Avertec Tools

Yagle
User Guide

Software Release 3.4p5

June 7th, 2010

fa%

Avertec Copyright (c) 1998-2006 All Rights Reserved

Yagle User Guide

About this Document

This document explains:
» Software installation
» Theinput formats supported
» How to perform the functional abstraction
 The VHDL/Verilog generated
o User constraints
» The Graphical User Interface

Documentation issued and compliant with Avertec Tools Release 3.4p5.

Please contact support@avertec.com for comments relating to this manual.

Yagle User Guide

Table of Contents

1. Software INSAllAtioNooooiiiiiiii e 4
1.1. System REQUINEIMENESiiiiiiiiiiii ettt e et e et e e e e e e e e e e aaa e 4
1.2. What the Distribution ProVideseioiiiiiiiiiiiiiiiiiieiiiiiieee e 4
1.3. Scope of the INStallation ..o 4
1.4. Performing the Installationccoooiiiiiiiiiii e 4
1.5. Setting-up the ENVIFONMENTiiiiiiiiic e 6
1.6. The FLEXLM LICENCE SEIVEI ...cooiiiieiiiieeeeeee ettt a e e 7
A O A =T V1 PP TSRSRPPPP 8
2.1. Functional Abstraction With Yagle ..o 8
2.2, APPLICALIONS ...t 9
P2 T B 1T ox] o)1 0] o PSPPSRI 10
2.3.1. Functional ADSIraCONoooiiiiiiiiiiiiii e 10
2.3.2. AutoMaAtiC Gate MOUEIueiiiiiii e 10
3. USING TCl INTEITACE ..oevviiii e e e e e e e aeees 11
3.1, SCHPL LAUNCR <. aaa 11
3.2. TOOIS CoNfIQUIALIONcovuiiiiiiiiii e e e e e anaanas 11
3.3L FUNCHIONS o e e e e e e e ettt e e b bt e e e e e e e e e e e e 11
3.4. INF and SDC Configurationcooeuuiiiiiiiiiiiis et e e 12
4. Performing the ABSLraCtioNoiiiiiiiiiii e 13
I | =T o = T 1] o U UPUSPPPPRN 13
4.1.1. Transistor Technology MOEIScccooiiiiiiiii i 13
4.1.2. INPUL NELIST ..ot e e e e e e e et e e e e eaaaaas 14
A.1.3. PArASILICS ...oeiiiieiiiiiiiiiei ettt e e e e ettt et et e e e e e e e e aeeaaaae 15
o R BV = Tod (o] - i [] o TP 16
4.1.5. 1gnoring EI@MENES ..o 16
4.2. General ConfiIQUIatioNcooouiiiiiiiiieie e 17
4.2.1. Defining POWEr SUPPIIES ...uiiiiiiiiie e eaeees 17
4.3. Invoking Functional ADSTractionc.uuuiiiiiiiiiiiiicc e 17
4.4, TimING BaCK-ANNOTAtIONciiiiiiiiii e e e e e e eaaaaas 18
4.4.1. Defining Simulation TEMPEraturecoovviiiiiiiiiiie e 18
4.4.2. BaCK-ANNOAtION LEVEIuuiiiiiiiiiii e 18
O 10 1§ o 11l 1= PSPPSR 18
4.5.1. CNS, CNV fllES .. 18
4.5.2. VHDL and Verilog fileS ... 18
4.6. Special EIEMENTScoouiii i 19
4.6.1. Transmission Gate MUIIPIEXEISccoovuviiiiiiiiiiie e e 19
4.6.2. LAICNES ...ttt a e e e e e eaaaaarae 20
4.6.3. DYNAMIC LAtCNESuiiiiiiiiiii et e e e e e e aees 20
4.7, CASE ANAIYSIS ..uuiiiiiiiiiiie e 20
5. UsiNg The XYagle GUI ... 21

Yagle User Guide

5.1. Presentation of the XYagle INterfaceccccociiiiiiiiie 21
5.1.1. The File IMENU ... e e e e e e e as 21
(@] 0] o PP PPPPPPPPPPPTRR 21
DISASSEMBIE. .. e a e e e e e e e 22
@ | TP PRPTPP 22
5.1.2. The EdIt MENU ...ooiiiiiiiiiie ettt e 22
(1 = T PP 22
HIGRIGNT e e e e e e e e e e e e e as 22
GO thIU NIEFAICNY ..o 22
SO DEPIN. .. e 22
BACK .ttt et eas 23
FUIL FIQUIE ettt et r e e e e e e e e aeeens 23
] 0o TSP PP O PP PPP PP 23
5.1.3. THE VIEW IMENU ...ttt e e e e e e e aeeeeeas 23
5.1.4. The WINAOWS IMENUuuiiiiiiiiiiiiiiiie ittt e e e e e e e e eeeaeas 24
5.1.5. the OPLIONS MENU ...ttt e e e e e e e e e as 25
5.2. Loading the SChematiCooiiiiiiiii e 25
5.2.1. transistor Level SCheMALICoooiiiiiiiiii e 25
5.2.2. GAtE NETISTeiiiiiiiiiieeii e 26
5.2.3. Disassembled Gate NEetliStccccouuiiiiiiiiiie e 27
5.2.4. Hierarchical Gate NEtliSt ... 28
5.3, XYAQIE BASICS ...ttt e e e e 29
5.3.1. Viewing General INformationcccuvuiiiiiiiiiiiieee e 29
5.3.2. Configuring VIiSIDIlILYuuiiiiiiiiiii e 30
5.3.3. Navigation iN XYAGIEeeeiiiiiiiiiiiieee e 31
5.4. Schematic Browsing With XYagleccccouuiiiiiiiiiii 31
5.4.1. XYagle Browsing MOUEScuuiiiiiiiiiiiiiiiiaaiaei e 31
5.4.2. EXtracting SUD-NELISESeeiiiiiiiiiiiii e 31
5.4.3. Highlighting Gate DepPeNndENCESuuuiiiiiiiiiiiiiiieieee e 32
5.4.4. Traversing HIBIarChy ... 33
5.4.5. Searching ODJect DY NAMEoooiiiiiiiii e 34
5.5. Disassembled Netlist INfOrmationooooiiiiiiiiiiiii e 34
5.5.1. Viewing the Gate SIIUCTUINEooiiiiiiiiiiiiiiiie e 34
5.5.2. Viewing the Gate BEhaAVIOrcoooiiiiiiiiiii e 35
00 = TP TPPPPPPPPP 37

Yagle User Guide

Chapter 1. Software Installation

1.1. System Requirements

The complete installation requires approximately 650Mb disk space. If you wish to execute al the
examples, you will need 700Mb of free disk space.

