is given by the user in
a file whose name is given by avtBlackBoxFile. Yagle creates
a new intermediate netlist containing only the non-black box
instances, and modifies the original net-list to instantiate this new
figure and the black box instances. The modified original netlist
is saved to disk, and the functional abstraction is performed on the
intermediate figure.

no Default

yagIgnoreBlackboxes
yes Reads a hierarchical netlist in which some of the instances are

considered to be black boxes. The name of these instances is
given in a file whose name is given by avtBlackBoxFile. The
hierarchical netlist is then flattened to the transistor level apart
from the black box instances to generate a hybrid transistor and
instance netlist. The functional abstraction is performed on this
hybrid netlist.

no Default

yagRemoveInterconnects
yes Deletes parasitic information before performing desassembly and

functional abstraction.

no Default

yagSilentMode
yes Yagle does not write anything to the standard output.

no Default

Yagle Reference Guide

61

4.12. Disassembly

4.12.1. Functional Analysis

yagAnalysisDepth
<int> Allows the user to set the depth for the functional analysis. This

is the number of gates that will be taken into account for the
functional analysis, so that Yagle can detect re-convergence in the
circuit. Default is 7.

0 Functional analysis process is disabled

yagHzAnalysis
yes Allows functional analysis through high impedance nodes.

yagMaxBranchLinks
<int> Maximum number of links in a cone branch.

yagRelaxationMaxBranchLinks
<int> Used to limit the maximum number of links for the difficult gates

for which functional dependencies could not be resolved.

yagBddCeiling
<int> Limits the maximum number of BDD nodes which are allowed

to be created for the resolution of any Boolean expression. If this
limit is exceeded the operation is abandoned. Default is 10 000.

yagElectricalThreshold
<float> Used in electrical resolution of conflicts to determine the zones

corresponding to the high, low and conflictual states. Default is
4, implying that the high and low states are represented by zones
1/4 of the zone Vss-Vdd.

yagUseStmSolver
yes Precise current calculations using technology files are used in

electrical conflict resolution.

no Default, basic transistor dimensions are used in electrical conflict
resolution.

Yagle Reference Guide

62

yagRelaxationAnalysis
During the gate construction phase, Yagle attempts to resolve all functional
dependencies before building a particular gate. However, in particular cases of looped
dependencies, this may not be possible for all gates.

yes Functional dependencies are ignored to resolve these gates.

no Default, Yagle tries to use as much information as possible.

yagDetectGlitchers
yes A branch containing two transistor with mutually exclusive gate

drivers and which cannot be part of another gate are assumed
to exist dynamically. They are therefore not removed by the
functional analysis. This is the default.

no

yagKeepRedundantBranches
For any CMOS dual cones extracted, if supplementary branches are added at a later
stage of the disassembly and the gate remains non-conflictual, then these branches are
considered to be functionally redundant.

yes The branches are kept.

no Default, the branches are removed.

yagPullupRatio
<float> Used in the detection of pull-up or pull-down resistance

transistors. Default is 10, implying that a transistor is a pull-
up if an estimation of its resistance is greater than 10 times the
resistance of the most resistive current path to ground. Similarly
for pull-pown resistances.

4.12.2. Transistor Orientation

yagSimpleOrientation
yes Activates a simple transistor orientation heuristic. Can sometimes

accelerate the disassembly, however, it is more robust to rely
exclusively upon the functional analysis.

no Default.

Yagle Reference Guide

63

yagUseNameOrientation
yes Exploits the _s naming convention for transistor orientation.

no Default.

yagBlockBidirectional
yes Bidirectional transistors are not allowed.

no Default.

yagCapacitanceCones
yes Default. Build cones on nodes with only capacitances. Necessary

to calculate the out of path capacitance.

no Disables construction of cones on only capacitance nodes.

yagTestTransistorDiodes
yes Default. Any transistor with the gate shorted to a source or a drain

is considered as a diode.

no Disables diode detection.

yagMutexHelp
yes A file with extension '.mutex' is generated containing help for

MUTEX settings on external pins or memory nodes necessary to
correctly orient the transistors.

no Default.

4.12.3. Latch Recognition

yagSimpleLatchDetection
A simple structure based recognition algorithm which handles the various cases of
double inverter loops. This approach is not usually required and is not guaranteed to
be formally correct but can sometimes help in cases where the automatic approach is
too CPU intensive. The following values can be given for this variable:

Yagle Reference Guide

64

memsym Double inverter loops are also analyzed to see if they correspond
to a simple symmetric bitcell. In this case the the command of the
bitcell is the input of the pass transister or transfer gate connected
directly to the loop.

levelhold Double inverter loops are considered to be level-hold or buskeeper
structures (i.e. not latches).

strictlevelhold Double inverter loops are considered to be level-hold or buskeeper
structures (i.e. not latches), but only if only one side of the inverter
loop is connected.

latch Double invertor loops are treated as latches without any anlysis,
unless a level-hold or memsym option is also activated and
these forms match. Commands are guessed without analysis. This
option helps if double inverter loops are used to latch the output
of complex multiplexors.

The above options can be concatenated by separating the individual options with a
'+' character. However the combinations "levelhold+strictlevelhold" and "levelhold
+latch" make no sense. The search options are applied in the order specified above. By
default all the options are disabled.

yagAutomaticLatchDetection
yes Advanced latch detection algorithm based on Boolean loop

analysis is activated. Default.

no Advanced latch detection is disabled.

yagSetResetDetection
yes Only works with yagAutomaticLatchDetection set to yes.

Asynchronous latch commands are marked asynchronous instead
of being marked commands. False timing arcs (corresponding to
the conditioning of data by an asyn or the conditioning of an async
by a clock) are disabled.

remove Does the same as the yes mode. In addition marks as non-
functional any branches corresponding to an asynchronous write.

no Default.

Yagle Reference Guide

65

yagAutomaticRSDetection
mark Default. Only works with yagAutomaticLatchDetection set to

yes. Supplementary RS bistable detection algorithm is applied
to automatically detected latches. Only NAND/NOR types are
accepted. Any detected RS bistable loops will be marked and
reported but not treated as latches.

no Automatic RS detection is disabled. Recognition depends upon
yagAutomaticLatchDetection

mark+latch One of the gates of the loop is considered a latch. The latch is the
gate with the largest number of outputs.

mark+legal The algorithm assumes that an RS structure always remains in its
legal states. Timing arcs are suppressed accordingly. For NOR-
based RS, the following timing arcs are suppressed: S(f) to QB(r),
R(f) to Q(r), QB(r) to Q(f) and Q(r) to QB(f). For NAND-based
RS, the following timing arcs are suppressed: S(r) to QB(f), R(r)
to Q(f), QB(f) to Q(r) and Q(f) to QB(r).

mark+illegal The algorithm assumes that an RS structure may enter an illegal
state. Less timing arcs are suppressed than when the tool assumes
that an RS structure always remains in its legal states. For NOR-
based RS, the following timing arcs are suppressed: Q(r) to QB(f)
and QB(r) to Q(f). For NAND-based RS, the following timing arcs
are suppressed: Q(f) to QB(r) and QB(f) to Q(r).

yagAutomaticMemsymDetection
yes Only works with yagAutomaticLatchDetection set to yes.

Supplementary symmetric memory detection algorithm is applied
to automatically detected latches. Symmetric memories are
memorizing elements such as bitcells for which data is written in
both or either side of the memorizing loop. Both sides of the loop
are marked as latches is order to verify all cases.

no Default.

yagDetectDynamicLatch
yes Internal tri-state nodes are considered to be dynamic latches

for functional modeling and timing analysis purposes. A special
algorithm, similar to that used in the automatic latch detection,
is used to identify the latch commands and generate an accurate
latch model.

no Default.

Yagle Reference Guide

66

yagDetectPrecharge
yes An algorithm designed to detect automatically most kinds of

precharge nodes is activated. The algorithm is particularly
designed for domino precharge style designs.

no Default.

yagBleederStrictness
A level between 0 and 2 defining the strictness of the bleeder detection algorithm. The
value determines the kind of gate which can be tolerated in the bleeder loop.

0 any CMOS gate is acceptable

1 default, any CMOS dual gate is acceptable

2 it must be an inverter

yagStandardLatchDetection
Deprecated. This structure based latch recognition technique is activated by default as
a catch-all. It will probably be removed in a future version.

yes Default, standard latch detection algorithm is activated.

no Standard latch detection algorithm is disabled.

yagLatchesRequireClocks
yes Any latch which does not have a command which is at the end of

a path from a specified clock is not considered to be a latch. If this
option is used, then extreme care should be taken to specify the
clocks to avoid problems in any subsequent analysis.

no Default.

yagDetectClockGating
yes If clocks are configured before the disassembly phase then

reconvergence between clock and data will be detected,
appropriate timing check and data filtering directives are
automatically generated.

check Same as above except only the timing checks are added.

filter Same as above except only the data filtering directives are added.

no Default.

Yagle Reference Guide

67

yagDetectDelayedRS
yes Detect special type of NAND/NOR bistable loop structure

containing additional inverters to add delay in the loop. Results
in the same handling as the legal setting for RS detection. This
type of structure is commonly used to generate non-overlapping
clocks.

no Default.

4.12.4. Pattern Matching

yagUseGenius
yes Extends the simple pattern recognition of FCL to allow the

recognition of hierarchically defined structures of generic size.

no Default

yagUseOnlyGenius
yes Same as yagUseGenius but Yagle stops the execution after the

hierarchical pattern recognition phase.

no Default

4.12.5. Behavioral Model Generation

yagTasTiming
max delay information is calculated for annotation of the data flow

description using timing characterization with worst case timings

med delay information is calculated for annotation of the data flow
description using timing characterization with average timings

min delay information is calculated for annotation of the data flow
description using timing characterization with best case timings

Yagle Reference Guide

68

yagSplitTimingRatio
<float> Used if a timed behavioral model is generated. Models for some

auxiliary signals will be enhanced to differentiate up and down
transitions. This operation is performed if one of the transitions
has a delay greater than float times the other. If the value is
less than 1 then this operation is never performed. Note that this
option should not be used if a Verilog behavioral model is to be
generated sice verilog timings always contain this differentiation.
The default value is 0.

yagSensitiveTimingRatio
<float> Used if a timed behavioral model is generated. Models for some

auxiliary signals will be enhanced to differentiate the timing
according to the input which actually changes. float corresponds
to the minimum ratio between the greatest and the least timing
value above which the operation is performed. If the value is less
than 1 then this operation is never performed. The default value
is 0.

yagMaxSplitCmdTiming
<int> Used if a timed behavioral model is generated. Models for some

busses or register signals will be enhanced to differentiate the
timing according to each input combination which can change
the value. int corresponds to maximum number of combinations
under which the differentiation is applied. The default value is 0
(disabled).

yagSensitiveTimingDriverLimit
<float> Used to set an upper limit to the number of expression inputs for

which yagSensitiveTimingRatio has an effect. If expression
depends on mare variables than this limit the sensitive timing
expression is not generated. Used to avoid unwieldy models for
complex multiplexor structures.

yagOneSupply
yes Only one power supply and ground connector is defined in the

interface of the behavioral description.

no Default

Yagle Reference Guide

69

yagNoSupply
yes Disables dumping of power supplies declaration into generated

behavior.

no Default

yagReorderInterfaceVectors
yes All bussed connectors on the interface of the design being

modelled are re-ordered such that they are defined as vectors with
most significant bit first.

no Default. Interface connectors are left in the order of the original
design.

yagBleederIsPrecharge
yes Bleeders are modeled as nodes which maintain their value.

no Default

yagTristateIsMemory
yes Internal high impedance nodes are modeled as nodes which

maintain their value.

no Default

yagAssumeExpressionPrecedence
yes Signals with multiple drivers are modeled using a single cascaded

IF statement, hence a precedence is assumed.

no Default

yagSimplifyExpressions
yes Boolean expression simplification is performed on the final

model.

no Default

yagSimplifyProcesses
yes Simplifies the expressions of the behavioral data flow processes.

no Default

Yagle Reference Guide

70

yagMinimizeInvertors
yes Chains of invertors are reduced in the final model.

no Default

yagCompactBehavior
yes A compaction algorithm is applied on the generated model

capable of generating vectorized and looped assignations in order
to reduce the size of the code.

no Default

yagBusAnalysis
yes Uses a functional analysis algorithm to distinguish individual

drivers of bussed signals.

no Default

yagDriveConflictCondition
yes Latches and bussed signals for which a conflict condition is

detected after all analysis are modeled with this conflict condition.

no Default. The conflictual condition is ignored.

yagDriveAliases
yes Drives a file with the extension .aliases with information on

the circuit hierarchy. This file is used when using the tool
avt_vcd2hvcd.tcl that rebuild a hierarchical .vcd from from a
flat .vcd file.

no Default. No file generated.

4.12.6. Cone Output Files

avtVerboseConeFile
yes Generating a .cnv cone file result in a more readable version but

which is not suited for GUI vizualisation.

no Default.

avtNormalConeFile
yes A normal .cns cone file is produced.

no Default.

Yagle Reference Guide

71

avtFullConeFile
yes .cnv or .cns cone files are generated with parasitic information.

no Default.

yagGenSignature
yes Signatures are generated for each cone which are used to associate

icons with the cones.

no Default.

