
Avertec Tools

HITAS
User Guide

Software Release 3.4p5

June 7th, 2010

Avertec Copyright (c) 1998-2006 All Rights Reserved

HITAS User Guide

1

About this document

This document explains:

• The tool capabilities and typical applications

• The internal structure of the tool

• How the tool integrates in custom design flows

• How to perform static timing analysis at transistor-level

• How to perform crosstalk analysis at transistor-level

• How to perform timing abstraction at transistor-level

• How to deal with big designs

Documentation issued and compliant with Avertec Tools Release 3.4p5.

Please contact support@avertec.com for comments relating to this manual.

HITAS User Guide

2

Table of Contents

1. Software Installation .. 9
1.1. System Requirements .. 9
1.2. What the Distribution Provides ... 9
1.3. Scope of the Installation .. 9
1.4. Performing the Installation ... 9
1.5. Setting-up the Environment .. 11
1.6. The FLEXLM Licence Server ... 12
2. Overview ... 13
2.1. Static Timing Analysis .. 13
2.2. Signal Integrity Analysis ... 13
2.3. Applications .. 13
2.4. Key Features .. 14
3. Theory Understanding ... 15
3.1. Principles .. 15
3.2. Timing Database Generation ... 16
3.2.1. MOS Characterization ... 16
3.2.2. Netlist Disassembly ... 16
3.2.3. Timing Arcs ... 17
3.2.4. Timing Models ... 18
3.2.5. Timing Paths ... 18
3.3. Timing Database Analysis .. 18
3.3.1. Database Analysis Flow .. 18
3.3.2. Static Timing Analysis ... 19
3.3.3. Crosstalk Analysis ... 19
3.3.4. Path Searching .. 20
3.3.5. Timing Abstraction .. 20
4. Scope of Usage .. 21
4.1. Introduction ... 21
4.2. HITAS Basic Assumptions ... 21
4.2.1. Circuit Partitioning ... 21
4.2.2. Timing Arcs ... 22
4.2.3. Current Characterization ... 22
4.2.4. Algorithm Assumptions .. 22
4.3. HITAS Digital Structures .. 23
4.3.1. CMOS Gates ... 23
4.3.2. Pass-Transistor and Transmission Gate Logic ... 23
4.3.3. Clocked CMOS Logic .. 23
4.3.4. Static Latches and Flip-Flops .. 24
4.3.5. Dynamic Latches ... 25
4.4. HITAS Analog Structures ... 25

HITAS User Guide

3

4.4.1. Sense Amplifier ... 25
4.4.2. Differential Amplifier .. 26
4.4.3. Voltage Generator ... 26
4.4.4. Typical Analog Devices ... 26
5. Design Flow Integration .. 27
5.1. Transistor-Level Analysis ... 27
5.2. Full-Chip Analysis .. 27
5.3. Input Files .. 28
5.3.1. Netlist .. 28
5.3.2. Parasitics ... 28
5.3.3. Technology .. 28
5.3.4. Timing characterizations ... 29
5.3.5. Timing Constraints .. 29
5.4. Output Files .. 29
5.4.1. Disassembly .. 29
5.4.2. Timing Database Generation .. 29
5.4.3. Static Timing Analysis ... 29
5.4.4. Crosstalk Analysis ... 30
5.4.5. Abstraction .. 30
6. Using Tcl Interface .. 31
6.1. Script Launch ... 31
6.2. Tools Configuration .. 31
6.3. Error Policy .. 31
6.4. Objects ... 32
6.5. Functions .. 33
6.6. INF Configuration and SDC Support .. 33
7. Timing DB Construction .. 35
7.1. File Loading ... 35
7.1.1. Transistor Technology Models .. 35
7.1.2. Input Netlist ... 36
7.1.3. Parasitics ... 37
7.1.4. Vectorization .. 38
7.1.5. Ignoring Elements ... 38
7.2. DB Construction ... 39
7.2.1. Defining Power Supplies ... 39
7.2.2. Defining Simulation Thresholds ... 39
7.2.3. Defining Simulation Temperature .. 39
7.2.4. Invoking DB Construction .. 40
7.3. Output Files .. 40
7.3.1. REP file ... 40
7.3.2. LOOP file .. 40
7.3.3. CNS, CNV files ... 40
7.3.4. DTX and STM files ... 41
7.4. Latch Detection and Modeling ... 41
7.4.1. Detection Sequences .. 41
Manual Identification ... 41

HITAS User Guide

4

Simple Detection ... 41
Automatic Detection .. 41
Dynamic Latches Detection ... 42
7.4.2. Enabling Detection Sequences ... 42
7.5. Static Latch Modeling ... 42
7.5.1. Asynchronous Set and Reset ... 43
7.5.2. Manual Configuration .. 43
7.5.3. Intrinsic Setup and Hold .. 44
Intrinsic Setup .. 44
Intrinsic Hold .. 44
7.6. RS-Latches ... 45
7.6.1. Modeling of NOR-based structures ... 47
All States Allowed ... 47
Legal States Only .. 48
7.6.2. Modeling of NAND-based structures ... 48
All States Allowed ... 48
Legal States Only .. 48
7.6.3. Fine Tuning ... 49
7.6.4. Manual Tuning .. 49
7.7. Symmetric Latches ... 49
7.7.1. Symmetric Pulldown .. 50
Typical Structure ... 50
Latch Nodes and Commands ... 50
Timing Arcs ... 50
7.7.2. Symmetric Bitcell ... 51
Typical Structure ... 51
Latch Nodes and Commands ... 51
Timing Arcs ... 51
7.7.3. Asymmetric Pulldown .. 52
Typical Structure ... 52
Latch Nodes and Commands ... 52
Timing Arcs ... 52
7.8. Dynamic Latches .. 53
7.9. Special Elements ... 53
7.9.1. Transmission Gates .. 53
7.9.2. Transmission Gate Multiplexers .. 54
7.9.3. Domino Precharge .. 55
7.10. Case Analysis .. 56
7.11. Integrating External Timing Abstractions .. 56
8. Timing DB Browsing ... 57
8.1. Timing DB .. 57
8.2. Details Browsing .. 58
8.3. STA Browsing .. 58
9. Static Timing Analysis ... 60
9.1. Performing the Analysis ... 60
9.2. Output Files .. 61

HITAS User Guide

5

9.3. Tcl Reports ... 61
9.4. Timing Checks ... 61
9.4.1. Input to Latch .. 61
Inputs Specifications ... 61
Timing Checks Description .. 62
Setup Slack ... 62
Hold Slack ... 63
9.4.2. Latch to Latch ... 63
Timing Checks Description .. 63
Setup Slack ... 64
Hold Slack ... 64
9.4.3. Latch to Output ... 65
Output Constraints .. 65
Setup Slack ... 66
Hold Slack ... 66
9.5. Skew Compensation .. 67
9.6. Multicycle Paths ... 68
9.7. Tips .. 69
9.7.1. Disabling Master-to-Slave Timing Checks .. 69
9.8. On-Chip Variation ... 70
9.9. Clock Schemes Handling ... 70
9.9.1. Clock Dividers ... 70
9.9.2. Pulse Generators .. 70
9.9.3. RS-based Clock Generators ... 70
10. Crosstalk Analysis ... 71
10.1. Requirements ... 71
10.2. Understanding Crosstalk in STA .. 71
10.2.1. The Issues Involved .. 71
10.2.2. Algorithm ... 71
10.2.3. Delay Calculation .. 73
10.2.4. Noise Calculation .. 74
10.3. Running the Crosstalk Analysis ... 75
10.4. Output Files .. 76
10.5. Browsing Crosstalk Analysis Results ... 76
10.5.1. Crosstalk Impact on Delays .. 76
10.5.2. Crosstalk Noise ... 77
10.5.3. Browsing Information on Event ... 77
10.5.4. Browsing Local Crosstalk Impact on Delay ... 78
10.5.5. Browsing Aggressor .. 78
10.6. Score-Based Result Analysis ... 78
11. Spice Deck Generation ... 79
11.1. Simulator Configuration .. 79
11.2. Spice Deck Generation .. 80
11.3. Spice Deck Simulation ... 80
11.4. Out-of-path Transistors .. 81
12. Analog Sub-circuit Characterization .. 82

HITAS User Guide

6

12.1. Objective .. 82
12.2. Pre-Characterization ... 82
12.2.1. Database Construction .. 83
12.2.2. Simulator Linking ... 83
12.2.3. Hierarchical Netlist Integration (Pre-Layout) .. 83
12.2.4. Flat Netlist Integration (Post-Layout) ... 84
12.2.5. Netlists Consistency .. 84
12.3. On-the-Fly Characterization ... 84
12.3.1. Database Construction .. 85
12.3.2. Hierarchical Netlist Integration (Pre-Layout) .. 85
12.3.3. Flat Netlist Integration (Post-Layout) ... 86
13. Timing Characterization (.lib) .. 87
13.1. Setup and Hold Constraints Formulas ... 87
13.1.1. Setup Correction ... 88
13.1.2. Hold Correction ... 88
13.2. Performing the Characterization ... 88
13.3. Advanced Configuration ... 89
13.3.1. Input Slope and Output Load Axis .. 89
13.3.2. Capacitances in the .lib file ... 89
13.4. Cell Library ... 89
14. Using the GUI ... 91
14.1. Timing Database Browsing with XTAS .. 91
14.1.1. Overview ... 91
14.1.2. Description .. 91
14.1.3. Execution ... 91
XTAS Command ... 91
XTAS Resource File .. 92
XTAS Splash Screen .. 92
14.2. Configuration .. 92
14.2.1. Memory Size ... 92
14.2.2. Toolbar Buttons ... 93
14.2.3. Display Type ... 93
14.3. Loading the Timing Database .. 94
14.3.1. Timing Database ... 94
14.3.2. Crosstalk Timing Database ... 94
14.4. Accessing XTAS Features ... 95
14.4.1. Exiting XTAS ... 95
14.4.2. Browsing Connectors .. 95
14.4.3. Browsing Registers ... 95
14.4.4. Browsing Commands .. 95
14.4.5. Browsing Precharges .. 96
14.4.6. Browsing Break Points .. 96
14.4.7. Browsing Internal Signals .. 96
14.4.8. Browsing Paths ... 96
14.4.9. Browsing Delays ... 97
14.4.10. Stability Analysis ... 97

HITAS User Guide

7

14.4.11. Common applications .. 97
14.5. Browsing Timing Signals .. 98
14.6. Browsing Critical Paths .. 99
14.6.1. General Procedure .. 99
14.6.2. Options .. 100
14.6.3. Critical Paths Display .. 101
14.7. Browsing Near Critical Paths ... 102
14.7.1. Overview ... 102
14.7.2. Options .. 102
14.7.3. Near Critical Paths Display ... 103
14.8. Browsing Path Details .. 103
14.8.1. Overview ... 103
14.8.2. Options .. 104
14.8.3. Delay Display .. 105
14.9. CPE Path Simulation ... 105
14.9.1. Overview ... 105
14.9.2. Options .. 106
14.9.3. Simulation Path Display .. 107
14.10. Path Visualization ... 108
14.10.1. Overview ... 108
14.10.2. Options .. 108
14.10.3. Path Visualization Display ... 108
14.11. Browsing Delays .. 109
14.11.1. Overview ... 109
14.11.2. Options .. 109
14.11.3. Delay Display .. 110
14.12. Static Timing Analysis and Signal Integrity .. 111
14.12.1. Overview ... 111
14.12.2. Static Timing Analysis Results .. 111
Launching the Analysis ... 111
Loading Switching Windows .. 112
Crosstalk Analysis Parameterization ... 112
Stability Parameterization .. 113
The Crosstalk Analysis Results ... 115
The Violating Signals Display .. 115
14.12.3. Noise Analysis ... 116
Overview .. 116
Analysis ... 116
Noise Analysis Results .. 117
Scores Configuration ... 119
Crosstalk Information ... 119
15. Managing Big Designs .. 122
15.1. File Compression and Disk Caching .. 122
15.2. Information removal ... 122
15.3. Object sharing .. 122
15.4. Execution Speed-up ... 123

HITAS User Guide

8

16. Glossary .. 124
16.1. Logical Description ... 124
16.2. Physical Description ... 124
16.3. Timing Description ... 124
Index .. 126

HITAS User Guide

9

Chapter 1. Software Installation

1.1. System Requirements

The complete installation requires approximately 650Mb disk space. If you wish to execute all the
examples, you will need 700Mb of free disk space.