The following platforms are supported:
Solaris 8, 9, 10 (32bit and 64bit for each)

Linux RedHat Enterprise Linux 3.0 (32bit and 64bit)

1.2. What the Distribution Provides

The distribution provides all the relevant files required to install and operate the Avertec tools. This
includes:

» Installation script

» End-user license agreement

» Binary executables

o License server data

» Manual pages

» Documentation in PDF and HTML format
e Tutorias

» Environment configuration files

1.3. Scope of the Installation

The distribution can be installed onto any part of afile system so long as the person performing the
installation haswrite access privileges. Y ou may, for example, chooseto install al thetoolsinauser's
home directory. Alternatively, you may install the tools on an NFS file server for multi-user access.
In both cases, the installation process is the same, apart from the location on the file system. The
only requirements for the execution of the binaries are appropriate access privileges together with a
network connection to the machine chosen to act as the license server.

1.4. Performing the Installation

If starting from a CD-ROM, you must first perform the necessary commands to mount it.

Yagle User Guide

Y ou should then open aterminal and change directory to the place on the file system you want the
tools to beinstalled. Launch the installation script as follow.

> [cdrom Avt Tool s/Install (Solaris)
> [mt/cdrom I nstall (Linux)

If starting from a TAR archive file, you must first untar it, and change directory to the place on you
want the tools to be installed

cd /users/ne/tar/

tar -xvf AvtTools 2.8.tar

cd /users/ me/ work/

/users/ nme/tar/Avt Tool s_2.8/Install

V V. V V

The installation script present you with the installation choices detailed in the subsequent sections.
For each choice you will be given adefault reply (in square brackets) which you can accept by simply
pressing the <RETURN> or <ENTER> key. Unlessthe choicerequiresafileor adirectory pathin response,
you will also be given the list of possible replies. Aninvalid response will result in an error message
and will take you straight back to the original question.

Enter the source directory [/users/nme/tar/AvtTool s_2.8]:

Root directory the distribution isinstalled from. If installation is done from a CD-ROM, default isthe
root directory of the CD-ROM. If installation is done from an archive, default is the root directory
of the archive.

You nust accept the following |icense agreenent before installation
Press return to continue

Text of alicense agreement. Press <SPACE> to advance one screen at atime, or <ENTER> to advance
oneline a atime. Please read carefully all the terms of this agreement.

Do you accept the terns and conditions? [accept]:

Y ou must accept theterms of thislicense agreement before being ableto continue with theinstallation.

Enter the destination directory [/users/ne/work/AvtTool s]:

Full path of the directory you wish to install the software in. By default thisis a subdirectory named
Avt Tool s of the current directory.

Di rectory /users/nme/work/Avt Tool s does not exist..

Do you want to create it now y/n? [Yy]

Yagle User Guide

Creating installation directory...

If specifying a destination directory that does not exist, you will be asked to confirm its creation. If
you type n then you will be asked to specify an alternative directory.

Enter the OS to install

S2.6 : Solaris 2.6

S2.8 : Solaris 2.8

S2.8 64 . Solaris 2.8 64bits

S2.9 . Solaris 2.9

S2.9 64 . Solaris 2.9 64bits

RHEL3. 0 : Red Hat Enterprise Linux 3.0

RHEL3. 0_64 : Red Hat Enterprise Linux 3.0 64bits
RHL8. 0 : Red Hat Linux 8.0

05 [S2.6 S2.8 S2.8_64 S2.9 S2.9_64 RHEL3.0 RHL8. 0]:

By default executables for al supported platforms are installed. However, you may wish to install
only those which you require.

Hit <ENTER> to accept the default, or type the name of the platform for you wish to install.

Enter the license server nane [cardiff]:

Name of the machine you intend to run the license server on. By default, it isthe name of the current
machine.

1.5. Setting-up the Environment

Theinstallation process creates a CSH environment file setting environment variables for tool access:

source $AVT_TOOLS DI R/ etc/avt_env. csh

On 64bit systems, one can choose to use either 32bit or 64bit software version. To use 64bit-software
version, add the following argument:

source $AVT_TOOLS DI R/ etc/avt_env.csh 64

Where $AVT_TOOLS_DI Risthe destination directory of the installation.

Y ou can either sourcethisfile or set explicitly the appopriate environment variables in a startup script
such asthe .cshrc.

The variables to set are:

AVT_TOOLS DIR Full path of the Avertec tools root directory.

PATH Access paths for the appropriate binaries, e.g.
$AVT _TOOLS DIR/tool s/ Solaris_2.8/bin

Yagle User Guide

LD LI BRARY_PATH Access paths for the appropriate shared object (. so)
libraries. e.g. $AVT _TOOLS DI R/'tools/Solaris_ 2.8/
api _lib

MANPATH Access paths for the Avertec man pages, edg.
$AVT_TOOLS DI R/ man

AVT LI CENSE_SERVER Name of the machine hosting the licence server.

AVT LI CENSE_FI LE Full path of the licencefile.