4.13. Output Configuration

yagOutputName
<string> Name given to the generated behavioral data flow description

no Default

yagGeniusTopName
<string> Name given to the root structural figure of a hierarchical netlist

generated as a result of GNS

yagGenerateBehavior
yes Default, generates the behavioral data flow description.

yagGenerateConeFile
yes A .cns file is generated, giving details of the disassembled gates

no Default

yagGenerateConeNetList
yes Generates a structural description of the disassembled gates

together with a behavioral model for each distinct gate type

no Default

Yagle Reference Guide

72

yagHierarchyGroupTransistors
yes In hierarchical abstraction mode, any transistors left in an

otherwise fully modeled design hierarchy, are grouped together
and abstracted as if they were in their own subckt.

no Default. Any transistors left over will be driven as such (in
verilog) or ignored (in vhdl).

avtOutputBehaviorFormat
vhd Output behavior format is VHDL

vlg Output behavior format is Verilog

avtOutputBehaviorVectorDirection
TO Vector signals generated by BEG functions will be expressed

from the lower bound to the higher bound

DOWNTO Default, vector signals generated by BEG functions will be
expressed from the higher bound to the lower bound

4.14. Pattern Matching

fclLibraryName
<string> Name of the file containing the list of cells in the user-defined cell

library used. The default is LIBRARY.

fclLibraryDir
<string> Access path to the directory containing the user-defined cell

library used. Default is a directory /cells in avtWorkDir.

fclGenericNMOS
<string> A colon separated list of transistor model names which the

FCL pattern-matching engine considers will match to any N-
type transistor. If a pattern netlist contains non-generic N-channel
transistors then these transistors will only match to transistors with
an identical model. Default is tn:TN.

Yagle Reference Guide

73

fclGenericPMOS
<string> A colon separated list of transistor model names which the

FCL pattern-matching engine considers will match to any PMOS
transistor. If a pattern netlist contains non-generic P-channel
transistors then these transistors will only match to transistors with
an identical model. Default is tp:TP.

fclWriteReport
yes A correspondence file is created if the -fcl option is used. This file

details all the recognized instances.

no Default

fclAllowSharing
yes Matched cells are allowed to share transistors.

no Default

fclCutMatchedTransistors
yes Matched transistors are eliminated from the transistor netlist.

Results in a strict partitioning of the cones and the matched cells.

no Default

fclMatchSizeTolerance
<int> Percentage tolerance for matching transistor sizes.

fclTraceLevel
<int> Number greater than 0. Trace information is displayed during the

pattern-matching phase.

fclDebugMode
<int> Number greater than 0. Additional debugging information is

displayed during the pattern-matching phase.

4.15. Hierarchical Pattern Matching

gnsLibraryName
<string> Name of the file (recognition library) containing the list of cells

to recognize. Default is LIBRARY.

Yagle Reference Guide

74

gnsLibraryDir
<string> Access path to the directory containing the recognition library.

Default is directory cells/ in avtWorkDir.

gnsKeepAllCells
yes All matched structures are extracted from the netlist.

no Default

gnsTemplateDir
<string> Directory where to find the GNS templates. Default is

$AVT_TOOLS_DIR/gns_templates.

gnsTraceLevel
<int> From 0 to 6. Indicates the level of trace displayed during the

recognition phase. Default is 0.

gnsTraceFile
<string> Name of the output trace file. Default is stdout.

gnsTraceModel
<string> When tracing the recognition, indicates the name of the

recognized model to trace. If not specified, traces all models.

gnsFlags
This configuration controls the behavior of GNS. The values (flags) are added
separated with commas. Available flags are:

EnableCore Enable the generation of a core file for a crash in a user compiled
API.

NoGns Disables the generation of the .gns file

VerboseGns Produces a more readable .gns file.

NoOrdering Disables the top-level instance connectors reordering. Should not
be set if using the BEG functions.

4.16. API Specific

apiFlags
Controls the behavior of the GNS API. The values (flags) are added separated with
commas. Available flags are:

Yagle Reference Guide

75

ttvUseInstanceMode Sets the TTV functions to generate/use one timing
view per instance of the same matched subcircuit.

ttvDriveDTX Enables the drive of the .dtx and .stm files for timing
views created with the TTV functions

apiDriveCorrespondenceTable
yes Correspondence table between behavioral names and electrical

names has to be driven (.cor file)

no Default

apiUseCorrespondenceTable
yes Use the signal correspondance to revert the driven signals to

their corresponding name in the original netlist. It removes the
artificially created GNS hierarchical names.

no Default

apiDriveAllBehavior
yes All the generated behaviors will be driven.

onlymodel Only the first instance of each model will be driven

no Default

4.17. GUI

xyagIconLibrary
<string> Full path of a specific .slib icon library

xyagMakeCells
yes Complex gates are represented using a single icon

no Default

Yagle Reference Guide

76

Chapter 5. Tcl Interface

5.1. General

5.1.1. Configuration

avt_Config

void avt_Config(char *var, char *val)

Main way to configure the tool. Affects a value to one of the variables listed
in the Configuration Variables section

var Configuration variable to be set

val New value

EXAMPLE avt_Config tasGenerateConeFile yes

avt_GetConfig

char *avt_GetConfig(char *var)

returns the configurated value for configuration variable var

var Configuration variable to be set

EXAMPLE set cone_cfg [avt_GetConfig tasGenerateConeFile]

5.1.2. File Loading

avt_SetBlackBoxes

void avt_SetBlackBoxes(List *list)

Allows the user to blackbox subcircuits. Blackboxed subcircuits will not
be analyzed. Instead, the tool will let a hole. Whether this hole should
be filled up or not by a timing description depends on configuration
variables tasIgnoreBlackbox and tasTreatBlackboxHierarchically.
If a blackbox name is prefixed with "unused:", no hole will be created but
instead all transistors in the blackbox will be marked as unused. Those

Yagle Reference Guide

77

blackboxes can still be retreived with GNS if the recognition rule uses the
same transistor names as in the blackbox. This command is equivalent to
and overrides the creation of a BLACKBOX file.

list List of subcircuits to be blackboxed. All intended blackboxed subcircuits
should present as only one avt_SetBlackBoxes command is allowed.

EXAMPLE avt_SetBlackBoxes [list "sense_amp"]

avt_LoadBehavior

BehavioralFigure *avt_LoadBehavior(char *filename, char *format)

Loads behavioral descriptions and construct internal representation
according to the file format

filename File to be loaded

format Available formats are vhdl and verilog

EXAMPLE avt_LoadFile model.v verilog

avt_DriveBehavior

void avt_DriveBehavior(BehavioralFigure *befig, char *format)

Drives a behavioral description according to the file format from the given
internal representation

befig Behavior to be driven

format Available formats are vhdl and verilog

EXAMPLE avt_DriveBehavior $befig output.v verilog

avt_LoadFile

void avt_LoadFile(char *filename, char *format)

Loads files and construct internal representation according to the file
format

filename File to be loaded

format Available formats are spice, tlf4, tlf3, lib, verilog, vhdl, spf, dspf,
inf, spef and ttv

Yagle Reference Guide

78

EXAMPLE avt_LoadFile design.hsp spice

avt_EncryptSpice

void avt_EncryptSpice(char *inputname, char *outputname)

Encrypts all sections of a Spice file (netlist or technology file) which are
encapsulated by the .protect and .unprotect spice cards.

inputname File to be encrypted

outputname Destination for encrypted output

EXAMPLE avt_EncryptSpice techno.hsp techno.hsp.enc

avt_SetCatalog

void avt_SetCatalog(List *argv)

Sets the leaves when flattening a netlist to catal level; equivalent to create
a CATAL file

argv List of subcircuits that will be used as leaves

EXAMPLE avt_SetCatalog [list "nand2" "inv"]

avt_GetCatalog

StringList *avt_GetCatalog()

Returns the current list of cells set as leaves for a catal-level flatten

EXAMPLE set catal [avt_GetCatalog]

avt_CheckTechno

void avt_CheckTechno(char *label, char *tn, char *tp)

Runs a set of benchs to findout possible technology errors

label A prefix label for the output result files

tn NMOS transistor characteristics. It's a space separated string with coming
first the NMOS transistor name followed by the parameters. Authorized
parameters are: l, w, delvt0, mulu0, sa, sb, sd, nf, nrs, nrd, sc, sca, scb, scc.

Yagle Reference Guide

79

tp same as tn for PMOS transistor.

EXAMPLE avt_CheckTechno check1 "nmos l=0.4u w=0.8u" "pmos l=0.4u w=1.6u"

5.1.3. Netlist Modification

avt_GetNetlist

Netlist *avt_GetNetlist(char *name)

Retrieves a netlist from memory and returns its pointer

name Name of the netlist to get in the program's memory

EXAMPLE set netlist [avt_GetNetlist "my_design"]

avt_FlattenNetlist

void avt_FlattenNetlist(Netlist *lf, char *level)

Flattens a netlist to a given level.

lf Pointer on the netlist to be flattened

level Hierarchical level (coming from top-level) the nelist will be flattened to.
Available levels are trs, catal or bbox (transistor, catalog or blackbox). If
none of those levels are used, level will be considered an instance name,
to which the netlist will be flattened.

EXAMPLE avt_FlattenNetlist $netlist trs

avt_DriveNetlist

void avt_DriveNetlist(Netlist *lf, char *filename, char *format)

Saves the netlist on disk according to the given format

lf Pointer on the netlist to be saved

filename Name of the file to be created

format Available formats are spice, verilog, vhdl and spef

EXAMPLE avt_DriveNetlist $netlist design.spi spice

Yagle Reference Guide

80

avt_DisplayNetlistHierarchy

void avt_DisplayNetlistHierarchy(FILE *f, char *netlistname, int
maxdepth)

Displays hierarchy information of a given netlist, and other info such as
number of transistors

f Pointer on the file where to save information, for standard output set
stdout

netlistname Pointer on the netlist

maxdepth Maximum hierarchical depth coming from top level; can be set to 0 for
infinite depth

EXAMPLE avt_DisplayNetlistHierarchy stdout "my_design" 3

avt_DisplayResistivePath

void avt_DisplayResistivePath(FILE *f, Netlist *lf, char *connector1,
char *connector2)

Displays one resistive path between two connectors at the interface of a
netlist.

f Pointer on the file where to save information, for standard output set
stdout

lf Pointer on the netlist

connector1 first connector name

connector2 second connector name

EXAMPLE avt_DisplayResistivePath stdout [avt_GetNetlist

"mynetlistname"] vdd_0 vdd_1

avt_RemoveResistances

void avt_RemoveResistances(Netlist *lf, char *nameregex)

Removes all resistances on signals matching a regular expression

lf Pointer on the netlist where to remove resistances

nameregex Regular expression to be matched, for all signals use *

Yagle Reference Guide

81

EXAMPLE avt_RemoveResistances $netlist "cpu.*.sig3*"

avt_RemoveCapacitances

void avt_RemoveCapacitances(Netlist *lf, char *nameregex)

Removes all capacitances on signals matching a regular expression

lf Pointer on the netlist where to remove capacitances

nameregx Regular expression to be matched, for all signals use *

EXAMPLE avt_RemoveCapacitances $netlist "cpu.*.sig3*"

5.1.4. Statistics

avt_StartWatch

void avt_StartWatch(char *name)

Starts a timer; if the timer already exixts it'll be reset to 0.

name Timer name

EXAMPLE avt_StartWatch "CPU_TIME"

avt_StopWatch

void avt_StopWatch(char *name)

Stops a timer; the timer must be started for the function to work

name Name of the timer to stop

EXAMPLE avt_StopWatch "CPU_TIME"

avt_PrintWatch

char *avt_PrintWatch(char *name)

Returns a string with the value of a timer; the timer must have been started

name Name of the timer to print

Yagle Reference Guide

82

EXAMPLE avt_PrintWatch "CPU_TIME"

avt_GetMemoryUsage

long avt_GetMemoryUsage()

Returns an integer with the memory usage of the program in bytes

EXAMPLE set memory [avt_GetMemoryUsage]

avt_RegexIsMatching

int avt_RegexIsMatching(char *nametocheck, char *template)

Returs 1 if nametocheck matches the regular expression template, 0
otherwise.

nametocheck name to check.

template regular expression to use.

EXAMPLE set match [avt_RegexIsMatching tatoo5 *too*]

5.2. Design Specific Configuration

5.2.1. General

inf_SetFigureName

void inf_SetFigureName(char *name)

Sets the target figure on which to apply the INF functions

name Name of the target figure

EXAMPLE inf_SetFigureName cpu

inf_AddFile

void inf_AddFile(char *filename, char *figname)

Loads an INF file and applies included statements on a figure (this function
does not invoke inf_SetFigureName).

Yagle Reference Guide

83

filename INF file to load

figname Figure on which to apply INF statements. Those statements will be added
to the ones that my be already present.

EXAMPLE inf_AddFile cpu.inf cpu

inf_Drive

void inf_Drive(char *outputname)

Saves applied INF statements on disk

outputname File where to save INF statements (the .inf suffix is not automatically
added)

EXAMPLE inf_Drive cpu.inf

inf_ExportSections

void inf_ExportSections(char *outputname, char *section)

Saves on disk applied INF statements related to specific INF sections

outputname File where to save INF statements

section OperatingCondition, PinSlew, Rename, Stop, Sensitive, Suppress,
Inputs, NotLatch, CkLatch, Ckprech, Precharge, Dirout,
Mutex, CrosstalkMutex, Constraint, ConnectorDirections, PathIN,
PathOUT, PathDelayMargin, MulticyclePath, Ignore, NoCheck,
Bypass, NoRising, NoFalling, Break, Inter, Asynchron, DoNotCross,
Transparent, RC, NORC, SIGLIST, Falsepath, Delay, Dlatch, FlipFlop,
Slopein, Capaout, OutputCapacitance, SwitchingProbability,
Directives, Stb and Stuck.

EXAMPLE inf_ExportSections cpu.inf "Dirout CrosstalkMutex"

inf_CleanFigure

void inf_CleanFigure()

Removes all INF statements on current figure

Yagle Reference Guide

84

5.2.2. Netlist

inf_DefineIgnore

void inf_DefineIgnore(char *type, List *list)

The tool ignores specified components. Equivalent to commenting out
elements in a SPICE netlist.

list Pointer on the list of components to ignore. An component name can be
a regular expression.

type Supported types are Instances, Transistors, Resistances,
Capacitances, Diodes, Parasitics and SignalNames. Parasitics
affects only DSPF files. SignalNames affects only the flattening of a
hierarchical netlist, by ignoring the given name if several hierarchical
names are available for one net.

