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Chapter 1. Introduction

1.1. Directories Description

The tutorial and the related files can be found in the following directory:

$AVT_TOOLS DI R'tutorial s/yagl e

Among the directories presents in $AVT_TOOLS DI R/t ut ori al s/ yagl e, this tutorial will use the
following ones:

addaccu/ : For the addaccu example
conb/ : For the combinational example
gl i tcher/: For the glitcher example
rom : For the ROM example

shi ft er/ : For the shifter example

Along thetutorial the user is expected to change directory as needed to perform the operations related
to each specific example.

The technology file used during the course of the tutorial isbsi m4_dunmy. hsp located in:

$AVT_TOOLS DI R/ tutorial s/techno/ bsi md_dummy. hsp

1.2. Tool Description

Y agle is an automatic transistor-to-RTL functional abstractor, which automatically handles any kind
of digital circuitry (CMOS and NMOS, pass-transistor logic, transmission gate logic, dynamic logic)
and automatically detects and modelslatches and registers. Y agle generates industry-standard VHDL
or Verilog, with a Spice-accurate timing back-annotation.

1.3. Integration Flows

Y agle integrates in the most common design flows, asillustrated in the following diagram:
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1.4. Tool Setup and Execution

1.4.1. Netlist Files

The netlist can be fed into Y agle in various formats, at different levels of hierarchy:

» Spice/CDL flat transistor

e Spice/CDL hierarchical

e Hierarchical Structural VHDL

e Structural Verilog

» Paradgiticsin Spice, DSPF, SPEF

1.4.2. Execution

Y agle functionalities are provided through a set of functions, that can be accessed through Avertec's
Tcl interface: avt _shel | .

Tool configuration is done with variables. The value of each variable can be set in the Tcl script by
theavt confi g function.

1.4.3. Output Files

Y agle generates the following output files:

e CNS/CNV: intermediate disassembled netlist
* REP: report file
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» VHDL/Verilog: abstracted behavioral model
» COR: VHDL/Verilog to CDL/Spice correspondence file

1.4.4. Yagle GUI: XYagle
The XY agle GUI isinvoked in the following way:
> xyagle &

XY agleismainly used to browse the CNS intermediate disassembled netlist. For further information,
please refer to the Y agle reference manual .
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Chapter 2. Disassembly

2.1. Cone Mapping

The base object of the methodology is the "cone". Disassembly can be seen as a conversion of a
network of non-oriented transistors into a network of oriented cones.

The starting point of any partitioning strategy is the identification of the nodes on which we intend
to build a sub-network. Theidea of Y agle disassembly isto build sub-networks between which there
is no charge transfer. Therefore, the signals controlling transistor gates define the interface between
two sub-networks, and the nodes for which a sub-network is extracted during the partitioning are the
nodes driving at less one transistor gate.

The extracted sub-networks are called cones. A cone is a DC-connected object: it contains al the
paths that link the node to a voltage source through the source-drain connections of the transistors.
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Each cone has a unique output and a certain number of inputs: the signals controlling the gates of

the con€e's transistors.
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The construction of acone on anode N consistsinidentifying all the current paths between the node N
and avoltage source (Vdd or Vss). Wecall a"branch" apath that links the node N to avoltage source.

2.2. False Branches Detection

The symmetric nature of MOS transistors has a significant impact on the construction of branches.
Without knowing the transistors orientation, we must construct all the paths towards the voltage
sources. It is possible that the correlations on the signals controlling the gates block some current
paths. We call those current paths "false branches'.

Aswe can seeinthe next figure, it isthelogical context -i.e. the correlations between the inputs of the
cone- that allows to establish rigorously the transistors orientation. This logical context also alows
the elimination of false branches.
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Chapter 3. Behavior Generation

3.1. Functional Characterization

Thefunctional characterization of aconeiscomputed from the branch structure. A Boolean expression
is generated for all the branches leading to Vdd. It gives the set condition of the node. Another
expression is constructed for all the branches leading to Vss. It gives the reset condition of the node.

Each branch is considered as a chain of switches. For a N-Channel transistor, the switch is off when
the gate signal is high. For a P-Channel transistor, the switch is off when the gate signal islow.

A—dé&

B —L C—dl_‘fD—dé‘&
—)—=¢C E

B [ C

A_|57 D
v

C,,=notAandB E,, = not C or not D
Cisn=AandB Es,=Cand D

For the signal E, the set condition is Eup, the reset condition is Edn. With those two expressions,
it is possible to analyze the functionality of the cone. We must verify their orthogonality and their
compl eteness.