The following platforms are supported:

Solaris 8, 9, 10 (32bit and 64bit for each)

Linux RedHat Enterprise Linux 3.0 (32bit and 64bit)

1.2. What the Distribution Provides

The distribution provides all the relevant files required to install and operate the Avertec tools. This
includes:

• Installation script

• End-user license agreement

• Binary executables

• License server data

• Manual pages

• Documentation in PDF and HTML format

• Tutorials

• Environment configuration files

1.3. Scope of the Installation

The distribution can be installed onto any part of a file system so long as the person performing the
installation has write access privileges. You may, for example, choose to install all the tools in a user's
home directory. Alternatively, you may install the tools on an NFS file server for multi-user access.
In both cases, the installation process is the same, apart from the location on the file system. The
only requirements for the execution of the binaries are appropriate access privileges together with a
network connection to the machine chosen to act as the license server.

1.4. Performing the Installation

If starting from a CD-ROM, you must first perform the necessary commands to mount it.

HITAS User Guide

10

You should then open a terminal and change directory to the place on the file system you want the
tools to be installed. Launch the installation script as follow.

> /cdrom/AvtTools/Install (Solaris)
> /mnt/cdrom/Install (Linux)

If starting from a TAR archive file, you must first untar it, and change directory to the place on you
want the tools to be installed

> cd /users/me/tar/
> tar -xvf AvtTools_2.8.tar
> cd /users/me/work/
> /users/me/tar/AvtTools_2.8/Install

The installation script present you with the installation choices detailed in the subsequent sections.
For each choice you will be given a default reply (in square brackets) which you can accept by simply
pressing the <RETURN> or <ENTER> key. Unless the choice requires a file or a directory path in response,
you will also be given the list of possible replies. An invalid response will result in an error message
and will take you straight back to the original question.

Enter the source directory [/users/me/tar/AvtTools_2.8]:

Root directory the distribution is installed from. If installation is done from a CD-ROM, default is the
root directory of the CD-ROM. If installation is done from an archive, default is the root directory
of the archive.

You must accept the following license agreement before installation

Press return to continue

Text of a license agreement. Press <SPACE> to advance one screen at a time, or <ENTER> to advance
one line at a time. Please read carefully all the terms of this agreement.

Do you accept the terms and conditions? [accept]:

You must accept the terms of this license agreement before being able to continue with the installation.

Enter the destination directory [/users/me/work/AvtTools]:

Full path of the directory you wish to install the software in. By default this is a subdirectory named
AvtTools of the current directory.

Directory /users/me/work/AvtTools does not exist...

Do you want to create it now y/n? [y]:

HITAS User Guide

11

Creating installation directory...

If specifying a destination directory that does not exist, you will be asked to confirm its creation. If
you type n then you will be asked to specify an alternative directory.

Enter the OS to install

 S2.6 : Solaris 2.6
 S2.8 : Solaris 2.8
 S2.8_64 : Solaris 2.8 64bits
 S2.9 : Solaris 2.9
 S2.9_64 : Solaris 2.9 64bits
 RHEL3.0 : Red Hat Enterprise Linux 3.0
 RHEL3.0_64 : Red Hat Enterprise Linux 3.0 64bits
 RHL8.0 : Red Hat Linux 8.0

OS [S2.6 S2.8 S2.8_64 S2.9 S2.9_64 RHEL3.0 RHL8.0]:

By default executables for all supported platforms are installed. However, you may wish to install
only those which you require.

Hit <ENTER> to accept the default, or type the name of the platform for you wish to install.

Enter the license server name [cardiff]:

Name of the machine you intend to run the license server on. By default, it is the name of the current
machine.

1.5. Setting-up the Environment

The installation process creates a CSH environment file setting environment variables for tool access:

source $AVT_TOOLS_DIR/etc/avt_env.csh

On 64bit systems, one can choose to use either 32bit or 64bit software version. To use 64bit-software
version, add the following argument:

source $AVT_TOOLS_DIR/etc/avt_env.csh 64

Where $AVT_TOOLS_DIR is the destination directory of the installation.

You can either source this file or set explicitly the appopriate environment variables in a startup script
such as the .cshrc.

The variables to set are:

AVT_TOOLS_DIR Full path of the Avertec tools root directory.

PATH Access paths for the appropriate binaries, e.g.
$AVT_TOOLS_DIR/tools/Solaris_2.8/bin

HITAS User Guide

12

LD_LIBRARY_PATH Access paths for the appropriate shared object (.so)
libraries. e.g. $AVT_TOOLS_DIR/tools/Solaris_2.8/

api_lib

MANPATH Access paths for the Avertec man pages, e.g.
$AVT_TOOLS_DIR/man

AVT_LICENSE_SERVER Name of the machine hosting the licence server.

AVT_LICENSE_FILE Full path of the licence file.

1.6. The FLEXLM Licence Server

HITAS license control is done through the standard FLEXLM license server. Avertec's license server
daemon is avtlicd.

The command:

> lmgrd -c <avertec_license_key_file>

sets AVTLICD_LICENSE_FILE to avertec_license_key_file

starts avtlicd (provided it is in $PATH)

creates ~/.flexlmrc

HITAS User Guide

13

Chapter 2. Overview

2.1. Static Timing Analysis

The advent of semiconductor fabrication technologies now allows high performance in complex
integrated circuits.

With the increasing complexity of these circuits, static timing analysis (STA) has revealed itself as
the only feasible method ensuring that expected performances are actually obtained.

In addition, signal integrity (SI) issues due to crosstalk play a crucial role in performance and reliability
of these systems, and must be taken into account during the timing analysis.

However, performance achievement not only lies in fabrication technologies, but also in the way
circuits are designed. Very high performance designs are obtained with semi or full-custom designs
techniques.

The HITAS platform provides advanced STA and SI solutions at transistor level. It has been built-up
in order to allow engineers to ensure complete timing and SI coverage on their digital custom designs,
as well as IP-reuse through timing abstraction.

Furthermore, hierarchy handling through transparent timing views allows full-chip verification, with
virtually no limit of capacity in design size.

2.2. Signal Integrity Analysis

HITAS crosstalk engine is coupled with static timing analysis (STA) engine and is based upon a multi-
switching windows refinement algorithm.

Crosstalk effects are then fully handled in timing checks. Precise delay update is done thanks to current
source models for gate, and non-linear charge transfer models for effective wire load computation.

Detailed SI report provides:

• Delta-delays in gates and interconnects

• Effective noise contribution of each aggressor

• Overshoot and undershoot peaks, together with sensitivity of the fan-out gates

• Statistical noise classification allowing Engineering Change Orders

The graphical user interface (GUI) allows easy execution of the crosstalk analysis.

2.3. Applications

HITAS can be used on a wide range of ICs, such as Micro-Processors, Micro-Controllers, Memory
Controllers, Custom IPs or Standard-Cell Libraries (Arithmetic Units, Data-Paths...). It provides the
following benefits:

HITAS User Guide

14

Timing sign-off

• Digital custom macros STA sign-off

• Full-chip STA sign-off

Signal Integrity sign-off

• Digital custom macros crosstalk analysis

• Full-chip crosstalk analysis

Design and debug

• Circuit timing analysis during design phase

• Early detection of timing bottlenecks

IP Reuse (.lib files generation)

• Digital custom macros characterization

• Standard cells re-characterization

2.4. Key Features

HITAS provides the following features:

• Vector-free fast simulation engine, accuracy within 5% of SPICE

• Current Source Modeling (CSM) of drivers, AWE modeling of interconnects

• SPICE, VHDL or VERILOG netlist support, SPICE, SPEF or DSPF parasitics support,
BSIM3 and BSIM4 support

• Design-style support: latch-based, domino logic, barrel shifters, multipliers

• Advanced timing checks: cycle sharing, cycle stealing, multicycle paths

• Full-Chip analysis through transparent hierarchy

• Cross corner analysis

• STA and SI coupled analysis

• Non-linear noise models

• Statistical noise classification

• GUI and Tcl interface

• Critical path automatic spice deck

• SDC timing constraints

HITAS User Guide

15

Chapter 3. Theory Understanding

3.1. Principles

The way HITAS performs timing analysis of integrated circuits can be described in two main steps.
The first step is the generation of a Unified Timing Database (UTD) from the design entry (left-
hand side of the following diagram). The second step is the exploitation of the database, in order to
perform Static Timing Analysis, Signal Integrity Analysis, and Timing abstraction (right-hand side
of the following diagram).

OK

KO

Sign-off

Timing
Constraints

Design Ent ry

STA & SI

Path Analysis

Timing
Abstraction

HiTas

UTD

Unif ied
Timing

Database

The timing database represents the intrinsic timing characteristics of the design, for a given corner,
or multi-corner configuration (processes, voltages and temperatures). Those characteristics are such
as gate timing arcs, gate and interconnect delay models, timing paths.

HITAS User Guide

16

3.2. Timing Database Generation

3.2.1. MOS Characterization

At transistor-level, HITAS works either on a flat transistor netlist obtained by a standard extractor,
or on a hierarchical netlist, together with the transistor description of the leaf cells. In the last case,
HITAS flattens the netlist to the transistor level.

The first phase of the database generation consists in the electrical characterization of the MOS
transistors building up the design. The process of characterization is the reduction and optimization
of the generic BSIM equations for each instance of a transistor, with regard to local and global
parameters.

The local parameters are the instance-specific parameters, such as length (L), width (W), geometry
(NF), stress effect (SA, SB, SD), well proximity effect (MULU0, DELVT0), local drain/source
resistances (NRD, NRS) or local power supply voltage value.

The global parameters are the Process, Voltage (nominal) and Temperature conditions.

For given PVT conditions, each transistor is then associated with an instance-specific electrical model,
which in turn contains instance-specific optimized equations:

• Ids = f (Vgs, Vds)

• Qd = f (Vgs, Vds)

The model is only valid for the transistor referring to it. However, in order to save memory, a sharing
mechanism allows transistors that have identical (or close) instance-specific parameters to refer to the
same electrical model. Note that a transistor may be characterized for several PVT conditions, and
then may be associated to several models.

3.2.2. Netlist Disassembly

The second phase of the database generation consists in partitioning the transistor netlist. This phase
uses a procedure called circuit disassembly in order to automatically extract an oriented gate netlist
from the transistor netlist, using a strict minimum of a priori knowledge of the circuit structures.

The starting point of the partitioning strategy is the identification of the nodes on which to build a
sub-network. The innovation of HITAS disassembly is to build sub-networks between which there is
no charge transfer. Therefore, the frontier of a sub-network is the set of nodes that control the gates
(insulating polysilicon) of its transistors. A sub-network is then extracted for all the nodes in the netlist
that control at less one transistor gate, by following source-drain connections.

The extracted sub-networks are called cones. The construction of a cone on a node N consists in
identifying all the current paths between the node N and a voltage source (Vdd or Vss), as illustrated
in the following diagram.

HITAS User Guide

17

S1A C

B

B

CK

S0

M

CB

S1

1

S1A C

B

B

CK

S0

M

C

M

B

S1

2

S1A C

B

B

CK

S0

M

A

CK
C

M

B

S1

Feedback loop

4

S1A C

B

B

CK

S0

M

A

CK
C

M

B

S1

3

Each cone has a unique output and a certain number of inputs: the nodes controlling the gates of the
cone's transistors.

The tool also automatically identifies the memory elements such as memory-cells, latches, pre-
charged nodes.

3.2.3. Timing Arcs

The third phase consists of mapping a timing graph on the cone netlist obtained through the
disassembly phase (partitioning phase). Timing graph also includes RC networks. The timing graph is
defined as follow: edges are rising or falling events (logic transitions) on an input or output of a cone.
Arcs are possible causality relations between events. Causality relations are also called timing arcs.

HITAS User Guide

18

B
A

CK
C

M S1

S1 X

A

CK
C

M

B

S1

ud du

ud du
ud du

ud du uu dd

ud du

3.2.4. Timing Models

The fourth phase consists of the valuation of the timing arcs. A major innovation in HITAS
methodology is the valuation of the timing arcs by delay models.