EXAMPLE inf_DefineIgnore Transistors *.M23*

5.2.3. Disassembly

inf_DefineMutex

void inf_DefineMutex(char *type, List *list)

Adds mutual exclusion constraints on signals, in order to help the
disassembly process. May be especially usefull when dealing with shifters
or multiplexors, in case mutual exclusion constraints can not be directly
derived from internal combinational circuitry (if the mutual exclusions
constraints come from latched values or come from constraints on external
pins).

type Mutual exclusion constraints, legal values for are muxup, muxdn, cmpup and
cmpdn (see INF file description)

list List of signals mutual exclusions constraints should be applied on

EXAMPLE inf_DefineMutex cmpup [list a_0 a_1 a_2 a_3]

inf_DefineInputs

void inf_DefineInputs(char *name)

Sets a signal as a circuit input, in order to help the disassembly process.

Yagle Reference Guide

85

name Signal's name

inf_DefineDirout

void inf_DefineDirout(char *name, int level)

Defines the level of a signal for transistor orientation, in order to help the
disassembly process.

name Signal's name

level Signal's level; transistors are oriented (the sense of the current is) from
high-level to low-level signals.

inf_DefineDLatch

void inf_DefineDLatch(char *name)

Sets a signal as a dynamic latch. Works only if the surrounding
circuitry permits a HZ state on the signal. Commands are then identified
automatically.

name Signal's name

inf_DefineNotDLatch

void inf_DefineNotDLatch(char *name)

Disables a dynamic latch directive on a signal. To be used together with
yagMarkTristateMemory

name Signal's name

inf_DefineNotLatch

void inf_DefineNotLatch(char *name)

Disables the identification of a latch on a signal

name Signal's name

inf_DefineKeepTristateBehaviour

void inf_DefineKeepTristateBehaviour(char *name)

Yagle Reference Guide

86

Disables the transformation of bus into register when configurations
'avtVerilogTristateIsMemory' or 'yagleTristateIsMemory' is used to drive
a behavioural model.

name Signal's name

inf_DefinePrecharge

void inf_DefinePrecharge(char *name)

Sets a signal as a precharge.

name Signal's name

inf_DefineNotPrecharge

void inf_DefineNotPrecharge(char *name)

Disables the identification of a precharge on a signal

name Signal's name

inf_DefineModelLatchLoop

void inf_DefineModelLatchLoop(char *name)

Feedback loop is explicitly modeled in behavioural model if signal is a
static latch.

name Signal's name

inf_DefineMemsym

void inf_DefineMemsym(char *name0, char *name1)

Sets a pair of signals to be a symmetric memory so long as there is a loop
between the two signals.

name0 name of first memsym signal.

name1 name of second memsym signal.

EXAMPLE inf_DefineMemsym memsym0 memsym1

Yagle Reference Guide

87

inf_DefineRS

void inf_DefineRS(char *name, char *type)

Allows control of how individual RS are handled. Overrides the global
setting in yagAutomaticRSDetection.

name Signal's name, either the set or the reset one is enough.

type LEGAL, ILLEGAL or MARK_ONLY.

EXAMPLE inf_DefineRS rsnode "LEGAL"

inf_MarkSignal

void inf_MarkSignal(char *name, char *marks)

Allows application of special signal markings, such as latch identification.

name Signal's name

marks For a complete list of markings please refer to the INF section of this
manual, MARKSIG subsection.

EXAMPLE inf_MarkSignal dff_m "LATCH+MASTER"

inf_MarkTransistor

void inf_MarkTransistor(char *name, char *marks)

Allows application of special transistor markings, such as latch commands
identification.

name Signal's name

marks Legal markings are "Bleeder", "Feedback", "Command",
"NonFunctional", "Blocker", "Short", "Unused". Types may be
concatenated with the '+' character and are case-insensitive. For a
description of the types please refer to the INF section of this manual,
MARKTRANS subsection.

EXAMPLE inf_MarkTrans m0 "FEEDBACK+NOT_FUNCTIONAL"

Yagle Reference Guide

88

inf_DefineSensitive

void inf_DefineSensitive(char *name)

Sets a signal as a timing sensitive net.

name Signal's name

inf_DefineSuppress

void inf_DefineSuppress(char *name)

Sets an auxiliary signal to be suppressed.

name Signal's name

5.3. Disassembling

5.3.1. yagle

void yagle(char *figname) yagle (<figname>) generates a RTL behavioral description from
the transistor-level netlist given by <figname>. The netlist should exist in the program's
memory (loaded with avt_LoadFile for example).

Yagle Reference Guide

89

Chapter 6. Error Codes

6.1. API
API-001 Error executing <string>_AtLoad_Initialize(): <string>

API-002 Could not open dynamic library '<string>'
reason: <string>

API-003 Cannot read file <string>

API-004 Internal error #<decimal>

API-005 <string>:<decimal>: '<string>' not defined

API-006 <string>:<decimal>: '<string>' already used, primary declaration
line <decimal>, file <string>

API-007 <string>:<decimal>: Only int*, void*, double *, char* and FILE* are
accepted

API-008 <string>:<decimal>: illegal format string '%%<character>'

API-009 <string>:<decimal>: not enough arguments for format

API-010 <string>:<decimal>: only const char* accepted

API-011 <string>:<decimal>: too many arguments for format

API-012 <string>:<decimal>: exclude can't be in a conditional block

API-013 <string>:<decimal>: '*' doesn't match with type

API-014 <string>:<decimal>: function type FILE* doesn't match

API-015 <string>:<decimal>: type of variable '<string>' doesn't match

API-016 <string>:<decimal>: '<string>' might be used uninitialized

API-017 <string>:<decimal>: digit '<decimal>' doesn't match

API-018 <string>:<decimal>: string '<string>' doesn't match

API-019 <string>:<decimal>: flow '<string>' doesn't match

API-020 <string>:<decimal>: undefined type '<string>'

Yagle Reference Guide

90

API-021 <string>:<decimal>: sizeof(<string>) is unknown

API-022 <string>:<decimal>: assignment from <string><string> to
<string><string> without a cast

API-023 <string>:<decimal>: incompatible type assignment <string><string> !
= <string><string>

API-024 <string>:<decimal>: variable '<string>' can not be indexed

API-025 <string>:<decimal>: forbiden operation on this variable type

API-026 <string>:<decimal>: '<string>' has an unexpected type

API-027 <string>:<decimal>: '<string>' should not be pointers

API-028 <string>:<decimal>: type of '<string>' and '<string>' mismatch

API-029 <string>:<decimal>: '<string>' and '<string>' should not be pointers

API-030 <string>:<decimal>: '<string>' has an unexpected type

API-031 <string>:<decimal>: unauthorized test on type '<string>'

API-032 <string>:<decimal>: interpreter can not cast <string> to <string>

API-033 <string>:<decimal>: too few arguments for function 'malloc'

API-034 <string>:<decimal>: too many arguments in function 'malloc'

API-035 <string>:<decimal>: too few arguments for function 'callfunc'

API-036 <string>:<decimal>: callfunc: only 'char *' pointer type can be used
in function call

API-037 <string>:<decimal>: can not assign <string><string> to
<string><string>

API-038 <string>:<decimal>: unknown variable '<string>'

API-039 <string>:<decimal>: unautorized operation on pointers

API-040 <string>:<decimal>: unautorized operation on type <string><string>

API-041 <string>:<decimal>: division by zero

API-042 <string>:<decimal>: unautorized operation on type '<string>'

API-043 <string>:<decimal>: can not make the requested dereference of
'<string><string>'

Yagle Reference Guide

91

API-044 <string>:<decimal>: can not make the dereference of '<string>'

API-045 <string>:<decimal>: Can not call functions with more then <decimal>
arguments

API-046 <string>:<decimal>: function '<string>' can't be found in the
dynamic libraries

API-047 <string>:<decimal>: <string>

API-048 error happens at <string>:<decimal>

API-049 <string>:<decimal>: variable '<string>' already declared in this
scope

API-050 <string>:<decimal>: type '<string>' must be used as pointer

API-051 <string>:<decimal>: type of '<string>' must be 'FILE *'

API-052 <string>:<decimal>: Fatal error while executing program

API-053 <decimal> errors. Cannot execute

API-054 <string>:<decimal>: parameter '<string>' is uninitialised

API-055 <string>:<decimal>: conflicting type for parameter '<string>' :
'<string><string>'!='<string><string>'

API-056 <string>:<decimal>: return value for void function

API-057 <string>:<decimal>: return value for void function

API-058 <string>:<decimal>: conflicting type for return value :
'<string><string>'!='<string><string>'

API-059 Function '<string>' used in action was not found
Location(s):

API-060 <string>:<decimal>: too many arguments in function '<string>'

API-061 <string>:<decimal>: too few arguments for function '<string>'

API-062 Somewhere: function '<string>' can't neither be found in interpreter
nor in the dynamic libraries

API-063 Somewhere executing <string>

API-064 Error happens at somewhere when executing '<string>'

API-065 Error executing TCL function '<string>'

Yagle Reference Guide

92

6.2. AVT
AVT-000 Usage: avtdeltoken toolname servername hostname hostid hosttoken pid

When using the AVT license server (avtld), avtdeltoken allows to delete a token.
Be careful, deleting a token under use will crash the corresponding process.

AVT-001 Character out of [0-9A-Za-z] range in avertecbanner

An illegal value has been used within an internal function. Please, report internal
errors to Avertec Support.

AVT-002 Resulting size bigger than <decimal> columns not allowed in
avertecbanner

The formatting size of an object or a text does not fit the avertec banner dimensions.
Please, report internal errors to Avertec Support.

AVT-003 '<string>' is not a valid variable

Invalid variable in avttools.conf file. Check variable name or suppress wrong
variable definition.

AVT-004 File avttools.conf, syntax error line <decimal>

File avttools.conf cannot be printed. Correct synthax error (see documentation)

AVT-005 '<string> = <string>' with no effect. Value '<string>' already set
with '<string>'

A variable has been set twice within avttools.conf, suppress one if possible.

AVT-006 File avttools.conf, multiple declaration of '<string>'

A variable has been set several times. Conflicts may occur. Check the declarations
of the variable within avttools.conf file and keep only one.

AVT-007 Word <string> too long

The string provided to the license server is too long. Use avtinfo to ensure valid
value or license file are provided.

AVT-008 String too long

The line or message provided to the license server is too long.

AVT-009 Impossible to delete this token

The token cannot be deleted. Check token name and user rights.

AVT-010 Usage: avtgenkey toolname vendor server hostid date license type

The license server avt (avtld) failed to handle the license key of avtlicense file.

AVT-011 Usage: avtinfo tool_name

avtinfo displays information for the avt license server (avt). Ensure a valid
tool_name is used.

Yagle Reference Guide

93

AVT-012 Bad Format For Date

The date in the license file is not valid. The license file may be invalid. Check the
license file in use.

AVT-013 Bad Token: <string>

An invalid token has been requested by the license server. Check license file is valid
and up to date.

AVT-014 Option -<character> requires an operand

The specified option is not properly used. Check tool's usage.

AVT-015 Unrecognised option: -<character>

The specified option is unknown. Check tool's usage.

AVT-016 Unrecognized Command line

Command line synthax invalid. Check tool's usage.

AVT-017 Error in opening file <string>

The specified file cannot be open. Check user's rights, and file path.

AVT-018 Usage: avtreserve tool_name minutes [nb_token]

Display the usage of binary avtreserve. avtreserve is used by the avt license server
(avtld).

AVT-019 Unable to reserve token

Token reservation failed. Check token name and reservation command synthax.

AVT-020 Usage: avttool tools_name_list

Display usage for monitoring tokens information.

AVT-021 Run failed

The binary ends with an error. Other messages should bring more information.

AVT-022 Impossible to give token

The license server was unable to get a pid for the token process.

AVT-023 License server <string> not responding

The license server is unreachable. Check a valid license server is running.

AVT-024 Environment variable <string> is not defined

A variable needs to be set in the environment. Avertec documentation supplies the
user with the variables legal values.

AVT-025 ...try with server <string>

Another license server has been found and will be tryed. This can occur if the
original license server specified by the user was not found or returned an error.

Yagle Reference Guide

94

AVT-026 Bad license server <string>

The license server is not valid or was not responding. Check a valid license server
is running.

AVT-027 <string>

The running tool encountered an error. Specific information supplied by the tool
is displayed.

AVT-028 Token never taken

No token information available for the license server. If a binary (avtinfo,
avtdeltoken, or other avt license server utility) has been used, please check the
relevant usage.

AVT-029 Bad token description

The command line synthax used is not valid. Check for relevant avt license server
utility usage.

AVT-030 Bad file name, check autorisation for <string>

The utility failed to open the specified license key or log file.

AVT-031 Missing part of log file

The avt license server returns an error with the license log file. Usually not a critical
error for the running process if avtld is used rather than flexnet.

AVT-033 AVT-_LICENSE_FILE not set and $AVT_TOOLS_DIR/etc/avtlicense.lic
missing.
If errors occur, please check your Flexlm license paths.

The flex license file was not found. Use the flexnet license utilities to get information
about flexnet license status.

AVT-034 Flexlm returned error '<decimal>' when <string>.

A generic message displaying error numbers returned by flexnet. Flexnet (or
FlexLM) documentation provide some clue to handle surch error number.

AVT-035 Unable to find Flexlm job corresponding to feature <string>

The specified feature is not valid or no job use it. Flexnet license utilities can provide
information about the feature, and the jobs running.

AVT-036 Please, resolve Flexlm errors before running Avertec programs.

Flexnet encounters an error. As long as Flexnet license will not runs properly no
licensed Avertec tool can be run. Dealling with license errors is a priority. Check if
license file path and license daemon are valid and reachable.

AVT-037 Log level of variable '<string>' is not a number. It is '<string>'.

Please refer to the configuration of log report.

AVT-038 Log level of variable '<string>' must be a positive number less or
equal to 9. It is '<string>'.

Yagle Reference Guide

95

Please refer to the configuration of log report.

AVT-039 Log variable '<string>' is unknown.

Please refer to the configuration of log report.

AVT-040 Invalid value '<string>' for configuration variable '<string>',
should be 'yes' or 'no'

Please refer to the HiTas Reference Guide.

AVT-041 Invalid value '<string>' for configuration variable '<string>',
please refer to the Reference Guide for correct values

Please refer to the HiTas Reference Guide.