If the two expressions are orthogonal, it exists no combination of the inputs for which aVVdd branch
is active simultaneously as a Vss branch, i.e. if Eup+Edn = O, the cone is non-conflictual. If the two
expressions are complete, it exists no combination of the inputs for which no branch is active, i.e. if
Eup+Edn = 1, the coneis non-HZ.

A cone that respects the orthogonality and completeness conditionsis said to be CMOS DUAL.

For example, as Eup and Edn respect those conditions, they can then be grouped into a single
expression on E: E =not C or not B
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Cup and Cdn do not respect orthogonality and completeness conditions, then the up and down
conditions remain separated.

3.2. Timing Back-annotation

Thetiming characterization of aconeis also computed from the branch structure, and then it perfectly
maps on the functional characterization. Let's take the cone E of the following figure as an example.

c <[ D
C
D

A propagation time is associated to a couple of signals: the output E of the cone, and one of itsinputs
(C or D). Actually, the switching of C or D does not always lead to the switching of E: the rising of
C leadsto thefalling of E only if D has the logical value 1.

The computation of the propagation time CE is made under the hypothesis that the switching of the
E isinduced par the switching of C.

The value of the propagation time is then computed by a mixed analytical-numerical method, based
on the IV curves and capacitances of the MOS transistors BSIM 3/BSIM4 technology models.

Each possible propagation of ainput transition towards atransition on the output is characterized; the
cones are then characterized as follow:

10
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A down _Cup
Bup _Cup
Aup _Cdown
Bup _ Cdown

30ps
20ps
40ps
30ps

Cdown _E up
D down _E up
Cup _Edown
Dup _Edown

10ps
15ps
30ps
40ps

3.3. VHDL and Verilog Description

The VHDL |Verilog characterization is done by trandating the behaviora models of the cones into

VHDL |Verilog syntax:

C,=notAandB
Cihn=AandB

—~———

E <=not C or not D;

E,, =notCornotD
E,,=CandD

—~———

A B

(A=‘0’and B="1)
C <= ‘1’;
(A=1""and B="1)
C <= [05;

C <= IZ’;

11
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For CMOS DUAL cones, a single signal assignment is generated, for example for the cone E as
demonstrated in the first column (left), for non-CMOS DUAL cones, aprocessis built, listing all the
possible assignations as it can be seen in the second column (right).

The final VHDL |Verilog is generated by mapping the timing characterization on the functional
characterization.

For CMOS DUAL cones, three levels of precision are available. Let's take the cone E as an example:
in term of behavior, the reduction of the expressions Eup and Edn to asingle expression E = not C or
not D islossless. It is not the case in terms of timing: there are different timings associated with each
expression and with each event occurring on a variable of the expression.

First level of precision:

If we intend to keep a compact VHDL |Verilog (i.e. the expression E = not C or not D), we must
choose one timing among all the different timings characterizing the cone E. Typically, inYagle, itis
possible to choose between the maximum timing, the minimum timing, and the average timing. With
choosing the maximum timing, thisfirst level of precision leads to the following expression:

C down _E up 10ps
E,p, = not CornotD D down _E up 15ps
E,,=CandD Cup _Edown 30ps
Dup _ Edown 40ps

—~——g—

E C D 40 ps

Second level of precision:

Second and third levels of precision are obtained through splitting the expression E into Eup and Edn
expressions. The second level of precision does not take into account the events on the variables of the
expressions. The maximum, minimum or average timing can be chosen for up and down expression.

With choosing the maximum timing, this second level of precision leadsto the following expression:

12
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C down _E up

E,, =notCornotD D down _E up

E;,,=CandD

process
begin

if

elsif

end if

end process

Third level of precision:

Cup _Edown
Dup _Edown

10ps
15ps
30ps
40ps

—~———

Thethird level performsthe complete timing characterization of the cone. A timing is associated with
each event of each variable of each expression of the cone:

For non-CMOS DUAL cones, as the up and down expressions are not reduced to asingle expression,
only the second and third levels of precision are available.

E, =not C or notD D down

up
E;,=CandD

process
begin
if
elsif

elsif

elsif

end if
end process

C down _E up 10ps

_Eup 15ps

Cup _Edown 30ps

Dup _ Edown 40ps
T-_

13
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Chapter 4. Simple Combinational
Example

4.1. Comb Directory

The files and scripts needed for this example can be found in:

$AVT_TOOLS DI R/ tutorial s/ yagl e/ conb/

4.2. Comb Design

This example intends to illustrate the concepts previously described (functional abstraction
mechanisms, VHDL [Verilog generation and timing back-annotation) and to give a first glance at
Y agle's setup and execution modes.