When a timing arc refers to a cone, it is associated with analytical current source models (CSM),
which enable to compute the effective delay for any input slope or output load (CSM present the
significant advantage to be independent from input slope and output load). It ensures high precision
in slope propagation and crosstalk analysis (where effective load can change during analysis).

The current source models are based on analytical equations, and take into account the following
factors:

• The input slope, modeled as a non-linear curve

• The output load, modeled as a pi-network

• The transient short circuit current during the commutation of a gate

When a timing arc refers to an RC network, it is associated with the RC network. Effective delay is
computed with the AWE algorithm for any input slope or output load.

3.2.5. Timing Paths

The last phase consists of the creation of all the timing paths: the successive timing arcs between
connectors and memory elements are merged to create timing paths. All the possible timing paths in
the design are saved into the database.

3.3. Timing Database Analysis

3.3.1. Database Analysis Flow

The diagram below presents the set of functionalities of the HITAS platform, for complete timing and
SI analysis, allowing to performing frequency optimization and violations repairs.

HITAS User Guide

19

Tim ing
Abst ract ion

St abilit y & SI
Analysis

Pat h
Analysis

R
e

-d
e

s
ig

n

UTD

OK

KO

Sign-off

 Const ra int s
(re)definit ion

Timing Constraints Input connectors arrival times, output connectors departure
times, clocks specifications

STA and SI STA is optionally coupled with the SI analysis

Path Analysis ECO to repair violations or optimize frequencies

3.3.2. Static Timing Analysis

The static timing analyzer engine of HITAS calculates setup and hold slacks for all reference points in
a circuit (output connectors, latch data inputs, latch commands, and precharged nodes). The algorithm
is based upon the propagation of switching windows throughout the design. The engine needs the
specification of the external clocks and the arrival times of the input connectors (which define
switching windows). Together with the timing database, the tool propagates the switching windows
and the clocks throughout the circuit, in order to obtain switching windows for the points which require
verification (the reference points).

The tool calculates setup and hold slacks for each of the reference points by comparing the switching
windows obtained at the point with the propagated clocks according to specific timing checks. Any
violation of the timing checks translates into a negative value calculated for the setup or hold slacks.

3.3.3. Crosstalk Analysis

Coupling capacitances influence depends on the relative activity on nets. The crosstalk analysis engine
should be used to calculate the timing information based upon relative net activity using the current-
source models from the timing database.

HITAS User Guide

20

From the switching windows obtained through the static timing analysis, it is possible to determine
whether two capacitance-coupled nets may present simultaneous switching. If this occurs, the mutual
influence between the nets is modeled by altering the effective value of the coupling capacitance in
accordance with the relative slope values of the signals propagated on the two nets. When the effective
value of a capacitance on a net is changed, the associated propagation delay of its driver must be
reevaluated. Even the altering of a single propagation delay leads to switching window changes on all
subsequent nets. As a result, a new static timing analysis must be performed on the circuit, potentially
leading to the detection of new aggression. This loop is then repeated until no new simultaneous
switching is detected.

The crosstalk analysis engine calculates all propagation delays for all the instances of a subcircuit,
according to their context. When all of these delays are computed, setup and hold margins for each
of the reference points are calculated and verified, as for the static timing analysis. In addition, the
crosstalk analysis engine generates a report file for the circuit containing: details of aggression, the
modification of delays according to the detailed behavior of aggressors, together with an evaluation
of peak noise voltage.

3.3.4. Path Searching

Path searching is done between reference points, i.e. input and output connectors, latch data inputs,
latch commands, and precharged nodes. The information from the static timing analysis are taken into
account in order to determine if paths can go through the latches that may have a transparent behavior.

Together with the propagated clocks, the switching windows define the state of the latches and
precharged nodes at the arrival of the input data. If the latch or precharged node is in a transparent
state, then the path goes through it.

3.3.5. Timing Abstraction

The timing abstraction engine generates timing models of macro-cells and IP-cores, consisting of
lookup tables for all timing paths. In a timing model, timing arcs are given as constraints with respect
to interface connectors of the block to be abstracted.

Each instantiation context of a timing model, in terms of input slope and output load, will be different.
Lookup tables are therefore necessary for each situation to be handled. A lookup table is generated
for each of timing paths and timing constraints. Timing models are given in Cadence TLF3/4 format
or in Synopsys Liberty format.

HITAS User Guide

21

Chapter 4. Scope of Usage

4.1. Introduction

The purpose of this chapter is to provide a user of HITAS with guidelines as to the type of circuits
on which tool can be used.

In essence, the HITAS static timing analysis platform is designed for digital custom designs and
can handle most techniques used in very high speed or low power designs. HITAS is not, however,
designed to cope automatically with analog or structures.

For many designers and CAD teams using advanced design techniques, the distinction between analog
and digital is not always clearly defined. The role of this chapter is to define what is digital and what
is analog for HITAS.

In order to achieve this we first describe the basic assumptions made by HITAS. If these assumptions
are not valid for a circuit structure then this is probably analog. In the next section we provide
illustrations of a number of different Digital and Custom Digital structures that HITAS is capable of
handling. In the final section we present a selection of typical analog structures for which HITAS,
in its native mode, is not suited. However, the tool provides means to link with analog simulators, in
order to handle those analog structures.

4.2. HITAS Basic Assumptions

4.2.1. Circuit Partitioning

The circuit partitioning in HITAS is based on the identification of all current paths which define the
state of each transistor gate. In order to obtain these paths, the circuit representation is converted from
a transistor net-list to a cone net-list.

A cone is defined as being, for each circuit node connected to at least one transistor gate, the set
of branches, which, from this node, attain a power supply or an external connector on the traversal
of transistor source-drain junctions. Each branch consists of links corresponding to the transistors
traversed. These branches therefore reveal the signals governing the state of the transistor gate(s) for
which the cone is being constructed.

A set of cones is therefore obtained (completely defining the state of all transistor gates and drivable
external connectors), each of which contain a set of branches.

This set of branches allows us to express the behaviour of the cone and hence generate a boolean
expression for the state of the corresponding transistor gate. This expression is in fact composed of
two parts: the function which represents the conditions necessary for Vdd to impose (Sup), and the
equivalent for Vss (Sdn).

HITAS User Guide

22

In reality these conditions have to be verified globally, this means that Sup and Sdn are expressed
in terms of the logic surrounding the cone. The user defines the depth, in terms of logic gates, used
for the expansion.

4.2.2. Timing Arcs

After circuit partitioning, each individual cone is characterized in terms of delay. First of all, a
causality graph is obtained for each cone.

This cone causality graph is deduced directly from the structure of the cone. If an input drives a
transistor in a branch to Vdd then the input generates an up transition on the output. If the transistor
is NMOS then an up transition on the input creates the up on the output, so the timing arc is uu. A
similar logic is applied for inputs driving PMOS transistors and for transistors in Vss branches. Up
to four possible timing arcs can exist for each cone input.

Each timing arc can have a maximum and a minimum value. The aim is to obtain the maximum and
minimum delays between all possible transitions of all cone inputs and the possible transitions of the
output of the cone.

Each maximum and minimum timing arc is associated with a particular cone branch. This association
is made by an initial calculation to obtain the most resistive (or least resistive for minimum) branch
giving the timing arc transition.

The analysis of this branch provides the timing model (delay and slope) for the timing arc.

4.2.3. Current Characterization

A branch is made up of a number of transistors (PMOS and NMOS) connected in series. The
characterization of the timing arc is made by an analysis of the current characteristics of each transistor
in the branch. Two special cases, however, should be mentioned:

a) A cone may contain identical parallel branches. If the branch to characterize is part of a set of
parallel branches then the current through all branches of the set is used to characterize the timing arc.

b) A transistor in a branch may be part of a transfer gate transistor pair. In this case the current
characteristic is calculated using both NMOS and PMOS transistors of the transfer gate. HITAS
assumes that both these transistors conduct simultaneously.

4.2.4. Algorithm Assumptions

The basic assumptions made by HITAS are:

a) A full swing (Vdd to Vss or Vss to Vdd) on the cone output occurs as a result of a full swing on
a single cone input.

b) Separate cone inputs do not switch simultaneously.

c) For each branch characterization, only one transistor is considered to switch. Transfer gates and
series connected transistors with coupled gates are handled as special cases.

These assumptions are necessary for the partitioning and characterization algorithm to provide a valid
result. If these general assumptions hold for a particular circuit structure, then HITAS is applicable.

HITAS User Guide

23

In the next section we present a selection of design structures for which these assumptions hold.

4.3. HITAS Digital Structures

4.3.1. CMOS Gates

HITAS is applicable to all basic CMOS gates regardless of the implementation (invertors, buffers,
NAND, NOR, etc). All kinds of exclusive or gates, including the implementation shown in the
following figure, can be handled directly using HITAS. No special configuration is necessary.

A

B

A ⊕ B

4.3.2. Pass-Transistor and Transmission Gate Logic

HITAS is applicable to custom digital designs using pass-transistor or transmission gate logic. This
often occurs in multiplexer implementations such as those shown in the following figure.

a) Pass-t ransistor b) Transfer-gate

These structures are handled automatically by HITAS. However, care must sometimes be taken that
the partitioning is performed correctly. HITAS may require information about the correlation between
selector inputs if this correlation is not present in the block under analysis.

4.3.3. Clocked CMOS Logic

HITAS is applicable to high-speed custom techniques such as clocked CMOS logic. In particular
HITAS is well suited to the analysis of Domino-Precharge based designs. Figure 6 shows a typical
Domino precharge architecture handled by HITAS.

HITAS User Guide

24

Logic Logic Logic

φ

Each precharge stage is sometimes followed by a keeper or level hold structure. These pose no problem
for HITAS.

For full handling of this kind of logic it is necessary to activate the automatic precharge detection for
the partitioning phase as well as precharge verification during the static timing analysis phase.

4.3.4. Static Latches and Flip-Flops

HITAS incorporates, during the partitioning phase, an advanced algorithm to automatically detect any
kind of fully static latch designed using an active feedback loop.

Both conflictual (e.g. inverter feedback) and non-conflictual (e.g. tristate feedback) latches are
handled.

Latches can contain any number of clock inputs as well as asynchronous set and reset inputs. All these
input types are identified automatically. Following figure shows a number of different latch types
handled by HITAS.

a) Sim ple conflictual latch b) Mult i-clock latch

Flip-flops are treated as two separate latches (master and slave). HITAS has an option to automatically
detect flip-flops. This option can be used simply to report to the user the nodes recognised as the
master nodes and the slave nodes. Alternatively, it is possible, for some flip-flops, to group the master
and slave and perform a simplified flip-flop timing verification.

HITAS User Guide

25

4.3.5. Dynamic Latches

HITAS can also be used to recognise dynamic latches such as the simple example shown in the
following figure.

D

CK

CK

Dynam ic Latch Node

Recognition of dynamic latches is a configuration option of HITAS. Some care should be taken as
there is can be ambiguity with a tristate bus.

HITAS uses the functional analysis of the partitioning phase to determine whether a node can be a
dynamic latch. An internal node for which all drivers can be deactivated is considered to be a dynamic
latch unless HITAS is told explicitly otherwise.

4.4. HITAS Analog Structures

In this section we review a selection of typical analog structures which HITAS cannot handle directly.

4.4.1. Sense Amplifier

Following figure shows a typical sense amplifier building block. This structure, typically found in
memories, senses a difference in potential between two inputs and provides an output of 1 or 0
depending which is the greater.

OUT OUTB

SEN SEN

SEN

It should be quite clear from the HITAS assumptions that this structure cannot be handled. In effect
it requires two input to switch simultaneously and neither of these inputs are full-swing.

HITAS User Guide

26

4.4.2. Differential Amplifier

Following figure shows a typical long-tailed pair implementation of a differential amplifier. The
operation is very similar to the sense amplifier. This is a basic analog amplifier building block but
can also be found in high-speed digital logic styles such as CML.

Again the basic HITAS assumptions are not respected here since two inputs switch simultaneously
even though they may be full-swing (for differential digital logic).