AVT-042 Invalid file format '<string>' for '<string>', please refer to the
Reference Guide for valid formats

Valid formats are 'spice', 'lib', 'tlf3', 'tlf4', 'ttv', 'vhdl', 'verilog', 'dspf', 'spef' and 'inf'.

AVT-043 Could not find a file matching '<string>'

The specified filename filter does not match any files in accessible directories.

AVT-044 Multiple settings for configuration variable '<string>': '<string>'
is overwritten by '<string>'

AVT-045 could not open file '<string>'

AVT-046 could not create file '<string>'

AVT-047 'avtWarningFilter' has been set to '<string>'

AVT-048 Subsequent call to 'avt_LoadFile' will not retain previous
definitions of global parameters

The scope of .SCALE, .GLOBAL or other global parameters is limited to the files
loaded by a single call of 'avt_LoadFile'. The values of those global parameters are
not retained for subsequent calls of 'avt_LoadFile'.

AVT-049 Incorrect unit specified in '<string>'

AVT-050 Incorrect number of jobs <string>

AVT-051 received answer from job <decimal>, but is not running !

AVT-052 job <decimal> is not in state STAT_EXEC_WAIT when received begin
packet

AVT-053 job <decimal> is not in state STAT_EXEC_RUN when received data

AVT-054 job <decimal> is not in state STAT_EXEC_RUN when received end

AVT-055 Job <decimal> aborted [<string>]

Yagle Reference Guide

96

AVT-056 A system error occured when runing a new job

AVT-057 Statistical result file '<string>' already exist. Using '<string>'.

AVT-058 Error in <string> table. Entry <decimal> correspond to index
<decimal>.

AVT-059 Received unhandled command '<string>' from job <decimal>

AVT-061 Invalid binary transfer

AVT-062 Failed to create directory '<string>'

AVT-063 Invalid value '<string>' for configuration variable '<string>'

Valid value are '1mW', '100uW', '10uW', '1uW', '100nW', '10nW', '1nW', '100pW',
'10pW' and '1pW'.

6.3. BEF
BEF-000 Behavior out format <string> is not a legal format!

A Verilog file will be dumped.

To describe the format for the generated behavior, you must set
'avtOutputBehaviorFormat' either to 'vhd' for VHDL or to 'vlg' for Verilog.\n

BEF-001 Behavior in format <string> is not a legal format!

To describe the format of input behavior, you must set 'avtInputBehaviorFormat'
either to 'vhd' for VHDL or to 'vlg' for Verilog.\n

6.4. BEG
BEG-001 <string> Attempt to merge bit vector and single bit <string>

BEG-002 <string> Internal error <string>

BEG-003 <string> Connector declared in, used as out <string>

BEG-004 <string> Null condition <string>

BEG-005 <string> Conflicting vector <string>

BEG-006 <string> Expression and variable has different size <string>

BEG-007 <string> Parser Failure <string>

BEG-008 <string> Conflicting declaration and use <string>

Yagle Reference Guide

97

BEG-009 <string> Conflicting bus use <string>

BEG-010 <string> Direction of declaration conflicts with use <string>

BEG-011 <string> Selected signal, vector expression not allowed <string>

BEG-012 <string> Attempt to insert a signal into a defined signal <string>

BEG-013 <string> Vector incompletely defined, made external <string>

BEG-014 <string> Connector declared out, used as in <string>

BEG-015 <string> Bad value for 'BEG_USER_WAY', accepted 'to' or 'downto'
<string>

BEG-016 Unknown

BEG-017 <string> Trace: <string>

BEG-018 <string> Convert an In to Out <string>

6.5. BEH
BEH-000 syntax error

BEH-001 combinatory loop: `<string>`

BEH-002 cannot make bdd of empty expression

BEH-003 cannot find terminal `<string>`

BEH-004 illegal use of STABLE attribute

BEH-005 cannot simplify internal signals

BEH-006 cannot make derivatives of expressions

BEH-040 signal `<string>` never assigned

BEH-041 `<string>` has not an empty architecture

BEH-068 port `<string>` has unknwon type

BEH-069 port `<string>` has unknwon mode

BEH-070 unknown time unit

BEH-100 cannot find `<string>`

Yagle Reference Guide

98

BEH-107 cannot open result file

BEH-101 <string>: unknown operator

BEH-102 <string>: cannot create empty atom

BEH-103 <string>: cannot build NOT of empty expression

BEH-104 <string>: cannot combine empty expressions

BEH-105 <string>: cannot find terminal

BEH-110 <string>: decompiler called on empty figure

BEH-115 <string>: illegal bit string value : `<character>`

BEH-116 <string>: the same expression cannot be used twice

BEH-119 <string>: empty guard expression: `<string>`

BEH-120 <string>: empty waveform expression: `<string>`

BEH-200 <string>: illegal use of attribute STABLE

BEH-201 <string>: unknown terminal operand `<string>`

BEH-202 <string>: unknown operator `<decimal>`

BEH-203 <string>: empty expression

BEH-199 <string>: Please contact Avertec support

BEH-300 beaux `<string>` not empty

BEH-301 bebus `<string>` not empty

BEH-302 bebux `<string>` not empty

BEH-303 beder not empty

BEH-304 befig `<string>` not empty

BEH-305 begen `<string>` not empty

BEH-306 bemsg `<string>` not empty

BEH-307 beout `<string>` not empty

BEH-308 bequad not empty

Yagle Reference Guide

99

BEH-309 bereg `<string>` not empty

BEH-310 biabl not empty

BEH-311 binode not empty

BEH-312 %20s -> <string>

BEH-313 %23s <string>

BEH-315 bevectaux `<string>` not empty

BEH-316 bevectout `<string>` not empty

BEH-317 bevectbux `<string>` not empty

BEH-318 bevectbus `<string>` not empty

BEH-319 bevectreg `<string>` not empty

BEH-320 vectbiabl not empty

6.6. BHL
BHL-000 Internal error <string>

6.7. BGL
BGL-000 Internal error <string>

BGL-001 `<string>` line <decimal> :`<string>` is incompatible with the
entity name

BGL-002 `<string>` line <decimal> :bad entity declaration

BGL-003 `<string>` line <decimal> :bad port clause declaration

BGL-004 `<string>` line <decimal> :port `<string>` already declared

BGL-005 `<string>` line <decimal> :illegal port declaration `<string>`
(mode, type, guard mark)

BGL-006 `<string>` line <decimal> :bad port declaration

BGL-007 `<string>` line <decimal> :`<string>` is incompatible with the
architecture name

Yagle Reference Guide

100

BGL-008 `<string>` line <decimal> :bad architecture declaration

BGL-009 `<string>` line <decimal> :illegal declaration

BGL-010 `<string>` line <decimal> :signal `<string>` already declared

BGL-011 `<string>` line <decimal> :illegal signal declaration `<string>`
(type, guard mark)

BGL-012 `<string>` line <decimal> :component `<string>` already declared

BGL-013 `<string>` line <decimal> :instance `<string>` already declared

BGL-014 `<string>` line <decimal> :`<string>` unknown component

BGL-015 `<string>` line <decimal> :illegal usage of implicit port map
description

BGL-016 `<string>` line <decimal> :`<string>` unknown local port

BGL-017 `<string>` line <decimal> :`<string>` unknown port or signal

BGL-018 `<string>` line <decimal> :illegal concurrent statement

BGL-019 `<string>` line <decimal> :bad signal association

BGL-020 `<string>` line <decimal> :null array not supported

BGL-021 `<string>` line <decimal> :illegal constraint in declaration of type

BGL-022 `<string>` line <decimal> :signal `<string>` used out of declared
range

BGL-023 `<string>` line <decimal> :width or/and type mismatch

BGL-024 `<string>` line <decimal> :port `<string>` connected to more than
one signal

BGL-025 `<string>` line <decimal> :can only assign to/from an external
connector

BGL-026 `<string>` line <decimal> :instance <string> mismatch with the model

BGL-027 `<string>` line <decimal> :Unhandled feature

BGL-028 `<string>` line <decimal> :<string>

BGL-029 Cannot open result file

BGL-030 Cannot continue further more.

Yagle Reference Guide

101

BGL-031 `<string>` line <decimal> :Syntax error

BGL-032 Too many errors. Cannot continue further more

BGL-033 File does not exist : <string>

BGL-034 Abnormal parsing for : <string>

BGL-035 Connection missing on port `<string>`

BGL-036 Consistency checks will be disabled

BGL-038 Internal error <string> while executing <string>

BGL-037 `<string>` line <decimal> :<string>

6.8. BVL
BVL-000 Internal error <string>

BVL-001 `<string>` line <decimal> ̀ <string>` is incompatible with the entity
name

BVL-002 `<string>` line <decimal> Bad entity declaration

BVL-003 `<string>` line <decimal> Bad port clause declaration

BVL-004 `<string>` line <decimal> Port `<string>` already declared

BVL-005 `<string>` line <decimal> Illegal port declaration (mode, type,
kind)

BVL-006 `<string>` line <decimal> Bad port declaration

BVL-007 `<string>` line <decimal> `<string>` is incompatible with the
architecture name

BVL-008 `<string>` line <decimal> Bad architecture declaration

BVL-009 `<string>` line <decimal> Illegal declaration

BVL-010 `<string>` line <decimal> Signal `<string>` already declared

BVL-011 `<string>` line <decimal> Illegal signal declaration (type, kind)

BVL-012 `<string>` line <decimal> `<string>` unknown port or signal

BVL-013 `<string>` line <decimal> Illegal concurrent statement

Yagle Reference Guide

102

BVL-014 `<string>` line <decimal> Label `<string>` already declared

BVL-015 `<string>` line <decimal> `<string>` is incompatible with the
block's label

BVL-016 `<string>` line <decimal> Input port `<string>` cannot be assigned

BVL-017 `<string>` line <decimal> Illegal unguarded signal assignment for
`<string>`

BVL-018 `<string>` line <decimal> Illegal guarded signal assignment
`<string>`

BVL-019 `<string>` line <decimal> Some choices missing in the selected signal
assignment

BVL-020 `<string>` line <decimal> Output port `<string>` cannot be read

BVL-021 `<string>` line <decimal> Duplicate choice in selected signal
assignment

BVL-022 `<string>` line <decimal> Illegal use of OTHERS in selected signal
assignment

BVL-023 `<string>` line <decimal> Null array not supported

BVL-024 `<string>` line <decimal> Incompatible constraint and type

BVL-025 `<string>` line <decimal> Illegal assignment of `<string>` (widths
mismatch)

BVL-026 `<string>` line <decimal> Signal `<string>` used out of declared
range

BVL-027 `<string>` line <decimal> Width or/and type mismatch

BVL-028 `<string>` line <decimal> Signal `<string>` assigned more than once

BVL-029 `<string>` line <decimal> Signal `<string>` never assigned

BVL-030 `<string>` line <decimal> Illegal condition on signal `<string>`

BVL-031 `<string>` line <decimal> BEPOR type is unknown

BVL-032 `<string>` line <decimal> `<string>` is not a bit string litteral

BVL-033 `<string>` line <decimal> Bad generic declaration

BVL-034 `<string>` line <decimal> Bad generic element

Yagle Reference Guide

103

BVL-035 `<string>` line <decimal> `<string>`: when expression must be a
constant

BVL-036 `<string>` line <decimal> Illegal generic declaration (type, kind)

BVL-037 `<string>` line <decimal> Illegal constant declaration (type, kind)

BVL-038 `<string>` line <decimal> Illegal use of attribute STABLE on
`<string>`

BVL-039 `<string>` line <decimal> Different delays not supported on
waveforms

BVL-040 `<string>` line <decimal> Syntax error

BVL-041 Too many errors. Cannot continue further more

BVL-042 `<string>` Error line <decimal> : <string>

6.9. CBH
CBH-000 Internal Error <string>

CBH-001 <string>: Possible cause library not charged

CBH-002 <string> needs a file as argument

CBH-003 <string>

6.10. CGV
CGV-001 Internal error #<decimal>

CGV-002 Internal warning #<decimal>

CGV-003 <string>:%ld: unknown internal error <decimal>

CGV-004 could not open file '<string>'

CGV-005 could not parse file '<string>'

6.11. CNS

Error messages description not available yet.

Yagle Reference Guide

104

6.12. GNS
GNS-001 instance <string> already exist in figure <string>

GNS-002 instance model is the figure <string> itself

GNS-003 connector number discrepancy between figure <string> and instance
<string> in figure <string>

GNS-004 Internal error <decimal>

GNS-005 Internal warning <decimal>

GNS-006 <string>: can't find transistor '<string>' in model

GNS-007 Invalid symmetry detected for instance '<string>' (<string>) on
connector '<string>' and ? (<string> and <string>)

GNS-008 no FCL match for `<string>' (instance:'<string>' model:`<string>')

GNS-009 Vector ordering failed on instance '<string>' (<string>) who might
be used as \"exclude\"
. Try to add 'NoOrdering' in the 'GnsFlags' variable

GNS-010 Found an alim linked to a 'not' alim : <string> and <string> in
<string>

GNS-011 can't retrieve blackbox instance `<string>' (`<string>')

GNS-012 can't retrieve blackbox connector `<string>.<string>' (`<string>')

GNS-013 can not find generic variable '<string>', assumed value 0

GNS-014 could not find black box '<string>' in circuit

GNS-015 single connector '<string>' (instance '<string>') is linked to a
vector connector <string>

GNS-016 vector connector '<string>' (instance '<string>') is linked to a
single connector <string>

GNS-017 could not find correspondance for transistor '<string>'

GNS-018 found a transistor with no name

GNS-019 could not find correspondance for signal '<string>'

GNS-020 can't drive '<string>' type in function call

GNS-021 can't drive pointer type in function call

Yagle Reference Guide

105

GNS-022 can't find figure '<string>'

GNS-023 Could not write file <string>.gns

GNS-024 Cannot create file <string>.gen

GNS-025 Can't redirect GENIUS output to '/dev/null'

GNS-026 <string>:<decimal>: division by zero

GNS-027 forbidden operators 'mod', 'rem', '**'

GNS-028 variable <string> not found

GNS-029 <string>:<decimal>: IF forbidden for GNS

GNS-030 a variable name was expected for instance '<string>', found a number

GNS-031 generic variable '<string>' not define

GNS-032 Value of '<string>' for instance '<string>' must be <decimal>,
actually %ld

GNS-033 There should be at least one instance of model '<string>' with
<string>=<decimal>

GNS-034 More than 1 unknown generic variable

GNS-035 variable '<string>' is not defined yet

GNS-036 <string>: can't go thru '<string>'

GNS-037 <string>: can't find instance '<string>' in model

GNS-038 no corresponding transistor for <string>

GNS-039 *** <decimal> error(s) detected, I can't get farther!! ***

GNS-040 for model instance '<string>' can not evaluate left or right bound
for connector '<string>' l=<decimal> r=<decimal>

GNS-041 no correspondance found for signal '<string>(<decimal>)

GNS-042 Error: <string>

GNS-043 No model file in library

GNS-044 Cannot open model file <string>

Yagle Reference Guide

106

GNS-045 no model <string> found

GNS-046 unknown connector (<string>) declared in symmetric connector list

GNS-047 invalid mix of vector and bit

GNS-048 unknown connector (<string>) declared in coupled connector list

GNS-049 Could not find subfigure '<string>' in file '<string>'

GNS-050 Spice file <string> should be a flat transistor netlist

GNS-060 other errors follow...