1.6. The FLEXLM Licence Server

Y agle license control is done through the standard FLEXLM license server. Avertec's license server
daemonisavtli cd.

The command:
> |mgrd -c <avertec_license_key file>

SetSAVTLI CD_LI CENSE_FI LEtO avertec_license_key file
startsavt | i cd (provided it isin $PATH)
creates~/ . flexlnrc

Yagle User Guide

Chapter 2. Overview

2.1. Functional Abstraction with Yagle

Y agle performs the automatic generation of HDL descriptions, in Verilog or VHDL, from transistor-
level netlists, by partitioning and analyzing the network of transistors. Tri-state nodes of the circuit
are expressed as VHDL Bus. Latches and registers are expressed as conditioned statements within
separate VHDL processes. The processistotally free of user intervention and doesnot require any pre-
defined library. Nevertheless, a user-defined gate library can be provided in order to handle complex
latches or analog circuitry.

The generated HDL descriptions can be used by common verification tools. Y agle allows functional
modeling and verification of full and semi-custom designs, by logical simulation or equivalence
checking.

Yagle's HDL descriptions are aso compliant with synthesis tools requirements, and allow easy
technology migration.

Yagle's unique ability to provide timing back-annotated HDL descriptions, close to physical
implementation, enables the setup of solutions based on signal activity, such as power consumption
or IR-drop analysis.

A hierarchical pattern-matching engine alows genuine treatment of analog cells. Its memory-array
recognition capability enables Y agle to abstract Mbytes SRAMs in a matter of minutes.

The following diagram illustrates Y agl€'s integration in the design flow.

T C——

Spice / CDL DSPF / SPEF

VHDL / Verilog

|+ Functional verification
» Technology migration

Yagle User Guide

The most important features of Yagle are:

Handles complex CMOS and NMOS circuitry including pass-transistors, precharge logic,
and domino logic.

Works on complex blocks such as microprocessor cores, PClI components, routing
components and multimedia systems.

Automatically detects and models latches and registers

Mixed Analog/Digital components handled by an optional user-defined device library.
Pattern-matching engine for memory array recognition, built-in analog library

Flat or hierarchical SPICE/CDL input transistor netlist.

DSPF, SPEF parasitics support

Industry-standard VHDL or Verilog behavioral output, compatible with commercial
simulation and synthesis tools.

Structural VHDL or Verilog output suitable for automatic test pattern generators.
SPICE accurate timing annotation, with BSIM3 and BSIM4 transistor model's support
GUI and Tcl interface

Y agleis able two generate HDL behavioral descriptions at different levels of abstraction.

Closest to physical implementation is a low-level HDL. Associated with this description, Yagle
generates a correspondence table, that link electrical and logical names.

A high-level HDL is obtained by expression simplification and intermediary signals suppression.

A compact HDL can aso be obtained by vectorization. The pattern-matching engine identifies the
repetitive structures, such SRAM arrays, and vectorizes the HDL descriptions according to them.

2.2. Applications

The main applications of Yagle are:

Functional verification of digital custom designsthrough simulation or equivalence checking
ROM content verification

RAM / CAM formal verification

| P-reuse and technology migration

Accurate signal activity obtaining, thanks to timing-annotated low-level HDL descriptions,
enabling power consumption computation or |R-drop analysis

BIST routines validation. The correspondence table between logical and electrical nhames
enables easy identification of the physical nodes activated by the BIST routines.

Yagle User Guide

2.3. Description

2.3.1. Functional Abstraction

The Yagle tool offers designers a revolutionary new strategy for the functional verification of
their digital custom circuits, known as Functional Abstraction. Previous strategies for functional
verification at the lowest level relied upon SPICE-like electrical simulations and were therefore
limited to small circuit blocks. Functional Abstraction takes the task of behaviora verification to
a higher level by directly extracting a smulatable RTL description from the transistor netlist by
disassembly of the circuit.

2.3.2. Automatic Gate Model

The Y agle approach to circuit disassembly for functional abstraction can be defined as a partitioning
of the transistor net-list, according to a limited number of generic rules. Each partition represents
an extracted gate for which a behavioral description can be deduced. The result is a totally generic
approach with a minimum of user intervention.

In the first phase, Y agle extracts the dual CMOS circuitry. In the second phase, Y agle builds the gate
net-list for the remaining circuitry whilst performing functional analysisin parallel, in order to prevent
the fabrication of false branches within a gate and to verify the behavior of the gate. This procedure
allows Y agle to take into account the functional correlation in the surrounding circuitry. The depth
of surrounding circuitry taken into account is adapted automatically within a maximum bound which
can be specified by the user.

10

Yagle User Guide

Chapter 3. Using Tcl Interface

3.1. Script Launch

All functionalities of the Y agle platform can be accessed with theavt _shel | Tcl scripting interface.
avt _shel | can be used the sameway asany . t cl script.

avt _shel | can be used in interactive mode or in script mode. In interactive mode, it is invoked as
follow:

> avt_shel |
In script mode, the first line of the script file should look like:

#!/usr/bin/env avt_shell

3.2. Tools Configuration

The configuration of all the timing tools of the Y agle platform is done in the same way, by the mean
of configuration variables. The value given to the variable determines the specific behavior of the
tool. When using the Tcl interface, the setting of the values for the configuration variables can be
donein two ways:

* Inthe specia file avt t ool s. conf in the working directory, with the syntax vari abl e =
val ue. Old way, not recommended. Only kept for backward compatibilty.

* In the avt _shel | script, through the avt _confi g function, taking the variable for first
parameter and its affected value for second parameter (avt _confi g vari abl e val ue).

Thereis a precedence of the values set inthe avt t ool s. conf fileonthevauessetintheavt _shel |
script.

3.3. Functions

Hereisalist of the families of Tcl functions that can be found within the avt _shel I interface. For
more information, see Y agle Reference Guide.