OUT

VREF

DINDINB

4.4.3. Voltage Generator

HITAS cannot calculate static power supply values produced by internal voltage generator circuits.
The values of the voltages must be provided explicitly to HITAS using Vcard directives in the spice
netlist.

For example, following figure shows a simple voltage divider circuit. This may occur in a netlist
to provide a secondary lower power supply value to reduce power consumption. Here, the user is
required to specify a Vcard at the output of this voltage divider to specify its effect.

VOUT

4.4.4. Typical Analog Devices

HITAS is not directly applicable to common analog building blocks found in mixed-signal designs.
These include:

• Analog to Digital and Digital to Analog Converters

• Voltage Controlled Oscillators

• Phase Locked Loops

• Charge Pumps

HITAS User Guide

27

Chapter 5. Design Flow Integration

5.1. Transistor-Level Analysis

For a block up to 1M transistors, HITAS performs a flat transistor-level analysis, and generates a flat
timing database of the block, taking into account the interconnect parasitics (RC networks).

Extraction

Pre-layout Post-layout

Schematic Capture
Layout Editor

HiTas

TAPEOUT

Design
Entry

Net list
Spice / CDL

Layout

Unified Timing DataBase (UTD)

Timing
Abstraction

LIB / TLF

Timing & SI
Reports

Parasitics
DSPF / SPEF

5.2. Full-Chip Analysis

In the hierarchical analysis mode, HITAS uses existing timing views of instantiated blocks to work
out the timing database of the whole circuit, taking into account the interconnects between blocks.

HITAS User Guide

28

HiTas
Cust om Blocks

Sign-Off

HiTas
Gat e-Level

HiTas Full Chip

Hierarchy handling

Unif ied Tim ing Dat aBase

Timing
Abstraction

LIB / TLF

Timing & SI
Reports

Block timing
description

LIB / TLF / SDF

Global
Constraints
SDC / GCF / STB

5.3. Input Files

5.3.1. Netlist

.spi flat transistor extraction from the layout in SPICE
format, possibly with interconnect parasitics and coupling
capacitances

.cdl hierarchical schematic CDL/SPICE

.spi hierarchical netlist in SPICE format

.vhdl hierarchical netlist in structural VHDL format

.vlg, .v hierarchical netlist in structural Verilog format

5.3.2. Parasitics

.dspf, .spf interconnect parasitics and coupling capacitances back-
annotation in DSPF/SPF format

.spef interconnect parasitics and coupling capacitances back-
annotation in SPEF format

5.3.3. Technology

bsim3 SPICE format, BSIM3 level

bsim4 SPICE format, BSIM4 level

HITAS User Guide

29

5.3.4. Timing characterizations

.lib Synopsys Liberty Format

.tlf Cadence TLF format

5.3.5. Timing Constraints

.sdc Synopsys Design Constraints

.gcf Cadence Global Constraints Format

.inf Avertec Proprietary Constraints Format

5.4. Output Files

5.4.1. Disassembly

.rep Contains a list of diagnostics (warnings and error messages)
attributed to particular signals or transistors

.cns Contains the cone view of the circuit. Used for debugging

.cnv Contains the cone view of the circuit. Used for debugging

5.4.2. Timing Database Generation

The standard output of HITAS is the entire timing view of the circuit, called Unified Timing Database
(UTD). It consists of text files suitable for the static timing analysis (timing constraints check),
crosstalk analysis and timing abstraction. The UTD is made of the following files:

.dtx cone and RC timing arcs

.stm timing models relative to timing arcs (both cone and paths)

.rcx RC networks relative to RC timing arcs

.loop combinational loops detected in the circuit

5.4.3. Static Timing Analysis

.str slack report

.sto switching windows calculated for all reference points

HITAS User Guide

30

.ste warnings encountered during static timing analysis (such as
latches with no clock)

5.4.4. Crosstalk Analysis

.ctk human readable file containing crosstalk related
information, such as noise levels and aggressors
contributions

.ctx file containing all the delays calculated with crosstalk
effects of a complete design hierarchy

5.4.5. Abstraction

.lib Timing abstraction in Synopsys Liberty format

.tlf3 Timing abstraction in Cadence TLF3 format

.tlf4 Timing abstraction in Cadence TLF4 format

HITAS User Guide

31

Chapter 6. Using Tcl Interface

6.1. Script Launch

All functionalities of the HITAS platform can be accessed with the avt_shell Tcl scripting interface.
avt_shell can be used the same way as any .tcl script. It is statically linked with all HITAS libraries,
and thus contains all HITAS functions.

avt_shell can be used in interactive mode or in script mode. In interactive mode, it is invoked as
follow:

> avt_shell

In script mode, the first line of the script file should look like:

#!/usr/bin/env avt_shell

6.2. Tools Configuration

The configuration of all the timing tools of the HITAS platform is done in the same way, by the mean
of configuration variables. The value given to the variable determines the specific behavior of the
tool. When using the Tcl interface, the setting of the values for the configuration variables can be
done in two ways:

• In the special file avttools.conf in the working directory, with the syntax variable =
value

• In the avt_shell script, through the avt_config function, taking the variable for first
parameter and its affected value for second parameter (avt_config variable value).

There is a precedence of the values set in the avt_shell script file on the values set in the
avttools.conf.

6.3. Error Policy

HITAS distinguishes three levels of error:

level 0 WARNING, unrecognized or redundant configuration

level 1 ERROR, inconsistencies in the inputs possibly workaround
by defaulted values. Results are not guaranteed to be valid

level 2 FATAL ERROR, inconsistencies in the inputs with no
possible workaround. Results will not be valid.

Errors of level 0 and 2 lead to a predefined behavior of the tool, which cannot be tuned.

HITAS User Guide

32

When encountering an error of level 0, the tool always print a [Warning] message. The tool does
not abort. Example:

[Warning AVT-044] Multiple settings for variable 'simSlope'

When encountering an error of level 2, the tool always print an [Error] message, and aborts.
Example:

[Error SPI-009] Can't open file ./inv.spi

The user can tune the strictness the tool treats errors of level 1 with. This is done through the
configuration variable avtErrorPolicy, which can take values strict or lenient. When set to
lenient (default setting), errors of level 1 are treated as errors of level 0, and the tool issues a
[Warning] message, for example:

[Warning SPI-070] Conflicting power supply on node 'gnd' keeping 1.62v

When avtErrorPolicy is set to strict, errors of level 1 are treated as errors of level 2. The tool
issues an [Error] message and aborts, for example:

[Error SPI-070] Conflicting power supply on node 'gnd' keeping 1.62v

6.4. Objects

HITAS platform functionalities, such as database construction, static timing analysis, path
searching..., can be accessed through Tcl functions. Those functions may either display results on
standard output, create files, or return pointers on objects. Returned pointers on objects can in turn
become arguments of other Tcl functions.

Here is a list of the objects returned by the Tcl functions. For more information about objects, see
HITAS Reference Guide.

Netlist Electrical view of a Subcircuit, which may be either
flat or hierarchical, and contain components of the files
it originates from: mosfets, resistances capacitances and
instances.

TimingFigure Unified Timing Database

TimingSignal Node of the subcircuit on which one a timing event
can occur. Timing Signals are built on outputs of cones
(partitions), on outputs of RC networks, and on input
connectors. They can be typed as latches, precharges,
latch or precharge commands, connectors, user-defined
breakpoints or simple signals.

TimingEvent Rising or Falling transition on a timing signal

TimingPath Concatenation of propagation delays through cones and RC
networks, between reference points (latches, precharges,

HITAS User Guide

33

latch or precharge commands, connectors, user-defined
breakpoints)

TimingDetail Detail about a propagation delay within a timing path

StabilityFigure Back-annotation of a TimingFigure. Contains the switching
windows associated to the TimingSignal objects of the
TimingFigure.

StabilityPath Object associated with each TimingSignal requiring setup/
hold verification (latch, latch command, precharge, output
connector). Contains timing information about the input
logical cone (do not mismatch with cone as a partition) of
the TimingSignal object.

6.5. Functions

Here is a list of the families of Tcl functions that can be found within the avt_shell interface. For
more information, see HITAS Reference Guide.

General Global configuration, file loading, netlist manipulation,
statistics

INF Configuration Configuration though the INF functions

SDC Support SDC functions supported for STA configuration

DB Construction Automatic or manual generation of the timing database

DB Browsing Functions for retrieving timing paths, propagation delays,
signal properties...

STA STA launch and results analysis

Timing Abstraction Functions for generating .lib files from the timing database

6.6. INF Configuration and SDC Support

For tool configuration needing more than the specification of a simple value (as it is done through the
avt_config function), HITAS uses the INF mechanism, which is a set of Tcl configuration functions.
INF functions are available for all the phases of the timing analysis process (disassembly, timing
database construction, static timing analysis, crosstalk analysis and timing abstraction).

SDC commands are grouped together with the INF functions and share the same mechanisms.

All INF functions begin with the inf_ prefix, except of the SDC commands, which respect their
standard naming.

HITAS User Guide

34

Within a Tcl script, the target sub-circuit must be defined before using INF or SDC commands.
Following example is given for a sub-circuit named my_design.

inf_SetFigureName my_design

set_case_analysis 1 reset
inf_DefineMutex muxup {i0 i1 i2}
create_clock -name ck -period 1000 [get_ports {ck}]

Outside of a Tcl script (in the Xtas GUI), the INF and SDC functions are used through the .inf file.
Adding the line:

inf_Drive my_design

at the end of the previous Tcl script generates the my_design.inf file. Each INF and SDC function
has a corresponding section in this file (see HITAS Reference Guide).

HITAS User Guide

35

Chapter 7. Timing DB Construction

7.1. File Loading

The purpose of this section is to show how to load files containing:

• Transistor technology models

• Design netlist

• Parasitic back-annotation

File loading is done with the Tcl command avt_LoadFile. Depending on the file format being
read, and on the netlist specificities (such as vectors, connector order,...), additional configuration is
sometimes required. Additional configuration should be set with avt_config Tcl commands, before
invoking avt_LoadFile.

7.1.1. Transistor Technology Models

Transistor technology models are necessary to compute timings. If those transistor models appear
in a separate file, they should be loaded in the Tcl script with the avt_LoadFile function. The
avt_LoadFile function takes as first argument the name of the file to load, and as second argument
its format. A typical loading of a technology file will be such as:

avt_LoadFile ../models/bsim3.tech spice

If the technology file makes inclusions of other files then inclusion paths should be absolute. If paths
are relative, further configuration will be needed to specify the location of those files:

avt_config avtLibraryDirs .:../models

Technology file can also appear as an inclusion (.INCLUDE or .LIB) in a Spice netlist. In such a case,
it will be loaded at the time the Spice netlist is loaded.

Different industry-standard electrical simulators have different interpretations of the parameters of
.MODEL statement, which also deviate from the Berkeley model (see Berkeley's BSIM3v3.2.4 or
BSIM4.3.0 MOSFET Model User's Manual). This can lead to significant differences in the results
given by different simulators.

Besides, the LEVEL parameter which appears in the model files is not discriminant enough. Different
simulators may interpret differently a same LEVEL value (as it is the case for LEVEL 49, differently
interpreted by HSPICE and ELDO). Therefore, it is necessary to specify the targetted simulator of the
transistor model. It should be done with the following variable:

avt_Config simToolModel ELDO

If the simToolModel variable is not specified, HITAS will interpret the transistor model as HSPICE
does (default value), and check the LEVEL against the following list:

HITAS User Guide

36

TOOL hspice
BSIM3V3 param level 49
BSIM3V3 param level 53
BSIM4 param level 54
PSP param level 1020
PSPB param level 1021

TOOL eldo
BSIM3V3 param level 49
BSIM3V3 param level 53
BSIM4 param level 60
PSP param level 1020
PSPB param level 1021

TOOL ngspice
BSIM3V3 param level 8
BSIM4 param level 14

TOOL titan
BSIM3V3 model BSM3 setdefault version 3.0
BSIM3V3 model BS32 setdefault version 3.24
BSIM4 model BS4 setdefault version 4.2
BSIM4 model BS41 setdefault version 4.1
BSIM4 model BS42 setdefault version 4.21

If there is a conflict, for example if LEVEL=60 is given and simToolModel is not specified (defaulted
to HSPICE), the tool will exit. User needs to properly set the simToolModel value.