GNS-061 in model '<string>', connector '<string>' of unexistant instance
'<string>' must not be linked the model interface

GNS-062 in model '<string>', if connector '<string>' of unexistant instance
'<string>' is not used, it must be linked to a supply

GNS-063 in model '<string>', connector '<string>' of unexistant instance
'<string>' must not be linked to another unexistant instance
connector

GNS-064 Inconsistancies found for instance '<string>' of model '<string>'

GNS-065 Connector '<string>' of instance mismatched with connector
'<string>' of model

GNS-066 Inconsistancies found for connector '<string>' of instance
'<string>' with model '<string>'

GNS-067 Connector number mismatched

GNS-068 While parsing correspondance tables, line <decimal>, transistor out
of context

GNS-069 While parsing correspondance tables, line <decimal>, could not find
transistor '<string>' in original netlist

GNS-070 While parsing correspondance tables, line <decimal>, signal out of
context

GNS-071 While parsing correspondance tables, line <decimal>, could not find
signal '<string>' in original netlist

GNS-072 While parsing correspondance tables, line <decimal>, instance out
of context

GNS-073 While parsing correspondance tables, line <decimal>, could not find
instance correspondance '<string>' table

Yagle Reference Guide

107

GNS-074 While parsing correspondance tables, line <decimal>, could not find
instance correspondance table

GNS-075 While parsing correspondance tables, line <decimal>, variables out
of context

GNS-076 While parsing correspondance tables, line <decimal>, dictionary
entry without dictionary mode

GNS-077 While parsing correspondance tables, line <decimal>, too many
entries in dictionary

GNS-078 While parsing correspondance tables, line <decimal> ignored

GNS-079 Could not find instance in model to start search with
There should be at least one real instance in the model

GNS-080 could not find instance '<string>' in GNS toplevel instance

GNS-081 out of bounds with <string> and <string> started from <string>

GNS-082 computing error for index=%ld end=<decimal>

GNS-083 parameter discrepancy between <string> and <string>

GNS-084 infinite loop on <string>

GNS-085 transistor in loop is forbidden

GNS-086 <string>:<decimal>: GNS ignored expansed 'FOR' driven by variable
'<string>'

GNS-087 several signals connected to connector <string> of instance
'<string>'

GNS-088 vector connector <string> connected to single signal <string>

GNS-089 connector '<string>' with several signals

GNS-090 can not compute destination connector index for '<string>', the high
bound of signal '<string>' is not known yet

GNS-091 vector connector '<string>' connected to one bit signal

GNS-092 bit number <decimal> is out of bounds for signal <string>

GNS-093 bit number <decimal> is out of bounds for connector <string>

GNS-094 transistor type/parameter discrepancy (<string>)

Yagle Reference Guide

108

GNS-095 <string>:<decimal>: too many parameters for transistor '<string>'

GNS-096 <string>:<decimal>: a number was expected for instance '<string>',
found a variable name

GNS-097 <string>:<decimal>: A positive non nul number was expected for
instance '<string>'

GNS-098 <string>:<decimal>: unknown transistor parameter '<string>'

GNS-099 instance type/parameter discrepancy (<string>)

GNS-100 too many connectors in instance '<string>'

GNS-101 connectors <string> and <string> mismatch for instances <string>
and <string>

GNS-102 not enough connectors in instance '<string>'

GNS-103 parameter discrepancy between instances <string> and <string>

GNS-104 <string>:<decimal>: a variable name was expected for instance
'<string>', found a number

GNS-105 could not find generic variable '<string>' in entity variable list

GNS-106 several signals connected to connector <string> of instance <string>

GNS-107 no search done on connector '<string>' signal '<string>', model must
be a connexe graph

GNS-108 no search done on signal '<string>(%ld)', model must be a connexe
graph

GNS-109 can't compute connector bound for connector '<string>'
certainly while building a fake instance or transistor

GNS-110 width mismatch between connector '<string>(<decimal>..<decimal>)'
and signal '<string>(<decimal>..<decimal>)'

GNS-111 Index <decimal> is out of range for signal <string>
(<decimal>..<decimal>)

GNS-112 Index <decimal> is out of range for signal <string>

GNS-113 <string>:<decimal>: negative vector bound computed for expression,
values are <decimal> and <decimal>

GNS-114 no search done on connector '<string>(%ld)', model '<string>' must
be a connexe graph

Yagle Reference Guide

109

GNS-115 connector <string>.<string> is in coupled list but has no symetric

GNS-116 no symmetry found for connector <string> in coupled connector list

GNS-117 coupling won't work with vectors ... yet...

GNS-118 can not find coupled connector for '<string>'

GNS-119 could not find connector '<string>(<decimal>)' for instance
'<string>'

GNS-120 while swapping <string> and <string>, one of the connector did not
have coupled connector list while the other has

GNS-121 Internal limitation. too much symmetric informations.
Actual limit is <decimal>

GNS-122 same signal in different symmetry list

GNS-123 same signal in different coupled list

GNS-124 <string>:<decimal>: array of signal '<string>' out of bounds with
model line <decimal>

GNS-125 <string>:<decimal>: array doesn't match for '<string>' (line model
<decimal>)

GNS-126 <string>:<decimal>: connector '<string>' is missing in left side
of instance

GNS-127 <string>:<decimal>: too many connections in Port Map. Component line
<decimal>

GNS-128 <string>:<decimal>: not enough connections in Port Map. Component
line <decimal>

GNS-129 <string>:<decimal>: <string> already excluded

GNS-130 <string>:<decimal>: instance <string> doesn't exist in architecture
<string> of <string>

GNS-131 <string>:<decimal>: INPUT '<string>' cannot be connected with OUTPUT
'<string>'

GNS-132 <string>:<decimal>: OUTPUT '<string>' cannot be connected with INPUT
'<string>'

GNS-133 <string>:<decimal>: OUTPUT '<string>' cannot be connected with INPUT
'<string>'

Yagle Reference Guide

110

GNS-134 <string>:<decimal>: only one variable authorized in a 'for'
expression. Use Hierarchy!

GNS-135 <string>:<decimal>: forbidden operator '<string>' on variable

GNS-136 <string>:<decimal>: division by zero could appear

GNS-137 <string>:<decimal>: a generic isn't needed by model line <decimal>

GNS-138 <string>:<decimal>: a generic is needed by model line <decimal>

GNS-139 <string>:<decimal>: not enough variables in component. model ends
at line <decimal> with '<string>'

GNS-140 <string>:<decimal>: type '<string>' doesn't match with model line
<decimal>

GNS-141 <string>:<decimal>: too many variables in component. model ends at
line <decimal> with '<string>'

GNS-142 <string>:<decimal>: a port isn't needed by model line <decimal>

GNS-143 <string>:<decimal>: a port is needed by model line <decimal>

GNS-144 <string>:<decimal>: a bit is expected for '<string>' line <decimal>
of model

GNS-145 <string>:<decimal>: size of '<string>' mismatches with model line
<decimal>

GNS-146 <string>:<decimal>: a vector is expected for '<string>' line
<decimal> of model

GNS-147 <string>:<decimal>: predefined rule '<string>': IN Grid, INOUT
Source, INOUT Drain, IN Bulk

GNS-148 <string>:<decimal>: There is no vector in predefined rule '<string>'

GNS-149 <string>:<decimal>: The predefined entity '<string>' don't have a
generic

GNS-150 <string>:<decimal>: '<string>' must be an external connector

GNS-151 <string>:<decimal>: predefined rule '<string>' impossible to use as
a transistor name as an entity name

GNS-152 <string>:<decimal>: more than one action defined for entity
'<string>'

GNS-153 <string>:<decimal>: no architecture defined for entity '<string>'

Yagle Reference Guide

111

GNS-154 <string>:<decimal>: too many (><decimal>) transistors in
architecture '<string>' to start FCL

GNS-155 <string>:<decimal>: Generate forbidden with transistor in model
<string>

GNS-156 <string>:<decimal>: Blackbox with generic variables not implemented
yet

GNS-157 <string>:<decimal>: GNS can't start on a pure transistor netlist
'<string>'

GNS-158 you must explicitly specify the vector range for '<string>'

GNS-159 <string>:<decimal>: negative vector index

GNS-160 <string>:<decimal>: vector direction error

GNS-161 no figure model <string> found

GNS-162 <string>:<decimal>: <string> instance '<string>' can't be found

GNS-163 <string>:<decimal>: '<string>' used several times, primary use line
<decimal> in file <string>

GNS-164 <string>:<decimal>: variable '<string>' not defined

GNS-165 <string>:<decimal>: <string>

GNS-166 Cannot read file <string>

GNS-167 Error executing TCL funcion '<string>':
<string>

GNS-168 internal: unknown transistor model '<string>'

6.13. INF
INF-001 <string>L and W not required

The parameters L and W won't be use because they have no meaning in this
declaration.

INF-002 <string>unrecognized token '<string>', should be <string>

The expected token was not found.

INF-003 <string>unrecognized token '<string>'

The token is unknown and can't be handled.

INF-004 <string>invalid value '<string>', should be <string>

Yagle Reference Guide

112

An invalid value has been encountred.

INF-005 <string>unknown section '<string>', ignoring section

The section is unknown and can't be handled.

INF-006 <string>unknown direction '<string>', ignoring section

The connector direction is unknown and can't be handled.

INF-007 <string>clock '<string>' is not delared yet

A clock signal is referenced but has not been declared yet.

INF-008 <string>no period specified for clock '<string>' or no default period

It's impossible to find a period to associate with the clock. Either the default period
or the clock period should be defined.

INF-009 <string>:<decimal>: syntax error near '<string>'

A syntax error occured when parsing file. Either a signal name matchs a syntax
token or the token is unknown. In the first case, consider enclosing the signal name
with quote.

INF-010 <string>:<decimal>: syntax error in regular expression

An invalid regular expression have been detected.

INF-011 no figure name given, guessing it is '<string>'

The information file should begin with the figure name associated with the
informations. If the name is not specified, a figure name will be guessed from the
file name. This could lead to errors if the guessed name is wrong.

INF-012 can not open '<string>' information file

An error occured when trying to read the information file.

INF-013 <string>information on signal <string> already read -- ignored

INF-014 <string>information on signal '<string>' has already been set
elsewhere -- overriding with inf values

A default value has been set by the netlist spice deck and will be shadowed by a
new value who has more priority.

INF-015 <string>information '<string>' for '<string>' has already been set
to '<string>' elsewhere -- overriding with inf value '<string>'

A default value has been set by the netlist spice deck and will be shadowed by a
new value who has more priority.

INF-016 <string>information '<string>' for '<string>' has already been set
elsewhere -- overriding with inf values

A default value has been set by the netlist spice deck and will be shadowed by a
new value who has more priority.

Yagle Reference Guide

113

INF-017 <string>information '<string>' for '<string>' has already been set
to <decimal> elsewhere -- overriding with inf value <decimal>

A default value has been set by the netlist spice deck and will be shadowed by a
new value who has more priority.

INF-018 could not create file '<string>'

An error occured when trying the open the information file in write mode.

INF-019 <string>slope defined for pin '<string>' <string> is too low, set
to <string>

INF-020 <string>invalid check type ('<string>') for 'NoCheck' section

INF-021 unknown inf section '<string>'

INF-022 <string>unknown characteristic '<string>', ignoring this entry

The signal characteristic is unknown and can't be handled.

INF-023 name '<string>' doesn't match any <string> in circuit

INF-024 <string>incompatible tokens given for 'directives' section

Using "... with sig rising|falling" or "... before|after sig up|down" is forbidden.

INF-025 <string>invalid type '<string>', ignoring this entry

The given type does not apply to this section and can't be handled.

INF-026 <string>out of range probability value: %g

The probability value must be a value ranging from 0 to 1.

INF-027 invalid marking <string>

6.14. LOG
LOG-000 Internal Error <string>

LOG-001 Maximum number of variables for BDDs reached

LOG-002 BDD's system not enough memory...