General Global configuration, file loading, netlist manipulation,
statistics

INF Configuration Configuration though the INF functions

HDL Construction Automatic or manual generation of the VHDL/Verilog

11

Yagle User Guide

3.4. INF and SDC Configuration

For tool configuration needing more than the specification of asimplevalue (asit is done through the
avt _confi g function), Y agle uses the INF mechanism, which isaset of Tcl configuration functions.

SDC commands are grouped together with the INF functions and share the same mechanisms.

All INF functions begin with the i nf _ prefix, except of the SDC commands, which respect their
standard naming.

Within a Tcl script, the target sub-circuit must be defined before using INF or SDC commands.
Following exampleis given for a sub-circuit named ny_desi gn.

i nf _Set Fi gureNane ny_desi gn

set _case_anal ysis 1 reset
i nf_DefineMutex muxup {i0 il i2}

It is possible to check the INF and SDC functions by driving a. i nf file. Adding the line:
inf_Drive mny_design

at the end of the previous Tcl script generates the ny_desi gn. i nf file. Each INF and SDC function
has a corresponding section in thisfile (see Y agle Reference Guide).

12

Yagle User Guide

Chapter 4. Performing the Abstraction

4.1. File Loading

The purpose of this section is to show how to load files containing:

» Transistor technology models
e Design netlist
» Parasitic back-annotation

File loading is done with the Tcl command avt _LoadFi | e. Depending on the file format being
read, and on the netlist specificities (such as vectors, connector order,...), additional configuration is
sometimes required. Additional configuration should be set with avt _confi g Tcl commands, before
invoking avt _LoadFi | e.

4.1.1. Transistor Technology Models

Transistor technology models are necessary to compute timings. If those transistor models appear
in a separate file, they should be loaded in the Tcl script with the avt _LoadFi | e function. The
avt _LoadFi | e function takes as first argument the name of the file to load, and as second argument
itsformat. A typical loading of atechnology file will be such as:

avt _LoadFil e ../ nodel s/bsinB.tech spice

If the technology file makes inclusions of other files then inclusion paths should be absolute. If paths
are relative, further configuration will be needed to specify the location of those files:

avt _config avtLibraryDirs .:../nodels

Technology file can also appear asan inclusion (. | NCLUDE or . LI B) in a Spice netlist. In such acase,
it will be loaded at the time the Spice netlist is |oaded.

Different industry-standard electrical simulators have different interpretations of the parameters of
. MODEL statement, which aso deviate from the Berkeley model (see Berkeley's BSIM3v3.2.4 or
BSIM4.3.0 MOSFET Model User's Manual). This can lead to significant differences in the results
given by different simulators.

Besides, the LEVEL parameter which appearsin the model filesisnot discriminant enough. Different
simulators may interpret differently asame LEVEL vaue (asit isthe case for LEVEL 49, differently
interpreted by HSPICE and ELDO). Therefore, it is necessary to specify the targetted ssimulator of the
transistor model. It should be done with the following variable:

avt _Confi g sinfool Model ELDO

If the si nTool Model variable is not specified, Yagle will interpret the transistor model as HSPICE
does (default value), and check the LEVEL against the following list:

13

Yagle User Guide

TOOL hspice

BSI MBV3 param | evel 49
BSI MBV3 param | evel 53
BSI w4 param | evel 54

PSP param | evel 1020
PSPB param | evel 1021
TOCOL el do

BSI MBV3 param | evel 49
BSI MBV3 param | evel 53
BSI w4 param | evel 60
PSP param | evel 1020
PSPB param | evel 1021

TOOL ngspi ce
BSI MBV3 param | evel 8
BSI w4 param | evel 14

TOOL titan

BSI M3V3 nopdel BSM3 setdefault version 3.0
BSI M3V3 nodel BS32 setdefault version 3.24
BSI v4 nodel BS4 setdefault version 4.2
BSI v4 nodel BS41 setdefault version 4.1
BSI v4 nodel BS42 setdefault version 4.21

If thereisaconflict, for exampleif LEVEL=60isgiven andsi nirool Model isnot specified (defaulted
to HSPICE), the tool will exit. User needsto properly set the si nifool Model value.

4.1.2. Input Netlist

Inaway or another, one must always provide atransistor-level description of thedesign. If impossible
to give atransistor description for some parts of the netlist, Yagle can also take . 1i b files as input,
but it should be understood that Yagle is primarily designed for digital transistor-level analysis, and
that providing . 1'i b files should only apply to parts of the netlist where Y agle does not apply, e.g.
analog parts. Integration of . 1i b fileswill be discussed later.

A transistor level description can be provided within the following formats:
» Flat-transistor extracted Spice netlist
» Hierarchical Spice netlist, with Spice transistor-level leaf cells
» Hierarchica Verilog netlist, with Spice transistor-level leaf cells
o Hierarchica VHDL netlist, with Spice transistor-level leaf cells

Flat-transistor Spice netlist

A flat-transistor extracted Spice netlist is ssimply loaded with the following command:
avt _LoadFi | e ny_design. spi spice

The file can contain parasitics, and preferably contains a . SUBCKT statement. If not, an implicit
top-level is created, with al the nodes in the netlist reported on the interface. This can lead to
computational explosion in further steps of the anaysis.

Hierarchical Spice netlist

14

Yagle User Guide

A hierarchical Spicenetlist can berepresented by several files. Thosefiles can beloaded either through
possibly recursive . | NCLUDE statements, or through several avt _LoadFi | e commands. However, at
least oneavt _LoadFi | e command must appear inthe Tcl script. The netlist isautomatically flattened
to the transistor-level, when all the dependancies have been resolved, e.g. when all instanciated sub-
circuits correspond to a sub-circuit definition.