7.1.2. Input Netlist

In a way or another, one must always provide a transistor-level description of the design. If impossible
to give a transistor description for some parts of the netlist, HITAS can also take .lib files as input,
but it should be understood that HITAS is primarily designed for digital transistor-level analysis, and
that providing .lib files should only apply to parts of the netlist where HITAS does not apply, e.g.
analog parts. Integration of .lib files will be discussed later.

A transistor level description can be provided within the following formats:

• Flat-transistor extracted Spice netlist

• Hierarchical Spice netlist, with Spice transistor-level leaf cells

• Hierarchical Verilog netlist, with Spice transistor-level leaf cells

• Hierarchical VHDL netlist, with Spice transistor-level leaf cells

Flat-transistor Spice netlist

A flat-transistor extracted Spice netlist is simply loaded with the following command:

avt_LoadFile my_design.spi spice

The file can contain parasitics, and preferably contains a .SUBCKT statement. If not, an implicit
top-level is created, with all the nodes in the netlist reported on the interface. This can lead to
computational explosion in further steps of the analysis.

Hierarchical Spice netlist

HITAS User Guide

37

A hierarchical Spice netlist can be represented by several files. Those files can be loaded either through
possibly recursive .INCLUDE statements, or through several avt_LoadFile commands. However, at
least one avt_LoadFile command must appear in the Tcl script. The netlist is automatically flattened
to the transistor-level, when all the dependancies have been resolved, e.g. when all instanciated sub-
circuits correspond to a sub-circuit definition.

In a separate avt_LoadFile command, sub-circuit definition can appear after its instanciation, the
order is not relevant. For example, the following file can be loaded by avt_LoadFile my_design.spi
spice:

.SUBCKT my_design ...

...

.ENDS my_design

.INCLUDE ../leaf_cells/n1_y.spi
.INCLUDE ../leaf_cells/o3_y.spi
.INCLUDE ../leaf_cells/mx2_y.spi

Order is relevant if sub-circuit definitions appear in files read by separate avt_LoadFile commands.
In that case reading the files containing sub-circuit definitions must be done before reading the files
containing their instanciation, as shown in the follwing example:

avt_LoadFile leaf_cells/n1_y.spi spice
avt_LoadFile leaf_cells/o3_y.spi spice
avt_LoadFile leaf_cells/mx2_y.spi spice
avt_LoadFile my_design.spi spice

Hierarchical Verilog/VHDL netlist

The same example applies to a Verilog netlist and Spice transistor-level leaf-cells:

avt_LoadFile leaf_cells/n1_y.spi spice
avt_LoadFile leaf_cells/o3_y.spi spice
avt_LoadFile leaf_cells/mx2_y.spi spice
avt_LoadFile my_design.v verilog

or

avt_LoadFile my_design.vhd vhdl

7.1.3. Parasitics

HITAS treats parasitics files of two kinds:

• Parasitics used as a back-annotation of schematic netlists. In such as case, the connectivity
of the schematic netlist is ensured without the parasitics file, which just brings additionnal
information. The formats supported for back-annotation are DSPF and SPEF.

• Parasitics used to complete the description of the netlist. In such a case, the netlist is
not connected without the parasitic information. Typically, the RC networks make the
connectivity. The formats supported for connectivity description are Spice and DSPF (in this
case the DSPF is used as a Spice file).

Back-annotation

HITAS User Guide

38

When a parasitic file is used to back-annotate a schematic netlist, the schematic netlist must be
loaded first, through a separate avt_LoadFile command. Just invoking the load of the parasitic file
afterwards is enough to perform the back-annotation:

avt_loadfile my_design.spi spice
avt_loadfile parasitics.spef spef

or

avt_loadfile my_design.spi spice
avt_loadfile parasitics.spf dspf

When using back-annotation, special attention should be paid to name consistency between netlist
and parasitics, especially regarding vectors (see next chapter).

Connectivity

If the parasitics file is necessary to ensure the connectivity of the netlist, the parasitics and netlist
files should be loaded through a single avt_LoadFile command. Parasitic files should be included
at appropriate levels of hierarchy with .INCLUDE statements.

7.1.4. Vectorization

HITAS has two operating modes regarding vectors. One can choose between a mode where vectors are
represented internally as they appear in the source file, and a mode where they are identified as special
signals and represented internally accordingly. When a vector is identified as a special signal, the
internal representation is a string containing the radical and the index separated by a space character.
For example the vector dummy[0] is represented as dummy 0.

Different delimiters can be used to represent vectors. Configuration of legal delimiters, as well as the
choice to treat vectors as special, should be done with the avtVectorize configuration variable:

avt_config avtVectorize "[],<>"

Treating vectors as special signals is usefull when the same vectors can appear with different
delimiters in different files. For example if a vector is referred to as dummy[0] in a Verilog file, and as
dummy<0> in a SPEF file, the previous configuration is necessary to make the correspondance between
the two names.

7.1.5. Ignoring Elements

For a reason or another, some elements in the source files may be unsupported by HITAS or may not
respect standard format syntax. To work around those elements, HITAS provides the means to ignore
them during the parse of the source netlist. The elements that can be ignored are instances, transistors,
resistances and capacitances. For further information please refer to the inf_DefineIgnore command
documentation.

HITAS User Guide

39

7.2. DB Construction

7.2.1. Defining Power Supplies

Special attention should be paid to the definition of power supply and ground nodes (avtVddName,
avtVssName and simPowerSupply variables). Indeed, the disassembly process is heavily dependant
on the naming of those nodes, as the algorithm is looking for current paths towards power supply and
ground. Bad specification of these nodes can lead to the construction of an exponential number of
wrong current paths. Power supply and ground definition is the first thing to check if the disassembly
process seems to loop infinitely.

HITAS also supports V cards for the definition of power supply and ground nodes. One can distinguish
between two cases:

The power supply and ground node appear on the interface of the .SUBCKT, and the subcircuit is
instanciated. The V cards should refer to the names used in the instanciation:

Vsupply vdd gnd DC 1.2V
Vground gnd 0 DC 0V

.SUBCKT my_design a b c vdd_int gnd_int
...
.ENDS my_design

X0 a b c vdd gnd my_design

The power supply and ground node does not appear on the interface of the .SUBCKT, or the subcircuit
is not instanciated. The V cards should refer to the names used within the subcircuit, or appearing on
the interface of the .SUBCKT, together with .GLOBAL statements:

.GLOBAL vdd gnd

Vsupply vdd gnd DC 1.2V
Vground gnd 0 DC 0V

.SUBCKT my_design a b c vdd gnd
...
.ENDS my_design

7.2.2. Defining Simulation Thresholds

By default, the slope is defined between 20% and 80% of Vdd. It is possible to change those values
with the simVthLow and simVthHigh variables. Delays are always computed with a threshold of 50%.

7.2.3. Defining Simulation Temperature

Temperature can be deined either with the simTemperature configuration variable or through a .TEMP
statement in the Spice file.

HITAS User Guide

40

7.2.4. Invoking DB Construction

The timing DB construction routine are invoked by the hitas command, which takes as argument the
name of a sub-circuit. The sub-circuit must be among the previously loaded netlists. If the sub-circuit
contains instances it will be flattened to the transistor-level. In such a case, signal naming respects the
hierarchical paths. The name of a signal is the concatenation of the names of the successive instances
that appear in the hierarchical path leading to the physical node the signalis associated with. The
typical Tcl command for invoking timing DB construction is:

set fig [hitas my_design]

where my_design is the name of the .SUBCKT to treat. If flatten is impossible (i.e. transistor level sub-
circuits are missing for leaf cells), with no further configuration, the tool will issue an error and exit.

The default configuration creates a timing DB containing DTX, STM, RCX files.

7.3. Output Files

7.3.1. REP file

Once the Timing DB has been constructed, it is important to have a look at the .rep file. This file is a
report of the disassembly process. The essential thing to check here is that latches have been correctly
detected. Ideally, all the latches have been automatically detected by the Boolean analysis of the gate
loops. However, the report file lists all the loops between gates that have been identified during the
disassembly process, and if they have been associated with a latch. A complete list of the warnings
issued in the .rep is available in the reference manual.

7.3.2. LOOP file

Ideally the .loop file does not exist, as it is created only if the path searching algorithm detects
combinational loops in the design. Note that the path searching algorithm is performed after the
disassembly process, and therefore the occurrence of combinational loops is heavily dependant on the
correct recognition of the latches in the design.

7.3.3. CNS, CNV files

The .cns file describes the partitions (cones), and their interconnections, resulting from the
disassembly process. This file is very useful for debugging purposes, and necessary for the spice deck
generation of timing paths. The file can be generated with the following configuration:

avt_config tasGenerateConeFile yes

The .cns file is intented to be re-read by HITAS and therefore is not very human-readable. A more
friendly version can be generated by setting:

avt_config avtVerboseConeFile yes

HITAS User Guide

41

7.3.4. DTX and STM files

The default configuration generates the .dtx file (timing arcs) and .stm file /9timing models).

7.4. Latch Detection and Modeling

HITAS handles the following types of latches:

• D-latches

• Symmetric latches and memory cells

• RS latches

• Dynamic latches

All those types of latches are recognized and modeled automatically during the partitioning phase.
If automatic detection were to fail, manual identification is still possible. User-defined tags may be
applied on nodes in the design.

7.4.1. Detection Sequences

Manual Identification

If latch/command tags on specific nodes are set in the configuration file, those tags will be applied
and will disable any subsequent automatic analysis upon those nodes.

Simple Detection

Simple detection is based upon pattern matching. If activated, this sequence uses simple patterns and
rules to quickly detect the simplest latch structures. This sequence is to be used with caution. It permits
to quickly detect the most common latches but also uses some heuristics which may not be correct
for more complex latches. This sequence is particularly useful (time saving) when dealing with static
memories (SRAM) containing a large number of 6T bit-cells. Latches detected at that point will be:

• Memory cells, provided they only consist of looped inverters

• Level-holders, looped inverters also

• Simple D-latches. In that case the transistor controlling the memory node will be the one the
closer to the memory point

Automatic Detection

Automatic detection is based upon loop analysis. This sequence recognizes any kind of fully static
latch designed using an active feedback loop, and containing any number of clock inputs as well as
asynchronous set and reset inputs. Within this sequence, specific algorithms may be further applied
to model RS latches, asynchronous set and reset within D-latches and symmetric latches.

• RS latches. Automatic detection and modelling of NAND/NOR based RS bi-stable

• Asynchronous signals: set and reset detection. D-Latches further modelling

• Symmetric latches

HITAS User Guide

42

Dynamic Latches Detection

7.4.2. Enabling Detection Sequences

The detection sequences are controlled by the following variables:

Manual Identification inf_MarkSignal

inf_MarkTrans

Simple Detection yagSimpleLatchDetection=memsym|levelhold|latch

Automatic Detection yagAutomaticLatchDetection=yes

RS Latches yagAutomaticLatchDetection=yes

yagAutomaticRSDetection=mark|latch|legal|

illegal

Asynchronous Signals yagAutomaticLatchDetection=yes

yagSetResetDetection=yes|remove

Symmetric Latches yagAutomaticLatchDetection=yes

yagAutomaticMemsymDetection=yes|remove

Dynamic Latches yagDynamicLatchDetection=yes

See HITAS Reference Guide for a more detailed description of those configuration variables.

7.5. Static Latch Modeling

Latches such as the one described below are well recognized with the automatic algorithm controlled
by yagAutomaticLatchDetection. In this example HITAS recognizes a latch around the node
master (and another one around the node slave - for the sake of simplicity we only discuss here the
first latch). This node is tagged in the database as a Latch node (see .cnv file).

HITAS User Guide

43

D Q

ICKN

ICK

ICKN
RN

RN

tp0

tn0

tp2

tn2

m aster slave

tp1

tn1

tp3

tn3

ICK

Each Latch node is controlled by Command transistors. Here the Command transistors for node
master are tn0 and tp0 - they control the writing of the data - and tp1 and tp2 - they control the
reset of the latch.