6.15. MBK
MBK-000 connector <string> not found in instance <string>

MBK-001 connector number mismatch beetwen instance <string> and figure
<string>

Yagle Reference Guide

114

MBK-002 can't evaluate '<string>', assuming 0

MBK-003 transistor length is null

MBK-004 transistor width is null

MBK-005 conflicting power supply on node '<string>' keeping %gv (other is
%gv)

MBK-006 Can't flatten figure <string> because RC cache is active

MBK-007 lofigchain is missing on lofig <string>

MBK-008 Null CTC on signal %ld (1) in instance <string>

MBK-009 flattenlofig: connector <string> exists only in instance <string>

MBK-010 flattenlofig: connector <string> in instance <string>: number of
physical nodes differ

MBK-011 Null CTC on signal %ld (2) in instance <string>

MBK-012 figure <string> not empty (type=%ld)

MBK-013 unflat error: no supply ground

MBK-014 unflattenlofig: connector number inconsistency between model
'<string>' and instance '<string>'

MBK-015 duplosig impossible: signal %ld already exist

MBK-016 the radical <string> is already used in a vector

MBK-017 the radical <string> has a spurious vectorized value <string>
(<string>)

MBK-018 figure '<string>': transistor '<string>' appears several times

MBK-019 can't open file <string>

MBK-020 addlofig impossible: figure <string> already exists

MBK-021 addlomodel impossible: model <string> already exists

MBK-022 illegal transistor type: %ld

MBK-023 addloins impossible: instance <string> already exist in figure
<string>

MBK-024 addloins impossible: instance model is the figure <string> itself

Yagle Reference Guide

115

MBK-025 addloins impossible: connector number discrepancy between figure
<string> and instance <string> in figure <string>

MBK-026 addlocon impossible: connector <string> already exists in figure
<string>

MBK-027 addlocon impossible: bad direction <character> in figure <string>

MBK-028 addlosig impossible: signal %ld already exist in figure <string>

MBK-029 getloins impossible: instance <string> doesn't exist in figure
<string>

MBK-030 getlotrs impossible: transistor <string> doesn't exist in figure
<string>

MBK-031 getlocon impossible: connector <string> doesn't exist in figure
<string>

MBK-032 getlosig impossible: signal %ld doesn't exist in figure <string>

MBK-033 viewlo: empty list of figure

MBK-034 setsigsize() impossible: BKSIG not NULL

MBK-035 Conflict power supply on signal: <string>

MBK-036 u is not a square matrix

MBK-037 u and l matrix size mismatch

MBK-038 could not find a pivot

MBK-039 singular matrix given

MBK-040 matrix a and b size can not allow '*' operation

MBK-041 matrix a and b size can not allow '-' operation

MBK-042 matrix solve order has not been computed yet

MBK-043 matrix a and sol size can not allow solve operation

MBK-044 unreducable matrix given

MBK-045 fatal mbkalloc error: not enough memory when trying to allocate %lu
bytes, top= %luKb

MBK-046 fatal mbkrealloc error: not enough memory

MBK-047 Can't open file <string> because too big

Yagle Reference Guide

116

MBK-048 mbksysfopen: bad value for access

MBK-049 file <string> opened, file <string> ignored

MBK-050 file <string> opened for writting, file <string> is deleted

MBK-051 Cannot evaluate parameter <string>='<string>'<string>

MBK-052 Cannot evaluate expression '<string>=<string>' in figure '<string>':
variable<string> <string> <string> unknown, assuming 0

MBK-053 Undefined <string> parameter '<string>' in subcircuit '<string>'

MBK-054 Error #<decimal> in avt communication protocol (<string>)

MBK-055 IP port <decimal> already in use. Waiting...

MBK-056 Can't activate master process in a slave process

MBK-057 not enought communication slot to handle new input connection !

MBK-058 Non slot to handle new input connection !

MBK-060 some communication slot are still active, but all process are
finished !

MBK-061 a lofig is not allowed in the slave process !

MBK-062 a cnsfig is not allowed in the slave process !

MBK-063 a ttvfig is not allowed in the slave process !

MBK-064 a abnormal end-of-file was encountered !

MBK-065 error '<string>' while reading file '<string>'

MBK-066 error '<string>' while writing to file '<string>'

MBK-067 missing end of encryption marker in file '<string>'

MBK-068 Failed to transfer file '<string>'

MBK-069 Environment variable '<string>' is not set

MBK-070 Expression '<string>' returned negative value for <string>

MBK-071 Diode model evaluation returned <string> capacitance value

Yagle Reference Guide

117

MBK-072 Resistive paths found between power supplies. If resistor names do
not appear, consider using 'avt_config avtSpiKeepNames resistance'.

6.16. MCC
MCC-000 Unknown transition in mcc_generatesimgate

MCC-001 Default values assumed for vbs

MCC-002 Can't generate params for <string> (L = %ldn, W = %ldn)

MCC-003 Can't find vds for a degraded transistor

MCC-004 Hspice bsim3v3 model used with invalid ACM value (<decimal>)

MCC-005 Level = 53, default ACM=10 used!!!

MCC-006 Level = 49, default ACM=0 used!!!

MCC-007 Invalid value of parameter MOBMOD, default value used!

MCC-008 Computation of Vdsat failed! Default computation of Vdsat used!

MCC-009 Negative Leff for <string> (L = %ldn, W = %ldn)! default value
assumed: Leff = %ldn

MCC-010 Negative Weff for <string> (L = %ldn, W = %ldn)! default value
assumed : Weff = %ldn

MCC-011 Computation of Vdsat failed! Bad value for RDSMOD = 0 assumed

MCC-012 Technofile <string> to get doesn't exist!

MCC-013 Technofile <string> to delete doesn't exist

MCC-014 No model <string> in technofile <string>, can't get index!

MCC-015 No model <string> in technofile <string>, can't get model name!

MCC-016 No model <string> in technofile <string>, can't get XL!

MCC-017 No model <string> in technofile <string>, can't get XW!

MCC-018 Can't initialise diode model '<string>' parameters, unknown diode's
level: <decimal>

MCC-019 Computation of VDDdeg for model <string> which is a PMOS transistor!

Yagle Reference Guide

118

MCC-020 Issue occured while computing VDDdeg for model <string> (L=%g,W=
%g), default value 'VDD (%g) - VTH (%g)' assumed (%g)

MCC-021 Computation of VSSdeg for model <string> which is a PMOS transistor!

MCC-022 Issue occured while computing VSSdeg for model <string> (L=%g,W=
%g), default value 'VTH' assumed (%g)

MCC-023 mcc_dio_calcCDEP invalid value for TLEV! TLEV = 0 assumed

MCC-024 Issue occured while computing VTI_nmos

MCC-025 Issue occured while computing VTi_pmos

MCC-026 Technofile <string> doesn't exist, can't addmodel!

MCC-027 Model <string> doesn't exist!

MCC-028 No model <string> (<string> case L = %ldn, W = %ldn) for <string>

The technology file does not contain the model or the device size is out of the model
ranges. It may also be necessary to load the techonology file before using CPE.

MCC-029 No model for diode model <string>!

MCC-030 Closest model assumed <string> (lmin = %ldn, lmax = %ldn, wmin =
%ldn, wmax = %ldn)

MCC-031 Positive vbs (%g) for transistor <string> (model <string> L=%gu W=
%gu)

MCC-032 Negative vbs (%g) for transistor <string> (model <string> L=%gu W=
%gu)

MCC-033 <string> is used for best corner!

MCC-034 <string> is used for worst corner!

MCC-035 Could not characterize transistor model '<string>' with given PVT:
vdd=%gv temp=%g

Check if the PVT suits your transistor model

MCC-036 Unknown transistor instance specific parameter '<string>'

MCC-037 Failed to evaluate <string>=<string>

MCC-038 Cannot evaluate model parameter <string>='<string>'<string>

MCC-039 Extra transistor instance specific parameter <string>=%g found in
subckt '<string>', found value used

Yagle Reference Guide

119

MCC-040 Extra transistor instance specific parameter M=<decimal> :
technology check won't work properly

MCC-041 <string> found on transistor <string> in technology file subckt
'<string>'

MCC-042 Can't determine transistor model type for '<string>' using
simToolModel setting '<string>'. Guessing '<string>'. Please set
correct simToolModel ('<string>'?).

MCC-043 Can't open transistor model definition file <string>.

MCC-044 Parse error line <decimal> file <string>.

MCC-045 Can't parse transistor definition file. Search in <string> : <string>

6.17. MGL
MGL-001 syntax error line <decimal>

MGL-002 illegal vector range specification at line <decimal>

The bounds specified for a bussed signal are not numerical values.

MGL-003 port '<string>' already declared at line <decimal>

An external connector with the same name has already been declared in the module.

MGL-004 net '<string>' already declared at line <decimal>

A net with the same name has already been declared in the module.

MGL-005 net '<string>' used out of declared range at line <decimal>

A bit a range of bits is refered to for the given net despite being beyond the bounds
specified in the net declaration.

MGL-006 width or/and type mismatch at line <decimal>

A port connection in an instantiation does not match the port specification of the
module being instantiated.

MGL-007 escaped vector '<string>' not declared in strict bit ascending/
descending order at line <decimal>

Only occurs if avtStructuralVerilogVector is set to yes. Escaped vectors declared
as individual bits can be handled correctly only if the bits are declared in a strict
ascending or descending order without any gaps.

MGL-008 escaped vector '<string>' not declared with all bits together at
line <decimal>

Only occurs if avtStructuralVerilogVector is set to yes. Escaped vectors declared as
individual bits can be handled correctly only if the bits are declared together.

Yagle Reference Guide

120

MGL-009 Missing external connector for external signal '<string>' driving
verilog netlist '<string>'

Occurs when driving an incoherent verilog netlist.

MGL-010 Cannot open file to drive verilog netlist '<string>'

File I/O error, check disk space and privileges.

6.18. SLIB

Error messages description not available yet.

6.19. SPF
SPF-001 Invalid pin type '<string>' at line <decimal>

The pintype field does not contain a valid [IiOoSsBbJjXx] character.

SPF-002 Syntax error at line <decimal>, token '<string>'

The given line does not conform to legal SPF syntax. If token is 'CR', there are
probably missing elements on the line.

SPF-003 Undeclared node '<string>' (line <decimal>)

The given node is not declared in the current net.

SPF-004 Net '<string>' with mismatching total capacitance (total=%gpf, sum=
%gpf)

The total capacitance already associated with a net in a design does not match the
value given for the total capacitance for the net in the SPF file.

SPF-005 Unsupported divider, using '/' (line <decimal>)

A missing or invalid character used to specify the hierarchy divider.

SPF-006 Unsupported delimiter, using ':' (line <decimal>)

A missing or invalid character used to specify the name delimiter.

SPF-007 Unknown syntax for BUSBIT section (line <decimal>)

Illegal syntax used to specify bus delimiters in the BUSBIT section.

SPF-008 Undefined design entity name

The name of the design to be annotated is not specified in the SPF file.

SPF-009 Entity '<string>' does not exist

The design entity specified for annotation does not exist. Either the netlist has not
been loaded yet or the names do not match.

SPF-010 Unknown capacitance unit '<string>', assuming 'pf' (line <decimal>)

Yagle Reference Guide

121

Illegal specification of capacitance unit. Legal values are ff, pf, nf, uf, mf, kf. The
final 'f' is optional and case is irrelevant.

SPF-011 Unknown resistance unit '<string>', assuming none (line <decimal>)

Illegal specification of resistance unit. Legal values are f, p, n, u, m, k. The case
is irrelevant.

SPF-012 Device or instance '<string>' cannot be found (line <decimal>)

The object specified for connection to the parasitic network does not exist.

SPF-013 Connector of transistor '<string>' named '<string>' cannot be found
(line <decimal>)

The name used to specify the transistor connector is invalid. Legal names are g, d,
s, b.

SPF-014 Connector of transistor '<string>' named '<string>' might be
connected to the wrong signal (line <decimal>)

There may be an incoherance in the parasitic file.

SPF-015 Instance '<string>' cannot be found (line <decimal>)

The instance specified for connection to the parasitic network does not exist.

SPF-016 Connector of instance '<string>' named '<string>' cannot be found
(line <decimal>)

The name used to specify the instance connector is invalid.

SPF-017 Connector '<string>' cannot be found (line <decimal>)

The external pin specified for connection to the parasitic network does not exist.

SPF-018 Connector named '<string>' is on the wrong equipotential (line
<decimal>)

There may be an incoherance in the parasitic file.

SPF-019 Negative capacitance found (line <decimal>)

A negative value was used to specify a capacitance, this is ignored.

SPF-020 Negative resistance found (line <decimal>)

A negative value was used to specify a resistance, this is ignored.

SPF-021 <decimal> signal(s) missing in the netlist

Signals specified in the parasitic file do not exist in the netlist.

SPF-022 Don't know how to handle connector '<string>' for resistor annotation
(line <decimal>)

The handled names for resistor connectors are 'pos', 'neg' , '1' and '2'.

SPF-023 Signal '<string>' missing in the netlist (line <decimal>)

Signal can not be found in netlist to annotate.

Yagle Reference Guide

122

SPF-024 Failed to open file '<string>'

The dspf file was not found.

SPF-025 RC Network declaration for signal '<string>' continued at line
<decimal>

Multiple consecutive declarations for the signal have been detected. They will be
merged.

SPF-026 Don't know how to handle capacitance/diode connector '<string>' for
capacitance/diode annotation (line <decimal>)

The handled names for capacitance and diode connectors are '1' and '2'.

SPF-027 No declaration of crosstalk capacitance node '<string>' (line
<decimal>), associated with net '<string>'

SPF-028 Node '<string>' (line <decimal>) could not be created, coupling
capacitance to this node will be ignored

A coupling capacitance to a non existant signal in the netlist will be ignored.