This example is based on the combinational design below:

| s s
) j)o —>0—
3 {>C S, i‘jﬁ o

I3

SEL

Thisdesign containsbasic CMOS gates (nor, inverters, or) and amultiplexer based on pass-transistors.
The design is described in the file comb.spi as aflat transistor netlist.

4.3. Input Files

In order to perform the functional abstraction of the circuit, Y agle needs the following files:
e conb. spi: thedesign itself

e bsi mi_dummy. hsp: the technology models of the transistors used in the design. Transistors
technology models are essential to compute delays. If the desired behavioral model (the
VHDL) should not be back-annotated with timings, this file can be omitted. However, in
such a case the tool needs to know the names of the transistor models. Those names should
be set in the script with the avt Spi TnMbdel Namre and avt Spi TpModel Namre variables.

e run.tcl:theTcl script performing the setup and execution of the tool.

14
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4.4. Basic Execution and Output Files

The configuration set in the run. t ¢l script is sufficient to perform a first functional abstraction of
COMB. The only variables that need to be set are the names of the alimentations (VDD and VSS).
Linespreceded by a'#' are commented. Wewill seetheir meaning in the following sections. With this
given configuration file, the tool isinvoked as follow:

> run.tcl
The steps of the functional abstraction process are displayed on the standard output. It should have
this appearance:
This Y agle run generates two files:

e conb. vhdl : the VHDL fileresulting of the functiona abstraction of COMB.

» conb. rep: the report file of the functional abstraction run. This file contains information
about the run, warnings and errors that may occur during it. This file should be consulted
after each run of Yagle. In the present case, the design being very smple, the fileis empty.

It isalso possible to generate a verilog file by adding the following linein the Tcl script:

avt _confi g avt Qut put Behavi or Format vl g

4.5. Primary Options and Configuration

4.5.1. CNS File Generation

As previously explained, the first step of the functional abstraction process is what is called
disassembly. Disassembly isthe partition of the original design into cones: it is the conversion of the
netlist of non-oriented transistors into a netlist of oriented cones. In the basic execution mode, this
netlist exists only as a data-structure in the program's memory, and is hidden from the user. It can be
dumped on disk as an ASCI|I file by positioning the following variable in the Tcl script:

avt _confi g yagl eGenerat eConeFil e yes

The programsthen generatesa CNSfile (Cone Netlist Structure): conb. cns. For disk saving purposes,
thisfileis compact, and therefore quite uneasy to read. It is possible to obtain a more verbose file by
positioning the avt Ver boseCone variable to yes in the Tcl script. The programs will then generate
aCNV file (Cone Netlist Verbose): conb. cnv.

Both files formats syntaxes are documented in the Yagle User Guide. Browsing the Cone Netlist
Structure is far more convenient using the XY agle GUI.

> xyagle &

Selecting thefile conb. cns in the dialog box will lead open the following window:

15
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f-r

4.5.2. Disabling VHDL and Verilog Generation

For debugging purposes, it is also possible to disable the VHDL and Verilog generation. This can be
done by positioning the following variable in the script:

avt _confi g Yagl eGener at eBehavi or no

Y agle will stop after the disassembly process.

4.5.3. Timing Back-annotation

In basic execution mode, the behavioral model (VHDL/Verilog) is generated without timing back-
annotation. In order to perform this back-annotation, the first step is to include a technology file
in the netlist to be abstracted. Here, we will use the file bsi m4_dunmy. hsp, which contains BSIM 3
technology parameters of two models of transistors, named TN and TP.

avt _LoadFile ../techno/ bsi mi_dunmry. hsp spice
As explained in the timing back-annotation relevant section, timing back-annotation supports three
levels of precision.
First level of precision:
In basic execution mode, the back-annotation is made with the first level of precision. Timing back-
annotation isinvoked by setting the following variable:

avt _config yagl eTasTi m ng tdni n|tdned|tdmax

For CMOSDUAL cones, thet dmi n, t dned or t dnax directive selects the type of timing to be applied
on the cone. For non-CMOS DUAL cones, this directive selects the type of timing to be applied on
the up and down expressions of the cone.

16
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Second level of precision:

Thislevel is selected by setting theyagl eSpl i t Ti m ngRat i o variableto avalueV greater than one:
If delays associated with up and down output transitions differ by aratio greater than V, then up and
down transitions are differentiated.