In a separate avt _LoadFi | e command, sub-circuit definition can appear after its instanciation, the
order isnot relevant. For example, thefollowing filecan beloaded by avt _LoadFi | e ny_desi gn. spi
spi ce:

. SUBCKT ny_design ...
. ENDS ny_desi gn

.INCLUDE ../l eaf _cells/nl_y.sp
. I NCLUDE ../l eaf _cells/o3_y.sp
. I NCLUDE ../l eaf_cells/m2_y. spi

Order isrelevant if sub-circuit definitions appear in filesread by separate avt _LoadFi | e commands.
In that case reading the files containing sub-circuit definitions must be done before reading the files
containing their instanciation, as shown in the follwing example:

avt _LoadFile | eaf _cells/nl_y.spi spice
avt _LoadFile | eaf _cells/o03_y.spi spice
avt _LoadFile | eaf _cells/nmk2_y.spi spice
avt _LoadFil e ny_design.spi spice

Hierarchical Verilog/VHDL netlist
The same example appliesto a Verilog netlist and Spice transistor-level leaf-cells:

avt _LoadFile | eaf _cells/nl_y.spi spice
avt _LoadFile | eaf _cells/o03_y.spi spice
avt _LoadFile | eaf _cells/nmk2_y.spi spice
avt _LoadFile ny_design.v verilog

or

avt _LoadFil e ny_design.vhd vhd

4.1.3. Parasitics

Y agle treats parasitics files of two kinds:

» Parasitics used as a back-annotation of schematic netlists. In such as case, the connectivity
of the schematic netlist is ensured without the parasitics file, which just brings additionnal
information. The formats supported for back-annotation are DSPF and SPEF.

» Parasitics used to complete the description of the netlist. In such a case, the netlist is
not connected without the parasitic information. Typically, the RC networks make the
connectivity. Theformats supported for connectivity description are Spice and DSPF (in this
case the DSPF is used as a Spicefile).

Back-annotation

15

Yagle User Guide

When a parasitic file is used to back-annotate a schematic netlist, the schematic netlist must be
loaded first, through a separate avt _LoadFi | e command. Just invoking the load of the parasitic file
afterwards is enough to perform the back-annotation:

avt _| oadfil e ny_design.spi spice
avt _| oadfil e parasitics.spef spef

or

avt _| oadfil e ny_design.spi spice
avt _| oadfil e parasitics.spf dspf

When using back-annotation, special attention should be paid to name consistency between netlist
and parasitics, especially regarding vectors (see next chapter).

Connectivity

If the parasitics file is necessary to ensure the connectivity of the netlist, the parasitics and netlist
files should be loaded through a single avt _LoadFi | e command. Parasitic files should be included
at appropriate levels of hierarchy with . I NCLUDE statements.

4.1.4. Vectorization

Y agle has two operating modes regarding vectors. One can choose between amode where vectors are
represented internally asthey appear in the sourcefile, and amode where they areidentified as special
signals and represented internally accordingly. When a vector is identified as a specia signal, the
internal representation is a string containing the radical and the index separated by a space character.
For example the vector durmy[0] isrepresented asdummy 0.

Different delimiters can be used to represent vectors. Configuration of legal delimiters, aswell asthe
choice to treat vectors as special, should be done with the avt Vect or i ze configuration variable:

avt _config avtVectorize "[], <>"

Treating vectors as specia signals is usefull when the same vectors can appear with different
delimitersin different files. For exampleif avector isreferred to asdummy|[0] inaVerilogfile, and as
dummy<0> in a SPEFfile, the previous configuration is necessary to make the correspondance between
the two names.

4.1.5. Ignoring Elements

For areason or another, some elements in the source files may be unsupported by Y agle or may not
respect standard format syntax. To work around those elements, Y agle provides the means to ignore
them during the parse of the source netlist. The elementsthat can beignored are instances, transistors,
resi stances and capacitances. For further information pleaserefer tothei nf _Def i nel gnor e command
documentation.

16

Yagle User Guide

4.2. General Configuration

4.2.1. Defining Power Supplies

Special attention should be paid to the definition of power supply and ground nodes (avt VddNane,
avt VssNane and si mPower Suppl y variables). Indeed, the disassembly process is heavily dependant
on the naming of those nodes, as the agorithm islooking for current paths towards power supply and
ground. Bad specification of these nodes can lead to the construction of an exponential number of
wrong current paths. Power supply and ground definition isthefirst thing to check if the disassembly
process seems to loop infinitely.

Y agle also supportsV cardsfor the definition of power supply and ground nodes. One can distinguish
between two cases:

The power supply and ground node appear on the interface of the . SUBCKT, and the subcircuit is
instanciated. The V cards should refer to the names used in the instanciation:

Vsupply vdd gnd DC 1.2V
Vground gnd O DC oV

. SUBCKT ny_design a b ¢ vdd_int gnd_int
. ENDS ny_desi gn

X0 a b ¢ vdd gnd my_design

The power supply and ground node does not appear on the interface of the. SUBCKT, or the subcircuit
Isnot instanciated. The V cards should refer to the names used within the subcircuit, or appearing on
the interface of the . SUBCKT, together with . GLOBAL statements:

. GLOBAL vdd gnd

Vsupply vdd gnd DC 1.2V
Vground gnd O DC oV

. SUBCKT ny_design a b ¢ vdd gnd

. ENDS ny_desi gn

4.3. Invoking Functional Abstraction

The functional abstraction routine is invoked by the yagl e command, which takes as argument the
name of asub-circuit. The sub-circuit must be among the previously loaded netlists. If the sub-circuit
containsinstancesit will be flattened to the transistor-level. In such a case, signal naming respectsthe
hierarchical paths. The name of asignal isthe concatenation of the names of the successive instances
that appear in the hierarchical path leading to the physical node the signal is associated with. The
typical Tcl command for invoking functional abstraction is:

yagl e my_design

17

Yagle User Guide

whereny_desi gn isthe name of the. SUBCKT to treat. If flatten isimpossible (i.e. transistor level sub-
circuits are missing for leaf cells), with no further configuration, the tool will issue an error and exit.