6.20. STM
STM-000 Array bound write in model '<string>'

STM-001 Parse error file '<string>' line <decimal>

STM-002 solvepi (): non convergence

STM-003 Negative capacitance found on signal <string>

STM-004 Deleting more models than allocted

STM-005 stm_cell_delmodel: null cell

STM-006 stm_cell_delmodel: null model

STM-007 Can't open file '<string>'

STM-008 stm_addht impossible: hash table size is '0'

STM-009 stm_addhtitem impossible: value is STM_EMPTYHT or STM_DELETEHT

STM-010 Constraint calculation meaningless in SCM model

STM-011 Cannot resolve pi tree with tables: taking c1 + c2

STM-012 Cannot resolve pi tree with polynoms: taking c1 + c2

STM-013 Load parameter not yet implemented for polynoms

Yagle Reference Guide

123

STM-014 Clock slew parameter meaningless in SCM models

STM-015 Clock slew parameter not yet implemented for polynoms

STM-016 Data slew parameter meaningless in SCM models

STM-017 Data slew parameter not yet implemented for polynoms

STM-018 imax not yet implemented for tables

STM-019 imax not yet implemented for polynoms

STM-020 Slew parameter not yet implemented for polynoms

STM-021 Merge of polynom models not yet implemented

STM-022 Reduction of polynoms not yet implemented

STM-023 Shift of polynoms not yet implemented

STM-024 Negation of polynoms not yet implemented

STM-025 No model type for signature

STM-026 STM cannot compute imax from constant model

STM-027 STM cannot compute vth from constant model

STM-028 STM cannot compute slope from constant model

STM-029 NULL model

STM-030 Lost memory consistency

STM-031 Shift of SCM models meaningless

STM-032 Negation of SCM models meaningless

STM-033 Table extrapolation

STM-034 Noise created twice

STM-035 Cannot get current file position

STM-036 Cannot set file position

STM-037 Bad unit for STM_CACHESIZE

STM-038 invth created twice

Yagle Reference Guide

124

STM-039 Default capacitance range used for function model

STM-040 Could not find timing model file for figure '<string>'

The .stm file might not be accessible to the tool.

STM-041 Constant and table cannot be both valid

STM-042 CALL_SIMULATION called out of context

STM-043 CALL_SIMULATION can't find association for %p '<string>'

STM-044 CALL_SIMULATION_ENV called out of context

STM-045 CALL_SIMULATION_ENV can't find association for %p '<string>'

STM-046 CALL_CTK_ENV called out of context

STM-047 CALL_CTK_ENV can't find association for '<string>'

STM-048 GNS information not loaded, can't compute

STM-049 Could not retreive instance <string>

STM-050 Round overflow

STM-051 Parse error while reading TLF file line <decimal>

STM-052 Imprecision risk for delay '<string>(<character>)' to
'<string>(<character>)', slope = <decimal>ps, load = <decimal>fF.

6.21. TAS
TAS-001 slope computing error : circuit not extracted or wrong extraction

TAS-002 netlist error: the connector <string> is not an input

TAS-003 netlist error: the connector <string> is not an output

TAS-004 the connector <string> is not used

TAS-005 the connector <string> can not reach the high level

TAS-006 the connector <string> can not reach the low level

TAS-007 can not force the level of connector <string>

TAS-008 can not open the file <string>

Yagle Reference Guide

125

TAS-009 the signal <string> doesn't exist in the circuit or is not a
transistor gate or is already declared

TAS-010 can not close the file <string>

TAS-011 no control signal in the latch %ld (<string>)

TAS-012 incomplete input list for the cone %ld (<string>)

TAS-013 the latch <string> is not a differential latch

TAS-014 error in technology file <string>

TAS-015 block without diffusion capacitance. can not measure the drain or
source capacitance

TAS-016 block without diffusion capacitance drain and source capacitance
will be measured with ACM=1 SPICE method

TAS-017 floating exception

TAS-018 no value or edge can be set for signal <string>. set to 0

TAS-019 can not find the slopes of the cone %ld (<string>)

TAS-020 no active branch found in the cone %ld (<string>)

TAS-021 error in the truth table %ld (<string>)

TAS-022 unknown state <string>

TAS-023 unknown column type <string>

TAS-024 non external branch containing connector cone %ld (<string>)

TAS-025 no slope on the node <string>

TAS-026 usage of the new delay switch model requiere to set the
TAS_DELAY_SWITCH to NO.

TAS-027 tasalloc() error: not enough memory. only the critical path will be
retained. freeing memory space

TAS-028 fatal error: not enough memory

TAS-029 unknown event %ld

TAS-030 no inout or output connector

TAS-031 loop detected: see the <string>.loop file for more informations

Yagle Reference Guide

126

TAS-032 monolatch chain %ld (<string>)

TAS-033 the cone %ld (<string>) does not contain feedback pathes

TAS-034 non-external branch in the cone %ld (<string>)

TAS-035 latch on output connector <string>

TAS-036 precharge on output connector <string>

TAS-037 negative or zero delay between <string>

TAS-038 transistor link losed

TAS-039 too small resistance for signal <string>. set to 1

TAS-041 the precharge processing must be used with the 'ttv' file. the '-
n' option will be set

TAS-042 there is no extractible path in the figure <string>

TAS-043 bad environment variable <string>

TAS-044 the cell characterization option is incompatible with the 'deb' file

TAS-045 errors detected in the netlist. see <string>.rep file for more
details

TAS-046 latch on input connector <string> ignored

TAS-047 precharge on input connector <string> ignored

TAS-048 memory on input connector <string> ignored

TAS-050 transistors detected in figure <string> impossible in hierarchical
mode or instances do not have timing files

TAS-051 impossible to find in figure <string>

TAS-052 bad connector direction on signal <string>

TAS-053 internal connector <string> not found in RCX view

TAS-054 only one connector on internal signal <string>

TAS-055 only input connectors or constante connectors on internal signal
<string>

TAS-056 no input on internal signal <string>

Yagle Reference Guide

127

TAS-057 conflict detected on internal signal <string>

TAS-058 no rc delay on signal <string>. may be the rc tree are not connected
or there is no slope on the driver

TAS-059 more than one latch on signal <string>

TAS-060 more than one precharge on signal <string>

TAS-061 fatal error check your input files

TAS-062 figure <string> already exists

TAS-063 no rc delay on signal <string>. may be loop detected

TAS-064 no or bad rcx file for figure <string>

TAS-065 name <string> already exists

TAS-066 It is better to simulate the signal <string>

TAS-067 No timing model for instance <string>: flattened

TAS-068 No execution context (missing tas_setenv)

TAS-069 Conflicting temperature: <string>

TAS-070 PVT conditions prevent signal propagation on cone <string>, timing
arc suppressed

Vin under static threshold (Increasing power supply may solves)

TAS-071 PVT conditions lead to out of bound parameters on cone <string>,
timing arc suppressed

Delay and slope calculations failed on pass-gate (Increasing power supply may
solves)

TAS-072 Signal '<string>' connected on power connector '<string>' of
instance '<string>'

TAS-073 Could not find connector '<string>' in circuit '<string>'

TAS-074 can't extract path to simulate

TAS-075 can't get patterns to simulate the path

Yagle Reference Guide

128

6.22. TRC
TRC-000 [AWE:<decimal>] Internal error :

net <string>
driver <string>
receiver <string>

The internal data representation for parasitic element is not consistent. Please
contact Avertec Support.

TRC-001 [AWE] Negative delay computed on net <string>

Parasitics on the net present some particularities, leading to an error when
computing delays with AWE algorithm.

TRC-002 [AWE] All order fail when computing delay on net <string>

Parasitics on the net present some particularities, leading to an error when
computing delays with AWE algorithm.

TRC-003 Can't open file <string> for direct access. Cache is not used.

The .rcx file is compressed, so it can't be opened for direct access. The cache is not
used, the file is entirely loaded in memory, leading to more memory consumption.

TRC-004 avtElpCapaLevel mismatch #<decimal>.

The value of the avtElpCapaLevel variable is not consistent with previous setting.

TRC-005 Internal error #<decimal> on net <string>.

This is an internal error. Please contact Avertec Support

TRC-006 Internal error #<decimal>.

This is an internal error. Please contact Avertec Support

TRC-007 Negative ground capacitance found on signal <string>. code=<decimal>

The total capacitance on a net is negative. If it's a power supply net, it should be
identified, and no operation on this signal would occur. Check configuration file.

TRC-008 Can't determine equivalent load on signal <string>.

The equivalent gate output load can't be computed. The gate output is probably not
connected to anything.

TRC-009 The pi load for the equivalent gate load on signal <string> can't
be determined.

The equivalent gate output load can't be computed. The gate output is probably not
connected to anything, or parasitics on the net present some others particularities.

TRC-010 The equivalent gate output load gives a negative capacitance for
signal <string>. 0 value is retained

This problem occurs when there is a very strong coupling between nets.

TRC-011 Can't open file <string>.<string> for writting.

Yagle Reference Guide

129

Check usual Unix specification for file access: permission mode on file or on
directory, disk space,...

TRC-012 An error occurs when writting in file <string>.

Check usual Unix specification for file access: permission mode on file or on
directory, disk space,...

TRC-013 Try to load an RCX file version #<decimal>. Only 4th version is
supported.

The RCX file is too old to be supported. It must be created with newer version of
the tool.

TRC-014 File parse error : Line too long.

The length of a line in the RCX file is too long. This case occurs if there are very long
signal or instance names, too many nodes on a connector, or if the file is corrupted.
The last line of an RCX file is the word END.

TRC-015 File parse error line <decimal> in file <string>.<string>.

An element is not recognized in the RCX file. The file may be corrupted. The last
line of an RCX file is the word END. If this is not the case, there has been a problem
during the creation of the RCX file.

TRC-016 Error while getting environment variable : <string>. It is <string>

Check the Avertec Documentation to set proper values.

TRC-017 could not modify connector '<string>' origin group

This is an internal error in rc delay calculation with GNS.

TRC-018 rcx timing function does not exist

This is an internal error in rc delay calculation with GNS.

TRC-019 could not get connector '<string>' origin group

This is an internal error in rc delay calculation with GNS.

TRC-020 origin index of connector '<string>' is out of range

This is an internal error in rc delay calculation with GNS.

TRC-021 could not get connector '<string>' destination group

This is an internal error in rc delay calculation with GNS.

TRC-022 destination index of connector '<string>' is out of range

This is an internal error in rc delay calculation with GNS.

TRC-023 rcx timing function does not exist

This is an internal error in rc delay calculation with GNS.

TRC-024 rcx timing function already exist

This is an internal error in rc delay calculation with GNS.

Yagle Reference Guide

130

TRC-025 missing rcx timing origin or destination group

This is an internal error in rc delay calculation with GNS.

TRC-026 could not find timings \"<character><character>\" between connectors
'<string>' and '<string>' for signal '<string>'

This is an internal error in rc delay calculation with GNS.

TRC-027 could not find timings \"<character><character>\" for an input slope
of %gps between connectors '<string>' and '<string>' for signal
'<string>'

This is an internal error in rc delay calculation with GNS.

TRC-028 can't compute awe delay because a connector is missing :
start='<string>' end='<string>'

This is an internal error in rc delay calculation.

TRC-029 can't compute awe delay because input slope is negative :
start='<string>' end='<string>'

The input slope for rc delay calculation is negative. There is a problem with the gate
model. Check technological parameters and power supply.

TRC-030 can't compute awe delay because power supply is less than vt :
start='<string>' end='<string>'

Check power supply and technological parameter of the driver.

TRC-031 can't compute awe delay because threshold is greater than power
supply : start='<string>' end='<string>'

The voltage on the rc net can't reach the threshold delay measure.

TRC-032 can't compute awe delay because because there is no rcx view or rcx
view is typed RCXERROR : start='<string>' end='<string>'

This is an internal error in rc delay calculation.

TRC-033 can't compute effective load on signal <string> because there is
not a valid rcx view.

This is an internal error in rc delay calculation.

TRC-034 can't get the file position : <string>

When using rc cache, can't get the file offset. Try to disable file compression if
needed, or remove rc cache. Check unix file so.

TRC-035 can't set the file position : <string>

When using rc cache, can't change the position in file. Try to disable file
compression if needed, or remove rc cache. Check unix file access so.

TRC-036 an error occured when reading file : <string>

This rcx file may be corrupted or truncated. The last line of the rcx file is EOF.
Check disk space.

Yagle Reference Guide

131

TRC-037 an inconsistant line has been read : <string>

The rcx file is corrupted or truncated. The last line of the rcx file is EOF. Check
disk space.

TRC-038 No aggressor <string> found : <string>

The rcx file is corrupted or truncated. The last line of the rcx file is EOF. Check
disk space.

TRC-039 Signal <string> is defined more than one time : <string>

The rcx file is corrupted.

TRC-040 Signal <string> is not defined : <string>

The rcx file is corrupted.

TRC-041 Problem in cache mechanism : the signal <string> can't be released

TRC-042 [AWE] can't compute the switching instant of the input for rc net
<string>

There is a problem when computing the rc input slope on a net. In this case, the rc
delay is equal to the switching instant of the rc output.

TRC-043 [AWE] can't compute the switching instant of the output for rc net
<string>

There is a problem when computing the rc output slope on a net. In this case, the rc
delay is equal to 0 and output rc slope is equal to input rc slope.

TRC-044 [AWE] can't determine the shape of the input for rc net <string>

The representation for the rc driver can't be determined. In this case, the rc delay is
equal to 0 and output rc slope is equal to input rc slope.

TRC-045 internal problem in rcdelay cache : signal <string> is yet in cache

There is a proble in rcdelay cache mechanism. Desactivate rcdelay cache.

TRC-046 internal problem in rcdelay cache : no signal

There is a proble in rcdelay cache mechanism. Desactivate rcdelay cache.

TRC-047 internal problem in rcdelay cache : signal <string> is not in cache

There is a proble in rcdelay cache mechanism. Desactivate rcdelay cache.

TRC-048 internal problem in rcdelay cache : unknown data structure in cache
for signal <string>

There is a proble in rcdelay cache mechanism. Desactivate rcdelay cache.

TRC-049 internal problem in rcdelay cache : no awe data for signal <string>

There is a problem in rcdelay cache mechanism. Desactivate rcdelay cache.

TRC-050 Net <string> is not connex

The rc description of a net doesn't connect all connectors\n

Yagle Reference Guide

132

TRC-051 Disabling compression for <string>.rcx file as RC cache is active.

There is a request to write an .rcx file with the simultaneous uses of output filter and
rc cache functionality activated. Since this last functionality requiers direct access
on file, the output filter is not used for this file.

TRC-051 Net <string> is not connex

The rc description of a net doesn't connect all connectors\n

TRC-052 Can't solve the LU hybrid matrix on net <string> from locon <string>

There is a problem in awe computation with matrix.\n

TRC-053 Can't handle UTD for circuit '<string>' generated with
avtEnableMultipleConnectorsOnNet=yes in hierarchical mode

avtEnableMultipleConnectorsOnNet=yes is supported only for transistor level
netlists.\n

6.23. VAL

Error messages description not available yet.