Thisvariable alowsto split the expression of the CMOS DUAL conesinto up and down expressions,
and to associate them minimum, average or maximum timing, according to the t dni n|t dned|t dmax
option.

Third level of precision:

Thislevel is selected by setting theyagl eSensi ti veTi mi ngRat i o variableto avalueV greater than
one. For a given output transition (up or down), if delays associated with different input transitions
differ by aratio greater than V, then the delays are differentiated by input.

17
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Chapter 5. Glitcher Example

5.1. Glitcher Directory

The files and scripts needed for this example can be found in:

$AVT_TOOLS DI R/'tutorial s/yagle/glitcher/

5.2. Glitcher Design

Thisexampleintendstoillustrate the utility of timing back-annotating an abstracted behavioral model.
In this lab, we are going to perform the abstraction of the glitcher design described below.

Idly IdlyN

dly4x1

We will perform functional abstraction with and without timing back-annotation. We will see from
simulation results of the behavioral models, that they do not present the same behavior. Actually, we
will see that the zero-delay model simply doesn't work.

5.3. Normal Operating

Theglitcher designincludesadelay cell (dI y4x1), inorder to render the path going through the signals
Idly and IdlyN longer than the path going through the signals so, S1, S2, S3, S4, S5. The operating
timing diagram is then as follow:

|

Ss
IdlyN ?—,—2 |

v

The glitch on s6 isimplied by the falling transition of 1 .

18
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5.4. Zero-delay Model

The zero-delay behavioral model is obtained by running the command:
> run.tcl

Y agle generates the gl i t cher . vhd file. The result of the simulation is saved inthe gl i t cher. vcd
file, displayed in the following window.

P i pr T S BAARVE s i)
File Edit Traces Time Markers Wiew Help
%

Add Traces Cut Traces

QARKNS ¢ G B amir @

From: [0 5 To: [15122 ps Marker: 0% Cursor: 1480 ps

“Signals Waves
Time i
TB_GLITCHER INS_GLITCHER.DLYO_N1 | |
TB_GLTCHER INS_GLITCHERDLYO_NG || [
TB_GLTCHERIMS_GLITCHERDLYO_NA | |

TB_GLITCHERINS_GLITCHERI | |
TB_GLITCHER INS_GLITCHERIDLY | |
TE_GLITCHER INS_GLITCHER.IDLYM 1
TB_GLITCHERINS_GLITCHERO || [
TB_GLITCHER INS_GLITCHER 50 | |
If

|

|

I

|

[

IR0 ps LZLIN ps iy

TB_GLITCHER INS_GLITCHER. 51
TE_GLITCHER.INS_GLITCHER.52
TE_GLITCHER.INS_GLITCHER.S3
TB_GLITCHER IMS_GLITCHER. 54
TE_GLITCHER IN5_GLITCHER 55
TE_GLITCHER INS_GLITCHER 56
TB_GLITCHERIMS_GLITCHER.VDD
TEB_GLITCHER |NS_GLITCHER WSS

7

o =AM =
Feed

The simulation of the zero-delay model makes the glitch on S6 appear at the rising transition of the
input signal | , which isfalse.

5.5. With-delay Model

The with-delay behavioral model is obtained by setting the variable yagl eTasTi ni ng to max.

To observe the glitch, it is necessary to have a second level precision. The variable
yagl eSpl i t Ti mi ngRat i o ispositioned to 1.

19
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; GTRWave
File Edit Traces Time Markars View Help
%
Add Traces Cut Traces
QARAKRMNS ¢ Y@ wln @
From; [0 s To: (17027 ps | Marker: 16120 ps  Cursor: 11580 ps
Time ] 200 px A pr 3"
TE_GLITCHERINS_GLITCHER DLY0_M1 =1 0 I N
TB_GLITCHER INS_GLITCHER.DLYO_N3 =0 H—T - 1
TB_GLITCHER INS_GLITCHER DLY0_N4 =0 | R | 1 I
TB_GLITCHER INS_GLITCHER | =0 e e 11
TB_GLITCHERING_GLITCHERIOLY =1 | T | B
TB_GLITCHER INS_GLITCHER.IDLYN =0 Bl 1
TB_GLITCHER INS_GLITCHER.O =1 || R LI .