The default configuration creates a VHDL description.

4.4. Timing Back-Annotation

4.4.1. Defining Simulation Temperature

Temperature can be deined either with thesi nirenper at ur e configuration variable or through a. TEMP
statement in the Spicefile.

4.4.2. Back-Annotation Level

Thelevel of accuracy used for the back-annotation isyagl eTasTi ni ng

4.5. Output Files

4.5.1. CNS, CNV files

The . cns file describes the partitions (cones), and their interconnections, resulting from the
disassembly process. Thisfileisvery useful for debugging purposes, and necessary for the spice deck
generation of timing paths. The file can be generated with the following configuration:

avt _confi g yagl eGenerat eConeFil e yes

The . cns fileisintented to be re-read by Y agle and therefore is not very human-readable. A more
friendly version can be generated by setting:

avt _confi g avt VerboseConeFil e yes

4.5.2. VHDL and Verilog files

VHDL fileisgenerated in default mode. aVerilog file can be generated instead by using thefollowing
configuration:

avt _confi g avt Qut put Behavi or Format vl g

18

Yagle User Guide

4.6. Special Elements

4.6.1. Transmission Gate Multiplexers

The detection of multiplexors is done purely agorithmically. The cone partitioning strategy
implemented in Yagle perfectly fits with the detection and modeling of transmission-gate based
multiplexers, provided that the correlations between the commands can be resolved within the design.
The only reason why detection may fail, is because the schematic of the design itself prevents to
identify those correlations, for example when commands are input pins. In such a case, correlations
(mutual exclusion) should be set externally with INF commands.

The following diagram shows two situations. In the left-hand design, the mutual exclusion between
sel andnsel isnot ensured by the design. Thereisno way for the tool to identify inputs and outputs,
and it constructs false current paths. In the right-hand design, the mutual exclusion between sel and
nsel isensured by the invertor, and therefore the tool correctly models the multiplexer.

sel ¢ _A)_ sel ® _J)_
lo lo
nsel out out
I ly
— LT
no correlation false current paths internal correlatidh OK

To avoid the construction of false current pathsin the left-hand design, the following mutual exclusion
configuration should be set:

i nf _Defi neMutex cnpUP {sel nsel}

If the transmission gate toppology is more complex, and setting of mutual exclusion constraints
become too much difficult, another orientation mechanismisavailable. Let's consider the next design:

sel

®
] -
nsel 2 —é— 1
S out
. . T
T

19

Yagle User Guide

Here orientation can be done by setting levelson signalsi 0,i 1, s and out . Thetransistors are oriented
by assuming the current is going from the signals with the higher level to the signals with the lower
level. Levels should be set as follow:

inf_DefineDirout i0 3
inf_DefineDirout il 3
i nf_DefineDirout s 2
i nf_DefineDirout out 1

The default orientation value of signalsis- 1.

4.6.2. Latches

Two agorithms exist in Yagle to detect latiches. The first one is based on pattern-matching.
The tool tries to match in the design built-in latch patterns. This algorithm is enabled with the
yagl eSt andar dLat chDet ect i on (default behavior is enabled). The second agorithm is based upon
the Boolean analysisof gateloopsand an el ectrical analysisof conflicts. Thisalgorithmisenabled with
theyagl eAut omat i cLat chDet ect i on variable (default behavior isnot enabled). The two agorithms
can be enabled together, in such a case the standard latch detection is performed before the automatic
latch detection.

4.6.3. Dynamic Latches

Dynamic latches are typicaly tristate nodes followed by a capacitance. In default mode, tristate
nodes are not marked as latches. This behavior can be changed with theyagl eMar kTri st at eMenory
configuration variable.

Dynamic latches can aso be identified with the INF commands i nf_DefineDLat ch and
i nf _Defi neNot DLat ch

4.7. Case Analysis

Case analysis, such as Scan Mode analysis or Functional mode analysis, is available in the Yagle
platform. It is performed by sticking input connectors or internal signalsto logical low or logical high
values. It isdone by adding in the Tcl script the SDC command set _case_anal ysi s.

Thelogical value stuck on the input connector or logical signal is propagated through the design, with
regard to the behavior of the gatesit crosses. A report of the stuck signalsisavailableinthe. rep file:

[WRN 30] Signal 'ramna3' is stuck at Zero
[WRN 31] Signal 'rama43r_net6' is stuck at One

20

Yagle User Guide

Chapter 5. Using The XYagle GUI

5.1. Presentation of the XYagle Interface

XY agle contains five pull down menus:
* File
 Edit
 View
* Windows
Options

These menus grant accesss to the XY agle functionality.
Each menu can betear of from themain XY aglewindow in order to allow the user to accesssit directly.

5.1.1. The File Menu

The Fi | e menu provides accesss to the "Open” and "Quit" functionalities of the XY agle interface.
The functionalities of the Fi | e menu are detailed in the following sections.

Open...

By selecting the Open. . . itemof theFi | e menu you will be presented with the Xyagl e Fi | e Sel ect
dialog. Choose which schematic to load by selecting it in this dialog.

—| Xyagle: File Select

Directories Files

N | .

ledyagles
ledyagles.
lefyagledaddaccy
ledyagledchip
lefyagledmipsri0on
ledyagledmult
ledyagledram
lefyagledshift

i T

select disassembled gate netlist:

lexample/svagle/

DK| Filter| Cancel|

21

Yagle User Guide

Disassemble...

The circuit disassembling can be launched from within XY agle. Y ou will need to read the Y agle User
Guide before using this option.

More information about performing the disassembling can be found in the Di sassenbling with
XYagl e Chapter of the current documentation.

Quit
Selecting thisitem in the Fi | e menu will exit XY agle.