6.24. YAG
YAG-001 Circuit not found

Attempt to disassemble a circuit entity which does not exist.

YAG-002 RC cache must be deactivated in this mode

Disassembly modes which involve manipulation of hierarchy require that the RC
be deactivated.

YAG-003 Connector '<string>' is power supply AND ground

The given external connector has been detected as both Vdd and Vss. This error
is fatal.

YAG-004 No VDD signal in the circuit

No Vdd power supply has been identified in the circuit to disassemble. This error
is not fatal, however, it is recommended to check the power supply configuration.

YAG-005 No VSS signal in the circuit

No Vss power supply has been identified in the circuit to disassemble. This error is
not fatal, however, it is recommended to check the power supply configuration.

YAG-006 Can't open file '<string>'

The specified file cannot be opened. Check disk space and access privileges. This
error may be fatal.

Yagle Reference Guide

133

YAG-007 Can't close file '<string>'

The specified file cannot be closed. Check disk space and access privileges.

YAG-008 Unrecognized contraint '<string>' in the circuit

The specified mutual exclusion constraint has no correspondance in the circuit to
disassemble.

YAG-009 Can't name toplevel <string> in Blackbox mode

Attempt to rename the top-level figure using a name which is already in use.

YAG-010 Figure '<string>' has no transistors and no instances

Circuit contains no elements to disassemble.

YAG-011 Transistors in non-leaf figure '<string>'

In hierarchical disassembly mode, if a no-leaf figure contains a mixture of transistors
and instances then the result may not be as expected.

YAG-012 Signal '<string>' is not driven in behavioural figure

Yagle Reference Guide

134

Index

apiDriveAllBehavior .. 75

apiDriveCorrespondenceTable .. 75

apiFlags .. 74

apiUseCorrespondenceTable ... 75

avtAnnotationDeviceConnectorSetting ... 58

avtAnnotationKeepCards ... 48

avtAnnotationPreserveExistingParasitics .. 57

avtBehavioralVerilogSuffix ... 57

avtBehavioralVhdlSuffix ... 56

avtBlackboxFile ... 45

avtCaseSensitive ... 46

avtCatalogueName .. 45

avtDisableCompression ... 48

avtElpCapaLevel .. 47

avtElpDriveFile .. 48

avtElpGenTechnoName .. 48

avtEnableMultipleConnectorsOnNet ... 50

avtFilterSuffix .. 48

avtFlattenForParasitic ... 49

avtFlattenKeepsAllSignalNames .. 46

avtFullConeFile .. 71

avtGlobalVddName ... 46

avtGlobalVssName .. 46

avtInputFilter .. 48

Yagle Reference Guide

135

avtInstanceSeparator .. 46

avtLibraryDirs .. 45

avtLicenseProject .. 45

avtLicenseServer ... 45

avtMaxCacheFile ... 49

avtNormalConeFile .. 70

avtOutputBehaviorFormat .. 72

avtOutputBehaviorVectorDirection ... 72

avtOutputFilter ... 48

avtParasiticCacheSize .. 49

avtSpiConnectorSeparator ... 50

avtSpiCreateTopFigure ... 49

avtSpiDriveCapaMini ... 55

avtSpiDriveDefaultUnits ... 54

avtSpiDriveParasitics .. 55

avtSpiDriveResiMini .. 55

avtSpiDriveTrsInstanceParams .. 55

avtSpiDspfBuildPower .. 58

avtSpiDspfLinkExternal .. 58

avtSpiFlags .. 53

avtSpiFlags .. 55

avtSpiHandleGlobalNodes ... 54

avtSpiIgnoreCrypt ... 52

avtSpiIgnoreDiode ... 51

avtSpiIgnoreModel .. 52

avtSpiIgnoreVoltage .. 52

avtSpiInstanceMultiNode .. 51

Yagle Reference Guide

136

avtSpiJFETisResistance ... 52

avtSpiKeepCards ... 51

avtSpiKeepNames ... 51

avtSpiMaxResistance .. 52

avtSpiMergeConnector ... 50

avtSpiMergeDiodes ... 52

avtSpiMinCapa ... 53

avtSpiMinResistance .. 52

avtSpiNameNodes ... 51

avtSpiNodeSeparator .. 51

avtSpiOneNodeNoRc .. 53

avtSpiOrderPinPower ... 53

avtSpiParseFirstLine ... 50

avtSpiPinDspfOrder .. 58

avtSpiRCMemoryLimit .. 55

avtSpiReplaceTensionInExpressions .. 50

avtSpiShortCircuitZeroVolts .. 52

avtSpiTolerance ... 54

avtSpiUseUnits .. 54

avtSpiVector .. 54

avtStructuralVerilogSuffix .. 57

avtStructuralVerilogVectors ... 57

avtStructuralVhdlConfigure .. 56

avtStructuralVhdlSuffix .. 56

avtTechnoModelSeparator ... 47

avtVddName ... 45

avtVddVssThreshold ... 49

Yagle Reference Guide

137

avtVectorize ... 46

avtVerboseConeFile .. 70

avtVerilogKeepNames .. 57

avtVerilogMaxError ... 57

avtVhdlMaxError .. 56

avtVssName ... 45

fclAllowSharing ... 73

fclCutMatchedTransistors .. 73

fclDebugMode .. 73

fclGenericNMOS .. 72

fclGenericPMOS .. 73

fclLibraryDir ... 72

fclLibraryName .. 72

fclMatchSizeTolerance .. 73

fclTraceLevel ... 73

fclWriteReport .. 73

gnsFlags .. 74

gnsKeepAllCells .. 74

gnsLibraryDir ... 74

gnsLibraryName .. 73

gnsTemplateDir ... 74

gnsTraceFile .. 74

gnsTraceLevel ... 74

gnsTraceModel .. 74

xyagIconLibrary ... 75

xyagMakeCells ... 75

yagAnalysisDepth ... 61

Yagle Reference Guide

138

yagAssumeExpressionPrecedence ... 69

yagAutomaticLatchDetection ... 64

yagAutomaticMemsymDetection ... 65

yagAutomaticRSDetection ... 65

yagBddCeiling ... 61

yagBleederIsPrecharge .. 69

yagBleederStrictness .. 66

yagBlockBidirectional ... 63

yagBusAnalysis ... 70

yagCapacitanceCones .. 63

yagCompactBehavior ... 70

yagDebugCone .. 59

yagDetectClockGating .. 66

yagDetectDelayedRS .. 67

yagDetectDynamicLatch ... 65

yagDetectGlitchers .. 62

yagDetectPrecharge .. 66

yagDriveAliases ... 70

yagDriveConflictCondition ... 70

yagElectricalThreshold ... 61

yagElpCorrection .. 59

yagGenerateBehavior ... 71

yagGenerateConeFile ... 71

yagGenerateConeNetList ... 71

yagGeniusTopName .. 71

yagGenSignature ... 71

yagHierarchicalMode .. 59

Yagle Reference Guide

139

yagHierarchyGroupTransistors ... 72

yagHzAnalysis ... 61

yagIgnoreBlackboxes ... 60

yagKeepRedundantBranches .. 62

yagLatchesRequireClocks ... 66

yagMaxBranchLinks ... 61

yagMaxSplitCmdTiming .. 68

yagMinimizeInvertors .. 70

yagMutexHelp .. 59

yagMutexHelp .. 63

yagNoSupply ... 69

yagNotStrict ... 59

yagOneSupply ... 68

yagOutputName ... 71

yagPullupRatio .. 62

yagRelaxationAnalysis ... 62

yagRelaxationMaxBranchLinks ... 61

yagRemoveInterconnects ... 60

yagReorderInterfaceVectors .. 69

yagSearchLoops ... 59

yagSensitiveTimingDriverLimit .. 68

yagSensitiveTimingRatio .. 68

yagSetResetDetection .. 64

yagSilentMode ... 60

yagSimpleLatchDetection .. 63

yagSimpleOrientation ... 62

yagSimplifyExpressions ... 69

Yagle Reference Guide

140

yagSimplifyProcesses .. 69

yagSplitTimingRatio .. 68

yagStandardLatchDetection ... 66

yagSuppressBlackboxes .. 60

yagTasTiming .. 67

yagTestTransistorDiodes ... 63

yagTristateIsMemory .. 69

yagUseGenius ... 67

yagUseNameOrientation ... 63

yagUseOnlyGenius ... 67

yagUseStmSolver .. 61

yagWriteStatistics ... 59

	1. Input Files
	1.1. Netlist
	1.1.1. SPICE
	Expressions and Values
	User-defined Functions
	MOSFET
	MOSFET Models
	JFET
	Junction Diode
	Resistance
	Capacitance
	Subcircuit Instance
	Independant Voltage Source
	Supported Voltage Sources: Scenario 1
	Supported Voltage Sources: Scenario 2
	Supported Voltage Sources: Scenario 3
	Supported Voltage Sources: Scenario 4
	Supported Voltage Sources: Scenario 5
	Supported Voltage Sources: Scenario 6
	File Inclusion
	Subcircuit
	Parameters
	Temperature
	Scale Factor
	Global Nodes

	1.1.2. VERILOG
	1.1.3. VHDL

	1.2. Parasitics
	1.2.1. DSPF Used for Connectivity
	1.2.2. DSPF Used for Back-Annotation
	1.2.3. SPEF

	1.3. INF - Design Specific Configuration
	1.3.1. Description
	SDC input file
	User-defined INF file

	1.3.2. General
	1.3.3. Disassembly Directives
	IGNORE
	CONSTRAINT
	MUTEX
	INPUTS
	STOP
	DIROUT
	DLATCH
	CKLATCH
	PRECHARGE
	NOTLATCH
	MARKSIG
	MARKTRANS

	1.3.4. Behavioral Model Directives
	SUPPRESS
	SENSITIVE

	1.3.5. Correspondencies INF / Tcl

	2. Output Files
	2.1. VHDL - Generated Behavior
	2.1.1. Description
	2.1.2. Latches and Registers
	2.1.3. High impedance or Conflictual Nodes
	2.1.4. Vectorization
	2.1.5. Example

	2.2. Verilog - Generated Behavior
	2.3. CNS - Cone Netlist Structure
	2.3.1. Reason for CNS
	2.3.2. CNS in Circuit Disassembly
	2.3.3. CNS Terminology
	The Global CNS Figure
	A Cone and its Elements
	Grouping of Cones
	The CNS Figure Hierarchy

	2.4. CNS - Data Structures
	2.4.1. The CNS Figure
	2.4.2. The Link List
	Link Structure Fields
	Standard Link Types

	2.4.3. The Branch List
	Branch Structure Fields
	Standard Branch Types

	2.4.4. The Link List
	Link Structure Fields
	Standard Link Types

	2.4.5. The Edge List
	Edge Structure Fields
	Standard Branch Types

	2.4.6. The Transistor List
	2.4.7. The Connector List
	2.4.8. The Cell List
	Cell Structure Fields
	Standard Cell Types

	3. Log Files
	3.1. REP - Report File
	3.1.1. Warning Messages
	3.1.2. Error Messages
	3.1.3. Fatal Errors

	3.2. User-defined Log File

	4. Configuration Variables
	4.1. License Server
	4.2. Environment
	4.3. Names
	4.4. Technology
	4.5. Input Netlist and Parasitics
	4.6. SPICE Parser
	4.7. SPICE Driver
	4.8. VHDL Parser/Driver
	4.9. VERILOG Parser/Driver
	4.10. DSPF/SPEF Parser
	4.11. General Configuration
	4.12. Disassembly
	4.12.1. Functional Analysis
	4.12.2. Transistor Orientation
	4.12.3. Latch Recognition
	4.12.4. Pattern Matching
	4.12.5. Behavioral Model Generation
	4.12.6. Cone Output Files

	4.13. Output Configuration
	4.14. Pattern Matching
	4.15. Hierarchical Pattern Matching
	4.16. API Specific
	4.17. GUI

	5. Tcl Interface
	5.1. General
	5.1.1. Configuration
	avt_Config
	avt_GetConfig

	5.1.2. File Loading
	avt_SetBlackBoxes
	avt_LoadBehavior
	avt_DriveBehavior
	avt_LoadFile
	avt_EncryptSpice
	avt_SetCatalog
	avt_GetCatalog
	avt_CheckTechno

	5.1.3. Netlist Modification
	avt_GetNetlist
	avt_FlattenNetlist
	avt_DriveNetlist
	avt_DisplayNetlistHierarchy
	avt_DisplayResistivePath
	avt_RemoveResistances
	avt_RemoveCapacitances

	5.1.4. Statistics
	avt_StartWatch
	avt_StopWatch
	avt_PrintWatch
	avt_GetMemoryUsage
	avt_RegexIsMatching

	5.2. Design Specific Configuration
	5.2.1. General
	inf_SetFigureName
	inf_AddFile
	inf_Drive
	inf_ExportSections
	inf_CleanFigure

	5.2.2. Netlist
	inf_DefineIgnore

	5.2.3. Disassembly
	inf_DefineMutex
	inf_DefineInputs
	inf_DefineDirout
	inf_DefineDLatch
	inf_DefineNotDLatch
	inf_DefineNotLatch
	inf_DefineKeepTristateBehaviour
	inf_DefinePrecharge
	inf_DefineNotPrecharge
	inf_DefineModelLatchLoop
	inf_DefineMemsym
	inf_DefineRS
	inf_MarkSignal
	inf_MarkTransistor
	inf_DefineSensitive
	inf_DefineSuppress

	5.3. Disassembling
	5.3.1. yagle

	6. Error Codes
	6.1. API
	6.2. AVT
	6.3. BEF
	6.4. BEG
	6.5. BEH
	6.6. BHL
	6.7. BGL
	6.8. BVL
	6.9. CBH
	6.10. CGV
	6.11. CNS
	6.12. GNS
	6.13. INF
	6.14. LOG
	6.15. MBK
	6.16. MCC
	6.17. MGL
	6.18. SLIB
	6.19. SPF
	6.20. STM
	6.21. TAS
	6.22. TRC
	6.23. VAL
	6.24. YAG