TE_GLMCHERINS_GLITCHER S0 =1

TB_GLITCHER.IMS_GLITCHER 51=0
TE_GLITCHERIMS_GLITCHER.SZ =1

TEB_GLITCHERINS_GLITCHER 53 =1
TE_GLITCHER INZ_GLITCHER.S4 =0

TE_GLITCHERINS_GLITCHER 55 =1
TE_GLITCHERINS_GLITCHER 56 =0

TB_GLITCHER.INS_GLITCHER.VDD =X

TE_GLITCHERINS_GLITCHER.VSS =X

1 =\

We can observe on the ssmulation trace (gl i t cher _t i med. vcd) the correct behavior of the glitcher:

the glitch isimplied by the falling edge of 1 .

20
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Chapter 6. Behavioral Optimization

One often wants to have a compact behavioral description. In order to optimize the VHDL |Verilog,
Y agle disposes of three means:

e Inverter minimization
» Expression simplification
e Signal suppression

6.1. Inverter Minimization

Inverter minimization reducesaeven chain of invertersto asingle buffer, and an odd chain of inverters
to a single inverter. This optimization is compatible with timing back-annotation of first level: the
delay of the reduced buffer or inverter is the sum of the delays of the chain of inverters.

If timing back-annotation is of level two or three, inverters are split into up and down expressions,
and are not minimized.

6.2. Expression Simplification

When expression simplification isinvoked, Y agle analyze each cone, and identifiesthe NOR, NAND
and XOR expressions. This optimization is compatible with timing back-annotation of first level. The
delay associated with the cone does not change.

If timing back-annotation is of level two or three, no simplification is done.

6.3. Signhal Suppression

Signal suppression can lead to aggressive optimization, aswe will see in the following example. The
principle is to replace asignal S by its expression, in al the expressions depending on the signal S.
Signal suppression isnot compatiblewith timing back-annotation. Expression simplificationisaways
applied after signal suppression.

21
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Chapter 7. Addaccu Example

This example intends to illustrate the VHDL optimization techniques described in the previous
sections. Functional abstractionswill be performed with and without timing back-annotation, in order
to study the compatibility between optimizations and timing back-annotation.

7.1. Addaccu Directory

The files and scripts needed for this example can be found in:

$AVT_TOOLS DI R/ tutori al s/ yagl e/ addaccu/

7.2. Addaccu Design

The addaccu chip consists of afour-bit adder, afour-bit register, and a2 to 1 four-bit multiplexer.

cout
b[3:0] \H
sel > + S[3:0]
aB3:0] — | /
L 1

ck |

The circuit performs an addition between either the b[ 3: 0] and a[ 3: 0] inputswhen sel isset to 0, or
between b[ 3: 0] and the content of the four-bit register when sel is set to 1. The content of the register
is overwritten by the values of the outputss[ 3: 0] on each falling edge of the clock, ck..

7.3. Inverter Minimization

To activate inverter minimization, we just need to add the following line in the Tcl script:
avt _config yagl eM ni m zelnvertors yes

Thetool isinvoked in the classical way:
> run.tcl

For example, let's consider the signal s( 1), in the optimized and non-optimized VHDLSs:

22
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s(1 <= notnb 259 ps
n5 <= not n4 768 ps
n4 <= not n3 533 ps
n3 <= notss_1 421 ps
s(1 <= ss_1 1981 ps

In the non-optimized VHDL, the signal s(1) is assigned through the first chain of inverters, and
through the second simple assignment in optimized VHDL (where 1981 = 259 + 768 + 533 + 421):

7.4. Expression Simplification

To activate expression simplification, we just need to add the following line in the Tcl script:
avt _config yagl eSi nplifyExpressions yes

Thetool isinvoked in the classical way:
> run.tcl

For example, let's consider the signal n37, in the optimized and non-optimized VHDLS:

n37 <= notcore_mux_3 and not bb_3 525 ps

—~——

n37 <= core_mux_3 norbb 3 525 ps

In the non-optimized VHDL, the signal n37 isassigned by thefirst codeline, in the optimized VHDL,
the signal n37 is assigned by a more compact expression as displayed on the second code line of the
example.

7.5. Signal Suppression

From the design process, we know that the chip addaccu is made up of elementary gates, such as nor,
nand, xor. We a so know that the names of theinternal signals of those building gates are all numbers:
they will be prefixed by the tool by a'n'. If we want to retrieve the expressions of the origina RTL
design, it is sufficient to suppress all the expressionsrelative to internal signals of building gates, i.e.
all the expressions built on signals beginning with a'n'.