5.1.2. The Edit Menu

The Edi t menu provides accesss to the most current functionnalities of XY agle.

ox Edit Tear—off
‘Select Ctri+ S
Extract CtrH+E
Eilite Ctri+H

Go thru hierarchy CtH+G

Set Depth...

Back Backspace
FEII Figure

Find... Ctr+F

Most of these options will be detailled in following chapters. A quick presentation are given in the
following sections:

Extract

Select the Ext ract option in order to switch the extract sub-netlist mode on. More information on
modes can be found in the Schemat i ¢ Browsi ng wi t h XYagl e chapter

Highlight

Select the Hi ghl i ght option in order to switch the hiliting gate dependences mode on. More
information on modes can be found in the Schemat i ¢ Browsi ng wi t h XYagl e chapter

Go thru hierarchy

Select the Go thru hierarchy option in order to switch the traversing hierarchy mode on. More
information on modes can be found in the Schemat i ¢ Browsi ng wi t h XYagl e chapter

Set Depth...

By selectingtheSet Dept h. . . itemof theEdi t menuyouwill be presented withtheXyagl e: Pr onpt
dialog.

22

Yagle User Guide

— Xyagle: Prompt

) Backwards
) Forwvards
(" Both Ways

Enter depth for Hilite/Extract:

I

Set the depth value before using the Extract or Highlight modes.

Back
By selecting the Back item of the Edi t menu, you will return to the previous display configuration.

Full Figure

By selecting the Ful | Fi gur e item of the Edi t menu, you will return to the main figure. This option
is used to return to the figure after using options that display sub-netlist of the full figure.

Find...

By selecting the Fi nd. . . item of the Edi t menu you will be presented with the Xvagl e: Pr onpt
dialog.

- Xyagle: Prompt

Enter gate or connector name:

|]:4 Cancel

This option allows you to search object by name in the current schematic.

5.1.3. The View Menu

TheVi ewmenu provides accesssto anumber of optionsaffecting the display of the selected schematic.

23

Yagle User Guide

— View Tear—off

Refresh Ctrl+R
Fit Window Cir+T
Zoom In Ctr+l

Zoom OQut Cir+U
Zoom Select Ctr+Z

Zoom Set...

Previous

Theitems of this menu have explicit names:

Refresh

Fit window

Zoom In

Zoom Out

Zoom Select
Zoom Set

Previous

Allows the user to refresh the display.

Allows the user to display all the schematic in the XY agle
main window at the more effective scale.

Allows the user to zoom in and to take a closer look to the
schematic e ements.

Allows the user to zoom out and to see the surrounding
elements of the schematics.

Allowsthe user to

Allows the user to set the zoom factor. the vaue is a
percentage between 5 and 95%.

Allows the user to

Applications of these options will be used in the following chapters.

5.1.4. The Windows Menu

The w ndows menu provides access to more specific XY agle functionalities.

——

Windows Tear—off

‘Show Structure MetasS
Show Behaviour Meta+B
Show Messare MetasM
Show Info Metas

These options grant access to information about the schematic and the elements of a disassembled
netlist. This section provide an overview of these options. complete information can be found in the
XYagl e Basics and Di sassenbl ed Netlist |nformation chapters.

Show Structure

Allowsthe user to seethe structure of the next sel ected gate.

24

Yagle User Guide

Show Behavior Allowsthe user to see the behavior of the next selected gate.
Show M essage Allows the user to view XY agle messages.
Show Info Allows the user to display general information about the

schematic such as the figure name.

5.1.5. the Options Menu

The Options menu provides accesss to some basic configuration of the visibility of elements
displayed in the XY agle interface.

— Options Tear—off
Layers... MetasL

By selecting the Layer item of the Opt i ons menu, you will then be presented with the Layer dialog:

— Layer
all visible | all invisible |

Inwert | Click display |

apply | Ciose ||

The Layer dialog allows the user to configure the visibility of the schematic.

5.2. Loading the Schematic

The XY agle graphical interface allows the user to displays different type of circuit, from transistor
level schematic to hierarchical gate netlist.

To load a schematic use the Open itemin the Fi | e menu.

5.2.1. transistor Level Schematic

XY agle displays transistor Level Schematic as a network of symbols representing transistors.

25

Yagle User Guide

) y
- Xyagle cmx2 _y |-
Fle Edit View Windows Options Help

I

5.2.2. Gate Netlist

XY agle displays gate netlist as network of logical gates.

26

Yagle User Guide

Xyagle addaccu

File Edit View

Windows Options

5.2.3. Disassembled Gate Netlist

XY agle display disassembled gate netlist as

27

Yagle User Guide

— Xyagle chip |- |
File Edit View Windows Options Help

5.2.4. Hierarchical Gate Netlist

XY agle displays hierarchical gate netlist as a network of gates and blocs.

28

Yagle User Guide

= Xyagle heart |- i_l

Fle Edit View Windows Options Help

E1z

5.3. XYagle Basics

This section explains how to obtain information about the figure loaded in XY agle and how to use
the schematic in good conditions of visibility.

5.3.1. Viewing General Information

To view the general information use the Show I nf o item in the W ndows menu.
This opens awindow that display the name of the loaded figure and the dimensions of the schematic.

29

Yagle User Guide

= Xyagle cmx2_y | i iJ

File Edit View Windows Options Help

t.'r_l.:.llj@ﬂl

Informations

FIGURE : cmx2_v
BOUNMDING BOX

HMIN © —B8
YMIN: =B
HMaK . 6158
TMER 5 3554

5.3.2. Configuring Visibility

To configure the visibility use the Layer iteminthe Opti ons menu.

= Layer
all visible

all invisible |

Inwert | Civick display |

Apply | Close |

XY agle display objects on layers, select on the left column the layers you want to be visible, and
select on the right column the layers you want to be invisible. Then valid your choice with Appl y.