7.5.1. Asynchronous Set and Reset

The modeling of static latches can be refined in order to cope with the set and reset signals. This
is controlled by yagSetResetDetection, and disabled by default (set to no). Whwn set to yes, the
transistor tp1 is no longer considered to be a command and tp2 is marked Async. This prevents the
construction of asynchronous timings arcs between the reset signal and memory node - between RN
and master here - which otherwise clutter the reports.

7.5.2. Manual Configuration

The following manual configuration would lead to the same modeling as the one generated by the
automatic detection. We present it as an example of what should be done in order to model latches
which would not be automatically recognized. The following lines describe the configuration to be
used for tagging the master Latch node and associated Command transistors.

inf_MarkSignal master Latch+Master
inf_MarkTransistor tn0 Command
inf_MarkTransistor tp0 Command
inf_MarkTransistor tn1 Feedback+NonFunctional
inf_MarkTransistor tn2 Feedback+NonFunctional
inf_MarkTransistor tn3 Feedback+NonFunctional
inf_MarkTransistor tp1 Command+NonFunctional
inf_MarkTransistor tp2 Command
inf_MarkTransistor tp3 Feedback+NonFunctional

HITAS performs latch-based analysis, so the MASTER tag is optional

Timing Arcs

HITAS constructs the following timing arcs:

DATA: D (R) -> master (F), enabled by ICKN (R)

HITAS User Guide

44

DATA: D (F) -> master (R), enabled by ICK (F)
ACCESS: ICK (F) -> master (R)
ACCESS: ICKN (R) -> master (F)

7.5.3. Intrinsic Setup and Hold

Setup and hold timing checks are performed at the memory node itself - the master node. For both
setup and hold timing checks, HITAS also adds correction margins which further ensure the robustness
of the analysis. These margins are called intrinsic setup and intrinsic hold times.

SETUP: master (R) -> ICKN(R) - closing event of the command
SETUP: master (F) -> ICK(F)
HOLD: master (R) -> ICKN(R) - closing event of the command
HOLD: master (F) -> ICK(F)

Intrinsic Setup

For setup, HITAS checks that the latest possible switching time of the memory node - caused by the
switching of the data - occurs before the earliest possible closing time of the latch in the next cycle
- here the earliest time between ICK rising and ICKN falling - so that the data is always memorized
in the next cycle. This reads:

D->mastermax < min(CK->ICKNmin, CK->ICKmin) + cycle_time

The setup slack is then defined as:

Setup_slack = min(CK->ICKNmin, CK->ICKmin) + cycle_time - D->mastermax

Or in a simpler way:

Setup_slack = clock_path_min + cycle_time - data_path_max

In fact, HITAS does not calculate the latest possible switching time of the memory node, but the latest
possible switching time of the feedback node, further ensuring that the data has been properly stored
in the latch. This gives:

D->mastermax + master->feedback < min(CK->ICKNmin, CK->ICKmin) + cycle_time

The setup slack is then defined as:

Setup_slack = min(CK->ICKNmin, CK->ICKmin) + cycle_time - D->mastermax - master-

>feedback

Or in a simpler way:

Setup_slack = clock_path_min + cycle_time - data_path_max - intrinsic_setup

From a modeling point of view, this translates to the addition of a setup timing arc, between the
memory node and each of the signals driving a gate of a command transistor, whose value is the
propagation delay between the memory node and the feedback node.

Intrinsic Hold

For hold, HITAS checks that the earliest possible switching time of the memory node - caused by the
switching of the data - occurs after the latest possible closing time of the latch in the same cycle - here
the latest time between ICK rising and ICKN falling - so that no other data is accidentally memorized
in the same cycle.

HITAS User Guide

45

D->mastermin > max(CK->ICKNmax, CK->ICKmax)

The hold slack is defined as:

Hold_slack = D->mastermin - max(CK->ICKNmax, CK->ICKmax)

Or in a simpler way:

Hold_slack = data_path_min - clock_path_max

Actually, HITAS does estimates latest possible closing time of the latch not at Vdd/2, as it is done
for all other propagation delays, but at the Vt of the Command transistors. This assumes that the data
may still be stored, even if the Command transistors are in a low-conducting mode. Preventing this
adds robustness to the analysis.

D->mastermin > max(CK->ICKNmax, CK->ICKmax) + max(slopeICKN vdd/2->vt, slopeICK

vdd/2->vt)

The hold slack is defined as:

Hold_slack = D->mastermin - max(CK->ICKNmax, CK->ICKmax) - max(slopeICKN vdd/2-

>vt, slopeICK vdd/2->vt)

Or in a simpler way:

Hold_slack = data_path_min - clock_path_max - intrinsic_hold

From a modeling point of view, this translates in the addition of a hold timing arc, between the memory
node and each of the signals driving a gate of a Command transistor, which value is the portion
between Vdd/2 and Vt of the slope on the signal driving the gate.

7.6. RS-Latches

HITAS automatically recognizes and models NAND-based and NOR-based RS structures. Only the
RS structures where NAND or NOR building gates directly loop on each other (with no intermediary
inverter or buffer present) are automatically recognized. However, manual recognition is still possible,
and the same range of modeling methods can be applied on manually-defined RS structures.

Automatic recognition of RS structures is enabled by switching on the variable
yagAutomaticRSDetection:

avt_config yagAutomaticRSDetection mark

This enables HITAS to detect NAND-based and NOR-based RS structures having an arbitrary number
of inputs, providing that the constituent NAND or NOR gates loop directly onto each other. Below
is an example of such a structure.

HITAS User Guide

46

S

R

QB

Q

With this configuration, HITAS only marks the looping nodes as RS (see .cnv file), and issues a
message in the .rep file. For this NOR-based RS structure, the following timing arcs are then created:

S (rising) to QB (falling)
S (falling) to QB (rising)
R (rising) to Q (falling)
R (falling) to Q (rising)
Q (rising) to QB (falling)
Q (falling) to QB (rising)
QB (rising) to Q (falling)
QB (falling) to Q (rising)

This leads to combinational loops the tool is not able to handle, for example:

S (rising) to QB (falling) to Q (rising) to QB (falling) to ...

The study of the truth tables of the NOR gate tells us that such loops actually cannot occur, as some
transitions cannot be excited. We will detail this in the next section. Regarding NAND-based RS
structures, here is an example of what HITAS properly detects:

S

R

Q

QB

Here, the created timing arcs are the following ones:

S (rising) to Q (falling)
S (falling) to Q (rising)
R (rising) to QB (falling)
R (falling) to QB (rising)
Q (rising) to QB (falling)
Q (falling) to QB (rising)

HITAS User Guide

47

QB (rising) to Q (falling)
QB (falling) to Q (rising)

They also lead to combinational loops.

7.6.1. Modeling of NOR-based structures

All States Allowed

Let's study the truth table of the NOR-based design:

S

R

QB

Q

holdQBnQn00

not a llow ed0011

reset1010

set0101

Operat ionQBn+ 1Qn+ 1RS

Let's consider the timing arcs from Q to QB. As stated above, we have the following timing arcs,
which we can also identify from the truth table:

Q (rising) to QB (falling)
Q (falling) to QB (rising)
QB (rising) to Q (falling)
QB (falling) to Q (rising)

Now we must keep in mind that we are dealing with NOR gates, and that a NOR propagates a transition
from one of its inputs only if the others inputs are all 0. In a situation where NOR gates are looped on
each others, some transitions cannot be excited. If we look at the truth table above, we see that the only
way to have Q (rising) is to perform the set operation, where S is 1 and R is 0. But if S is now 1, no
transition can propagate through the NOR gate: Q (rising) to QB (falling) can never be excited.

We have the symmetrical situation for QB (rising) to Q (falling) in the reset operation. The
following timing arcs finally remain, and prevent the occurrence of combinational loops:

S (rising) to QB (falling)
S (falling) to QB (rising)
R (rising) to Q (falling)
R (falling) to Q (rising)
Q (falling) to QB (rising)
QB (falling) to Q (rising)

This way of modeling is enabled by switching the yagAutomaticRSDetection to "mark+illegal":

avt_config yagAutomaticRSDetection "mark+illegal"

HITAS User Guide

48

Legal States Only

The configuration described above only removes timing arcs that can never be excited. It allows timing
arcs used when entering an illegal state: when both S and R are set to 1, Q and QB are both 0. It is the
only situation where the NOR gate can have its R (resp. S) input set to 1 and its Q (resp. QB) input is
set to 0, and thus propagate a falling transition from R or S:

S (falling) to QB (rising)
R (falling) to Q (rising)

Depending on the surrounding logic of the RS structure, this situation may or may not occur. However,
the tool is not able to analyze it. If you desire to consider RS structures always remaining in the legal
state, you should state it explicitly:

avt_config yagAutomaticRSDetection "mark+legal"

Only the following transitions remain:

S (rising) to QB (falling)
R (rising) to Q (falling)
Q (falling) to QB (rising)
QB (falling) to Q (rising)

7.6.2. Modeling of NAND-based structures

All States Allowed

The same reasoning applies for a NAND-based structure, based on its truth table:

S

R

Q

QB

not a llow ed1100

holdQBnQn11

reset1001

set0110

Operat ionQBn+ 1Qn+ 1RS

The NAND gate propagates a transition from one of its inputs only if the other inputs are all 1.
Removing the unexcited timing arcs leads to the following arcs remaining:

S (rising) to Q (falling)
S (falling) to Q (rising)
R (rising) to QB (falling)
R (falling) to QB (rising)
Q (rising) to QB (falling)
QB (rising) to Q (falling)

Legal States Only

If only legal states are allowed, the following timing arcs remain:

HITAS User Guide

49

S (rising) to Q (falling)
R (rising) to QB (falling)
Q (rising) to QB (falling)
QB (rising) to Q (falling)

7.6.3. Fine Tuning

The yagAutomaticRSDetection variable defines a global behavior for all the RS structures
encountered and properly detected. However, one may wish to define a specific behavior for a given
RS structure encountered. For example, on 100 RS structures in a design, 94 may be treated as always
remaining in legal state, 4 may be treated as possibly entering an illegal state, and the 2 remaining
ones may be treated as pulse generators. One should then wish to override a global configuration for
given RS structures. It is therefore possible in HITAS with the inf_DefineRS Tcl command, as done
in the following script, referring to the example above:

avt_config yagAutomaticRSDetection "mark+legal"
inf_DefineRS nand1.S illegal
inf_DefineRS nand2.S illegal
inf_DefineRS nand3.S illegal
inf_DefineRS nand4.S illegal
inf_DefineRS pulsegen1.S mark_only
inf_DefineRS pulsegen2.S mark_only

7.6.4. Manual Tuning

Situations arise where timing arcs should be removed manually: when RS structures are not
automatically detected, and when they are used for purposes not covered by the modeling options
described above (typically in pulse generators).

When RS structures are not properly detected, timing arcs should be removed in the same way they
are removed when automatically handled. Arc removal should be done with inf_DisableTimingArc
Tcl function. The following script describes manual removal of timing arcs for the NOR-based RS
latch described above, in the "Legal States Only" situation:

inf_DisableTimingArc S QB du
inf_DisableTimingArc R Q du
inf_DisableTimingArc Q QB ud
inf_DisableTimingArc QB Q ud

7.7. Symmetric Latches

HITAS considers latches symmetric when it is possible to write on both sides of the memorizing loop.
Latches which fall into this category are symmetric pulldowns, symmetric bitcells and asymmetric
pulldowns, as described below.

HITAS User Guide

50

m m b

ck

d

m m b

ck

d

m m b

ck

d db

HITAS considers both sides - m and mb of the symmetric latc being Latch nodes. A supplementary
Memsym tag is added on each Latch node. Timing checks - setup and hold - are performed on both
sides of the symmetric latch.

Intrinsic setup and hold times are added on each Latch node in the same way as they are on a D-Latch
Latch node. The next sections detail modeling of symmetric latches

7.7.1. Symmetric Pulldown

Typical Structure

m m b

ck

d

Latch Nodes and Commands

The latch nodes are here m and mb. The Command transistors are the ones which gate is controlled
by ck.