Signal suppression is performed by the mean of the following function:

i nf _Set Fi gur eNanme addaccu
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i nf _Defi neSuppress "n*"

Looking at the addaccu. vhd file, we can see that the tool has retrieved the original XORs building
the adder.

24



Yagle Tutorial

Chapter 8. Shifter Example

8.1. Shifter Design

Thisexampleintendsto illustrate the fal se branches detection mechanismincluded in Y agle. A shifter
is the typical design leading to the construction of false branches. This example is limited to 3 bits,
but it is aready possible to see that a simple depth-first search leads to the construction of a large
number of branches having alarge number of transistors.

s[0] s[1] s[2]

{>C out[0

R - - )

HO | O

in{1] >o >0 out]2]
L T

In this example, we are going to study the behavior of Y agle on two shifters: a 4-bit shifter and a
32-bit shifter.

>o out[1]
=

8.2. Shifters Functional Abstraction

Aspreviously explained, Y agle performs afunctional analysis of thelogical context. Thisfunctional
analysis establishes the correl ations between the transistors of the branches under construction. Y agle
Is then able to orient the transistors and to detect fal se branches.

It is possible to control the depth of the functional analysis with the yagl eAnal ysi sDept h variable.
In default configuration, the depth is 7. This depth is sufficient to perform the functional abstraction
of most of the chips, in particular the present shifters:

> run.tcl

The functional abstractionslast afew seconds. We are now going to study the effects of lowering the
depth of the analysison the 4-bit shifter. Reducing the depth to 6 still leadsto a correct abstraction, but
reducing the depth to 5 leads to the construction of somefalse branches. To study the VHDL generated
with afunctiona analysis depth of 5, set the yagleAnalysisDepth variableto 5 and run the Tcl script.

We can see that the VHDL generated with a depth of 5 has more complicated expressions than the
VHDL generated with a depth of 6 and more. These expressions are the result of false branches and
actualy, this VHDL is not functional. With a depth less than 5, they are a huge number of false
branches. The research is only stopped by a security mechanism avoiding combinational explosion
(actually the maximum length of a branch).
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Chapter 9. Retrieving ROM Content

The files and scripts needed for this example can be found in:
$AVT_TOOLS DI R/ tutorial s/yagl e/ rom

This example shows the application of Y agle in the case one wantsto verify or to retrieve the content
of aROM. We have herethree designs of aROM of 256 words of 8 bits, programmed in three different
ways:

e 1256x8 1: data= address

» r256x8 5: data=full one

o 1256x8 6: data=full zero

The reference VHDL model of r 256x8_1, r256x8_5 and r 256x8_5 are respectively described in
the filesr 256x8_1. vbe, r 256x8_5. vbe and r 256x8_6. vbe. Here is the reference VHDL model of
r256x8_1:

ENTITY r256x8_1 IS

PORT( adr : IN BIT_VECTOR(7 DOANTO 0);
ck : IN BIT_VECTOR(0 TO 1);
f : QUT BIT_VECTOR(O TO 7);
vdd : INBIT;
vss : INBIT);

END r256x8_1;
ARCHI TECTURE VBE OF r256x8_1 IS

SIGNAL mout : BIT_VECTOR (0 TO 7);
BEG N

F = mout WHEN (ck = B'00") ELSE B'00000000";

W TH adr (7 DOANTO 0) SELECT

mout (0 TO 7) = B"00000000" WHEN B"00000000",

" 00000001" WHEN B'00000001"
" 00000010" WHEN B'00000010"
'00000011" WHEN B"00000011"
'00000100" WHEN B" 00000100"
'00000101" WHEN B"00000101"
'00000110" WHEN B"00000110"
'00000111" WHEN B"00000111"
'00001000" WHEN B" 00001000"
'00001001" WHEN B"00001001"
'00001010" WHEN B"00001010"
" 00001011" WHEN B'00001011"

sellovlveleolivelvellovlveleoliv M vel

"11111110" WHEN B"11111110",
"11111111" WHEN B"11111111";

W w:

END VBE;

To perform the abstraction of those designs, thelineavt _confi g yagl eTri st at el sMenory yes has
been added in the script.

Therun. t cl commands generate the VHDL behavioral descriptionsr 256x8_1. vhd, r 256x8_1. vhd
andr 256x8_6. vhd.
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The content of the ROM can then be retrieved with a ssimple logic simulation.

The following screenshot displays the simulation trace r 256x8_1. ved of r256x8_1. vhd (data =
address).
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| Add Traces Cut Traces E

QK9 ¢ @@ see[r @
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