30

Yagle User Guide

5.3.3. Navigation in XYagle

To navigate in XY agle, use the vi ew menu.

Use he Zzoom I n item of this menu to have a good visibility of the schematic.

_i Xyagle chip | : iJ

File Edit View Windows Options Help

[« =]

Use he Zzoom cut item of this menu to have a larger visibility of the schematic or to Fit W ndow
display the full schematic on the display.

5.4. Schematic Browsing with XYagle

5.4.1. XYagle Browsing Modes

To unselect a XY agle browsing mode use the Sel ect item in the Edi t menu.

5.4.2. Extracting Sub-Netlists

To extract sub-netlists use the Ext r act iteminthe Edi t menu.

31

Yagle User Guide

Xyagle chip

Fle Edit View Windows Options

A5

5.4.3. Highlighting Gate Dependences

To highlight gate dependences use the Hi ghl i ght itemin the Edi t menu.

Xyagle chip

File Edit View Windows Options

32

Yagle User Guide

5.4.4. Traversing Hierarchy
To traverse hierarchy usethe Go t hru hi erarchy iteminthe Edi t menu
traversing hierarchy allows the user to display the bloc sub-netlist. for example going thru the

hierarchy of the muxout bloc from the previously loaded hierarchical gate netlist display the gates
of the bloc.

—| Xyagle muxout |-
Hle Edit View Windows Options Help

I

It is possible to go thru the hierarchy of a gate to display the transistor level of the gate. For exemple,
going thru the hierarchy of a OR gate from the previous muxout display the following network of
transistor:

33

Yagle User Guide

— Xyagle 02 _y |- iJ

File Edit View Windows Options Help

i

5.4.5. Searching Object by Name

To search object by name usethe Fi nd. . . iteminthe Edi t menu.

5.5. Disassembled Netlist Information

5.5.1. Viewing the Gate Structure

To view the gate structure use the Show St ruct ur e in the W ndows menu

34

Yagle User Guide

— Xyagle chip | -]
Fle Edit View Windows Options Help

= Gate Structure

Gate structure

Mame : heart_block3i_signea
Type:
TecType: CMOS dual

INFPUTS:
heart_block3_no43
heart_block3. =23
mbk_sig1626

DUTPUTS:
heart_block3_nal_csb
sighec
heart_block?_a2ams_i0

ER&MCHES :
1) vdd
TP nhoname Driven by “mbk_sigl16267, W=230(
TP noname Driven by “heart_block3_x237, ¥
2 vWdd
TP nhoname Driven by “mbk_sig16267, W=230(
TP nhoname Driven by “heart_block3_nod3’ ,
3) vss
TH noname Driwven by “mbk_sigl626’, W=8600
4) Vss
TH honame Driven by “heart_block3_x237, ¢

The information provided by Show St ruct ur e on a selected gate structure contains the name of the
gate, the inputs and output signals.

5.5.2. Viewing the Gate Behavior

To view the gate behavior use the Show Behavi or inthe W ndows menu

35

Yagle User Guide

— Xyagle chip |-
Fle Edit View Windows Options Help

Gate Behaviour

—- heart_block3i_signea

heart_block3_signea <= {{not {mbk_sig16262 and not (heart_block3_:
and not Cheart_block3_nod3ill;

i 1

Show Behavi or providesthelogical dependence between input and output signals of the selected gate.

36

Yagle User Guide

| ndex

No index for this document.

37

	1. Software Installation
	1.1. System Requirements
	1.2. What the Distribution Provides
	1.3. Scope of the Installation
	1.4. Performing the Installation
	1.5. Setting-up the Environment
	1.6. The FLEXLM Licence Server

	2. Overview
	2.1. Functional Abstraction with Yagle
	2.2. Applications
	2.3. Description
	2.3.1. Functional Abstraction
	2.3.2. Automatic Gate Model

	3. Using Tcl Interface
	3.1. Script Launch
	3.2. Tools Configuration
	3.3. Functions
	3.4. INF and SDC Configuration

	4. Performing the Abstraction
	4.1. File Loading
	4.1.1. Transistor Technology Models
	4.1.2. Input Netlist
	4.1.3. Parasitics

	4.2. General Configuration
	4.2.1. Defining Power Supplies

	4.3. Invoking Functional Abstraction
	4.4. Timing Back-Annotation
	4.4.1. Defining Simulation Temperature
	4.4.2. Back-Annotation Level

	4.5. Output Files
	4.5.1. CNS, CNV files
	4.5.2. VHDL and Verilog files

	4.6. Special Elements
	4.6.1. Transmission Gate Multiplexers
	4.6.2. Latches
	4.6.3. Dynamic Latches

	4.7. Case Analysis

	5. Using The XYagle GUI
	5.1. Presentation of the XYagle Interface
	5.1.1. The File Menu
	Open...
	Disassemble...
	Quit

	5.1.2. The Edit Menu
	Extract
	Highlight
	Go thru hierarchy
	Set Depth...
	Back
	Full Figure
	Find...

	5.1.3. The View Menu
	5.1.4. The Windows Menu
	5.1.5. the Options Menu

	5.2. Loading the Schematic
	5.2.1. transistor Level Schematic
	5.2.2. Gate Netlist
	5.2.3. Disassembled Gate Netlist
	5.2.4. Hierarchical Gate Netlist

	5.3. XYagle Basics
	5.3.1. Viewing General Information
	5.3.2. Configuring Visibility
	5.3.3. Navigation in XYagle

	5.4. Schematic Browsing with XYagle
	5.4.1. XYagle Browsing Modes
	5.4.2. Extracting Sub-Netlists
	5.4.3. Highlighting Gate Dependences
	5.4.4. Traversing Hierarchy
	5.4.5. Searching Object by Name

	5.5. Disassembled Netlist Information
	5.5.1. Viewing the Gate Structure
	5.5.2. Viewing the Gate Behavior