Timing Arcs

Timing arcs are the following:

DATA: D (R) -> m (F), enabled by CK (R)
DATA: D (F) -> mb (F), enabled by CK (R)

HITAS User Guide

51

DATA: m (F) -> mb (R)
DATA: mb (F) -> m (R)
ACCESS: CK (R) -> mb (R) - through the feedback loop
ACCESS: CK (R) -> m (R) - through the feedback loop
SETUP: m (F) -> CK (F)
SETUP: mb (F) -> CK (F)
HOLD: m (F) -> CK (F) - closing event of the command
HOLD: mb (F) -> CK (F)

As it is for the D-Latch, the intrinsic setup time is the propagation delay of the inverter between m and
mb and m and mb - for Latch nodes m and mb respectively.

7.7.2. Symmetric Bitcell

Typical Structure

m m b

ck

d db

Latch Nodes and Commands

The latch nodes are here m and mb. The Command transistors are the ones which gate is controlled
by ck.

Timing Arcs

Timing arcs are the following:

DATA: D (R) -> m (F), enabled by CK (R)
DATA: D (F) -> mb (F), enabled by CK (R)
DATA: m (F) -> mb (R)
DATA: mb (F) -> m (R)
ACCESS: CK (R) -> mb (R) - through the feedback loop
ACCESS: CK (R) -> m (R) - through th efeedback loop
SETUP: m (F) -> CK (F)
SETUP: mb (F) -> CK (F)
HOLD: m (F) -> CK (F) - closing event of the command
HOLD: mb (F) -> CK (F)

HITAS User Guide

52

The following timing arcs are disabled: the NMOS transistors drive only a weak current in the latch
node - considering a rising transition on the latch node.

DATA: D (R) -> m (R), enabled by CK (R)
DATA: D (F) -> mb (R), enabled by CK (R)

However, the contribution of the current through the NMOS is taken into account when evaluating
the delays of the inverters in the loop. These delays are further used for computing intrinsic setup and
hold times. HITAS just assumes that transitions on d and db are simultaneous.

7.7.3. Asymmetric Pulldown

Typical Structure

m m b

ck

d

Latch Nodes and Commands

The latch nodes are here m and mb. The Command transistors are the ones which gate is controlled
by ck.

Timing Arcs

Timing arcs are the following:

DATA: D (R) -> m (F), enabled by CK (R)
DATA: D (F) -> mb (F), enabled by CK (R)
DATA: m (F) -> mb (R)
DATA: mb (F) -> m (R)
ACCESS: CK (R) -> mb (R) - through the feedback loop
ACCESS: CK (R) -> m (R) - through th efeedback loop
SETUP: m (F) -> CK (F)
SETUP: mb (F) -> CK (F)
HOLD: m (F) -> CK (F)
HOLD: mb (F) -> CK (F)

HITAS User Guide

53

The following timing arc is disabled: the NMOS transistor drive only a weak current in the latch node
m - considering a rising transition on the latch node.

DATA: D (R) -> m (R), enabled by CK (R)

However, the contribution of the current through the NMOS is taken into account when evaluating
the delay of the inverter between mb and m. This delay is further used for computing intrinsic setup
and hold times.

7.8. Dynamic Latches

Dynamic latches are typically tristate nodes followed by a capacitance. In default mode, tristate
nodes are not marked as latches. This behavior can be changed with the yagMarkTristateMemory
configuration variable.

Dynamic latches can also be identified with the INF commands inf_DefineDLatch and
inf_DefineNotDLatch

7.9. Special Elements

7.9.1. Transmission Gates

Transmission gate characterization is natively handled by HITAS, and most of the times it requires
no additional configuration. However, there are some cases where correct characterization of the
transmission gates depends on the functional behavior of the design, and therefore those cases can not
be perfectly handled by static tool. The following diagram illustrates this typical case:

P1

P2

C

1

C1

C2

HITAS User Guide

54

The difficulty here is to properly estimate the amount of capacitance C to be used for the computation
of the propagation delay of the inverter 1. The value of this capacitance depends on the logic levels of
P1 and P2 driving the transmission gates, while circuit is operating. It is then practically impossible for
a static tool to determine exactly the amount of capacitance to be used, as C can change with different
combinations of logic levels on P1 and P2. The best thing a static tool can do is to compute min and
max capacitances, corresponding to 'all transmission gates closed' and 'all transmission gates opened'.

However, the combinations of logic levels on signals driving the transmission-gates may be limited,
and may obviously not lead to the worst case situation, e.g. where all the transmission gates are opened.
For example in the case of multiplexers or routing matrices, only one of N transmission gates is opened
at a time. HITAS does not provide an automatic mechanism to detect those kinds mutual exclusion
situations, but provides two variables to control them manually:

tasPathCapacitanceFactor globally controls the ratio of transmission-gates that can be opened at
the same time, when determining the capacitance to be used to compute maximum propagation delays.
Minimum propagation delays are computed with a ratio of 0.

tasSwitchCapacitanceFactor globally controls the ratio of transmission-gates that can be opened
at the same time, when determining the capacitance to be associated with input connectors.

7.9.2. Transmission Gate Multiplexers

The detection of multiplexors is done purely algorithmically. The cone partitioning strategy
implemented in HITAS perfectly fits with the detection and modeling of transmission-gate based
multiplexers, provided that the correlations between the commands can be resolved within the design.
The only reason why detection may fail, is because the schematic of the design itself prevents to
identify those correlations, for example when commands are input pins. In such a case, correlations
(mutual exclusion) should be set externally with INF commands.

The following diagram shows two situations. In the left-hand design, the mutual exclusion between
sel and nsel is not ensured by the design. There is no way for the tool to identify inputs and outputs,
and it constructs false current paths. In the right-hand design, the mutual exclusion between sel and
nsel is ensured by the invertor, and therefore the tool correctly models the multiplexer.

sel

I0

I1

out

sel

I0

I1

nsel out

no corre lat ion ⇒ fa lse current pat hs int ernal corre lat ions ⇒ OK

To avoid the construction of false current paths in the left-hand design, the following mutual exclusion
configuration should be set:

HITAS User Guide

55

inf_DefineMutex cmpUP {sel nsel}

If the transmission gate toppology is more complex, and setting of mutual exclusion constraints
become too much difficult, another orientation mechanism is available. Let's consider the next design:

sel

I0

I1

nsel
out

3

3

2 1
s

sel

I0

I1

nsel
out

3

3

2 1
s

Here orientation can be done by setting levels on signals i0, i1, s and out. The transistors are oriented
by assuming the current is going from the signals with the higher level to the signals with the lower
level. Levels should be set as follow:

inf_DefineDirout i0 3
inf_DefineDirout i1 3
inf_DefineDirout s 2
inf_DefineDirout out 1

The default orientation value of signals is -1.

7.9.3. Domino Precharge

The following configuration enables the automatic precharge detection algorithm.

avt_config yagDetectPrecharge yes

However, precharged elements and latches may present very similar structures, and it is not impossible
that the tool mix up between them. In this case, it is more careful to define manually the pre-charged
structures. Example is given for a precharged signal named pre1, within a design named my_design:

inf_SetFigureName my_design
inf_DefinePrecharge "pre1"
inf_DefineDirout "pre1"

In any case, the following configuration line should be added to enable HITAS to perform special
treatment on the precharged signals.

avt_config tasTreatPrecharge yes

HITAS User Guide

56

7.10. Case Analysis

Case analysis, such as Scan Mode analysis or Functional mode analysis, is available in the HITAS
platform. It is performed by sticking input connectors or internal signals to logical low or logical high
values. It is done by adding in the Tcl script the SDC command set_case_analysis.

The logical value stuck on the input connector or logical signal is propagated through the design, with
regard to the behavior of the gates it crosses. A report of the stuck signals is available in the .rep file:

[WRN 30] Signal 'ram_na3' is stuck at Zero
[WRN 31] Signal 'ram_a43r_net6' is stuck at One

7.11. Integrating External Timing Abstractions

The most straightforward way to integrate 3rd party abstractions is to preload them with
avt_LoadFile function. In the following example, the transistor-level description of the sub-circuit
mult is not available. A .lib file is used as substitution.

avt_LoadFile charac/mult.lib lib
avt_LoadFile cells/*.spi spice
avt_LoadFile my_design.spi spice
set fig [hitas my_design]

It is important that the mult sub-circuit is not among the sub-circuits loaded in Spice format, i.e. in the
my_design.spi file. If the mult sub-circuit has been loaded in Spice format, it should be blackboxed,
using either the BLACKBOX file mechanism or the avt_SetBlackBoxes Tcl function.

The BLACKBOX file mechanism works as follow:

As soon as a BLACKBOX file exists in one the directories reachable from HITAS (i.e. the directories
specified by the avtLibraryDirs variable), HITAS systematically reads it and blackboxes all the sub-
circuits it contains. No variable controls the effective blackboxing of the sub-circuits the BLACKBOX
file contains. The mere presence of the BLACKBOX file presence is a sufficient condition.

If avt_SetBlackBoxes Tcl function is used, the BLACKBOX file mechanism is disabled.

If BLACKBOX file is required, the following line should appear in it:

mult

In addition, the following line should appear in the script:

avt_config tasTreatBlacboxHierarchically yes

HITAS User Guide

57

Chapter 8. Timing DB Browsing

8.1. Timing DB

The following diagram gives the principal Tcl functions for timing database manipulation and path
browsing. These are sorted according to their principal argument type.

DESIGN Tim ingFigure

UTD on disk Tim ingFigure

TOP_LEVEL Tim ingFigure

FIGNAME st ring

TEMP num erical

DEF_SUPPLY num erical

DEF_LOAD num erical

DEF_SLOPE num erical

TH_LOW num erical

TH_HIGH num erical

TECH_NAME st ring

DATE st ring

TIME st ring
Tim ingSignal

{ Tim ingSignal}

{ Tim ingSignal}

{ Tim ingPat h}

St abilit yFigure

St abilit yFigure

Tim ingFigure

DELAY num erical

REF_DELAY num erical

DATA_LAG num erical

SLOPE num erical

REF_SLOPE num erical

START_TIME num erical

START_SLOPE num erical

START_SIG Tim ingSignal

END_SIG Tim ingSignal

COMMAND Tim ingEvent

ACCESS_COMMAND Tim ingEvent

START_TRAN st ring

END_TRAN st ring
{ Tim ingPat h}

{ Tim ingPat h}

Tim ingDet a il

ttv_LoadSpecifiedTimingFigure

hitas

ttv_GetTimingFigureProperty

ttv_GetTimingPathProperty

ttv_GetTimingSignal

ttv_GetTimingSignalList

ttv_GetClockList

ttv_GetPaths

ttv_DetectFalseClockPath

ttv_DisplayClockPathReport

Tim ingFigure

tma_Abstract

ttv_LoadCrosstalkFile

ttv_DisplayConnectorToLatchMargin

stb_LoadSwitchingWindows

stb

stb_DisplaySlackReport

Tim ingPat h

ttv_GetParallelPaths

ttv_RemoveDuplicatedPath

ttv_DisplayPathDetail

ttv_GetPathDetail

{ Tim ingFigure}
lib_DriveFile

tlf_DriveFile

{ Tim ingPat h}

ttv_FreePathList

ttv_DisplayPathList

ttv_DisplayPathListDetail

HITAS User Guide

58

8.2. Details Browsing

The following diagram gives the principal Tcl functions for detailed browsing of timing database
elements. These are sorted according to their principal argument type.

HZ num erical

NODE_NAME st ring

SIGNAL_NAME st ring

SIGNAL_TYPE st ring

DELAY num erical

SLOPE num erical

REF_DELAY num erical

REF_SLOPE num erical

SIM_DELAY num erical

SIM_SLOPE num erical

DATA_LAG num erical

TYPE st ring

CLOCK num erical

DIR st ring

CAPA num erical

LEFT_BOUND num erical

RIGHT_BOUND num erical

TOP_LEVEL Tim ingFigure

NET_NAME st ring

NAME st ring

TYPE st ring

EVENT_UP Tim ingEvent

EVENT_DOWN Tim ingEvent

RISING_SLOPE num erical

FALLING_SLOPE num erical

num erical

num erical

num erical

{ num erical}

st ring

st ring

Tim ingEvent

num erical

num erical

{ St abilit yPat h}

stb_DisplaySignalStabilityReport
{ Tim ingSignal}

SIGNAL Tim ingSignal

TRANS st ring

Tim ingDet a il
ttv_GetTimingDetailProperty

ttv_DriveSetupHoldSpiceDeck

ttv_DriveSpiceDeck

Tim ingSignal

ttv_GetTimingSignalProperty

ttv_GetLatchAccess

ttv_GetLatchSetup

ttv_GetLatchHold

ttv_GetSignalCapaList

ttv_GetFullSignalNetName

ttv_GetFullSignalName

ttv_GetLatchCommands

stb_GetSignalHold

stb_GetSignalSetup

stb_GetSignalStabilityPaths

stb_DisplayErroneousSignals

Tim ingEvent ttv_GetTimingEventProperty

8.3. STA Browsing

The following diagram gives Tcl functions for browsing the results of an STA or crosstalk analysis.
These are sorted according to their principal argument type.

HITAS User Guide

59

{ Tim ingSignal}

{ Aggressor}
SOURCE_SIG Tim ingSignal
ERROR_SIG Tim ingSignal
CK_NAME st ring
CK_PERIOD num erical

SETUP num erical

HOLD num erical

SETUP_MARGIN num erical

HOLD_MARGIN num erical

CMD_NAME st ring

num erical

num erical

{ St abilit yRange}

{ St abilit yRange}

{ St abilit yRange}

{ St abilit yRange}

{ St abilit yRange}

{ St abilit yPat h}
SIGNAL Tim ingSignal
NETNAME st ring
CAPA_CTK num erical

DELAYBESTAGR st ring
DELAYWORSTAGR st ring
NOISERISE st ring
NOISEFALL st ring

{ Aggressor}

stb_GetErrorList

stb_FreeStabilityFigure

St abilit yPat h

stb_GetStabilityPathProperty

stb_GetClockTime

stb_GetClockDelta

stb_DisplayClock

stb_DisplayInfos

stb_DisplayInputInfos

stb_GetInputInstabilityRanges

stb_GetOutputInstabilityRanges

stb_GetOutputSpecificationRanges

stb_GetInstabilityRangeStart

stb_GetInstabilityRangeEnd

stb_DisplayInputInstabilityRanges

stb_DisplayOutputInstabilityRanges

ctk_FreeAggressorList

ctk_GetAggressorPropertyAggressor

St abilit yFigure

ctk_GetAggressorList

stb_DisplayOutputSpecificationRanges

stb_FreeStabilityPathList

ctk_DriveStatCtk

ctk_BuildCtkStat

ctk_LoadAggressionFile

HITAS User Guide

60

Chapter 9. Static Timing Analysis

9.1. Performing the Analysis

The Static Timing Analysis (sometimes also referred to as Stability Analysis) is performed upon the
UTD timing database. The user must provide a timing constraints file, typically an SDC (Synopsys
Design Constraints) file, or its INF equivalent, which should at least provide the two following sets
of information:

• The definitions of all the external clocks and the global clock period.

• Constraints specifications for the I/O connectors (corresponding to arrival and departures
times).

For the first set of information, clock defintions can be specified with functions create_clock,
create_generated_clock and set_clock_latency.

For the second set of information, switching windows for the input connectors must be specified with
function set_input_delay. Switching window definition for the inputs is mandatory to allow their
propagation throughout the design. In addition, constraints on the output connectors can be specified
with the set_output_delay function.

The STA engine is invoked with the function stb, taking as argument a pointer on the timing database
(TimingFigure object). A pointer on a TimingFigure object can be obtained as the result of the hitas
function. If the timing database has already been created and exists on disk (DTX and STM files), then
a pointer on the TimingFigure object can be obtained with the ttv_LoadSpecifiedTimingFigure
function. Here is an example of the launch of the STA with a minimal set of constraints:

set fig [ttv_LoadSpecifiedTimingFigure cpu]
inf_SetFigureName cpu
create_clock -period 900 -waveform {0 450} clk
set_input_delay -rise 850 -clock clk *
stb $fig

The stb function first propagates the interface clocks onto the commands of the latches. Then it
propagates the switching windows defined on input connectors through the elements of the database,
either combinational or sequential, over one clock cycle.

When propagating through combinational elements (gates), stb calculates the switching window on
the gate's output by just summing up the gate's intrinsic delays to the switching window on its inputs.
Depending on the kind of analysis, detailed or not, (stbDetailedAnalysis), the tool merges or not
disjoint switching windows on the gate's output (see diagram below). Detailed analysis has no impact
on setup/hold calculations but is mandatory in subsequent crosstalk analysis

When propagating through sequential elements (latches or precharges), the tool calculates the
switching window on the latch's output by propagating the switching window on its input, with regard
to the arrival times of the clock on the latch.

HITAS User Guide

61

Once the stb function terminates, the timing database is annotated with stability information, i.e. each
reference point of the database (I/O connectors, latches, commands, precharge) is annotated with its
propagated switching window.

The comparison of the switching windows on the latch nodes, to the arrival times of the clocks,
define the setup/hold slacks on the latches. The comparison of the switching windows on the
output connectors, to the set_output_delay constraints, define the setup/hold slacks on the output
connectors.

9.2. Output Files

With default behavior, the STA engine generates two files:

• .sto file: switching windows for each signal of the design under analysis.

• .str file: setup and hold slack report computed for all the reference points of the design
under analysis.

9.3. Tcl Reports

The slack report is also available through the Tcl function stb_DisplaySlackReport. This function
generates the same kind of report as the .str file, but with more customizable and detailed
information.

9.4. Timing Checks

The next sections explain how timing checks are performed. They describe the more common
situations one can be faced to, i.e.:

• Input to latch

• Latch to latch

• Latch to output

For each situation, an example of slack report is shown, and we explain the details of the timing
checks calculation.

9.4.1. Input to Latch

Inputs Specifications

Regarding input specifications, the STA engine of HITAS makes the assumption that input data is
coming from a latch clocked on the opposite phase of the one the data arrives on. In our flip-flop
example, dff_m is opened on the high state of ck, so di is supposed to come from a latch opened
on the low state of ck.

HITAS User Guide

62

As a result, di should be specified as coming from ck falling, i.e. when the latch src opens. The
corresponding SDC commands should look like:

create_clock -period 1000 -waveform {500 0} ck
set_input_delay -clock -ck -clock_fall -min 200 di
set_input_delay -clock -ck -clock_fall -max 300 di

Timing Checks Description

Diagram below illustrates the way set_input_delay directives are propagated throughout the design,
and where timing checks are performed.

Setup Slack

Input to latch setup slack report is described in the slack.rep file

Path (4) : Slack of 0.762
 DATA VALID:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line
 __
 0.300 0.000 0.200 R 0.034 di di

HITAS User Guide

63

 0.498 0.198 0.310 F 0.028 (L) dff_m dff_m master
 __
 0.498 0.198 (total)

 DATA REQUIRED:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line
 __
 0.000 0.000 0.200 F 0.016 (C) ck ck
 0.239 0.239 0.258 R 0.046 (CK) ckn ckn inv
 0.340 0.101 0.140 F 0.036 (CK) ckp ckp inv
 0.260 -0.081 [INTRINSIC SETUP]
 1.260 +1.000 [NEXT PERIOD]
 __
 1.260 0.260 (total)

The value of the setup slack is given by clock_path - data_path = 1260ps - 498ps = 762ps. The
intrinsic setup corresponds to an additional delay which models the amount of time required for secure
memorization of the data.

Hold Slack

Input to latch hold slack report is described in the slack.rep file

Path (2) : Slack of 0.005
 DATA VALID:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line
 __
 0.200 0.000 0.200 F 0.034 di di
 0.542 0.342 0.508 R 0.028 (L) dff_m dff_m master
 __
 0.542 0.342 (total)

 DATA REQUIRED:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line
 __
 0.000 0.000 0.200 F 0.016 (C) ck ck
 0.239 0.239 0.258 R 0.046 (CK) ckn ckn inv
 0.537 +0.298 [INTRINSIC HOLD]
 __
 0.537 0.537 (total)

The value of the hold slack is given by data_path - clock_path = 542ps - 537ps = 5ps. The intrinsic
hold corresponds to an additional delay which models the amount of time required for ensuring that
the next cycle's data is not memorized in the current cycle.

9.4.2. Latch to Latch

Timing Checks Description

Latch to latch timing checks require no additional configuration, as they are based upon the signals
already propagated from inputs, and upon the clock specification. The propagation of the s.w., and
corresponding timing checks are described in the following timing diagram:

HITAS User Guide

64

Setup Slack

Latch to latch setup slack report is described in the slack.rep file

Path (3) : Slack of 0.284
 DATA VALID:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line

 -0.500 0.000 0.200 R 0.016 (C) ck ck
 -0.399 0.101 0.128 F 0.046 (CK) ckn ckn inv
 -0.236 0.164 0.169 R 0.036 (CK) ckp ckp inv
 -0.152 0.083 0.139 F 0.028 (L) dff_m dff_m master
 0.090 0.242 0.189 R 0.040 n11 n11 inv
 0.321 0.231 0.305 F 0.089 (L) dff_s dff_s slave

 0.321 0.821 (total)

 DATA REQUIRED:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line

 0.500 0.000 0.200 R 0.016 (C) ck ck
 0.601 0.101 0.128 F 0.046 (CK) ckn ckn inv
 0.605 +0.005 [INTRINSIC SETUP]

 0.605 0.105 (total)

Hold Slack

Latch to latch hold slack report is described in the slack.rep file

Path (3) : Slack of 0.146
 DATA VALID:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line

HITAS User Guide

65

 __
 -0.500 0.000 0.200 R 0.016 (C) ck ck
 -0.399 0.101 0.128 F 0.046 (CK) ckn ckn inv
 -0.281 0.119 0.177 R 0.028 (L) dff_m dff_m master
 -0.223 0.057 0.088 F 0.040 n11 n11 inv
 0.106 0.329 0.447 R 0.089 (L) dff_s dff_s slave
 __
 0.106 0.606 (total)

 DATA REQUIRED:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line
 __
 0.500 0.000 0.200 R 0.016 (C) ck ck
 0.601 0.101 0.128 F 0.046 (CK) ckn ckn inv
 0.764 0.164 0.169 R 0.036 (CK) ckp ckp inv
 0.960 +0.196 [INTRINSIC HOLD]
 -0.040 -1.000 [PREVIOUS PERIOD]
 __
 -0.040 0.460 (total)

9.4.3. Latch to Output

Output Constraints

Still based on the flip-flop design described above, the timing propagation on output t is done as
follow:

In order to get setup and hold slacks on the output, one must define timing constraints on t. These
timing constraints are defined with the set_output_delay SDC function. The set_output_delay
specifies propagation delays from output connector to the next memory element latching the data. As
a result, min and max delays are defined as shown in the diagram below.

HITAS User Guide

66

One must also define the edge the data will be latched by. Here, dff_s is closed on the high state of
ck. The data launched by t is supposed to be latched by a memory element clocked on the opposite
phase, i.e. closed on low state of ck. Therefore, constraints on t should be specified relative to falling
edge of ck (when dst latch closes). The set_output_delay functions should be used as follow:

set_output_delay -clock ck -clock_fall -min 200 t
set_output_delay -clock ck -clock_fall -max 400 t

Setup Slack

Latch to output setup slack report is described in the slack.rep file

Path (1) : Slack of 0.030
 DATA VALID:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line
 __
 0.000 0.000 0.200 F 0.016 (C) ck ck
 0.239 0.239 0.258 R 0.046 (CK) ckn ckn inv
 0.340 0.101 0.140 F 0.036 (CK) ckp ckp inv
 0.568 0.227 0.327 R 0.089 (L) dff_s dff_s slave
 0.570 0.003 0.118 F 0.011 (S) t t inv
 __
 0.570 0.570 (total)

 -> Specification: Must be stable after 0.600

The setup time is calculated with the maximum set_output_delay value - maximum data path - which
is 400ps. As the period is 1000ps, data must arrive before time 1000 - 400 = 600ps. The setup slack
is given by 600 - 570 = 30ps.

Hold Slack

Latch to output hold slack report is described in the slack.rep file

Path (5) : Slack of 0.635
 DATA VALID:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line

 0.000 0.000 0.200 F 0.016 (C) ck ck
 0.239 0.239 0.258 R 0.046 (CK) ckn ckn inv
 0.385 0.146 0.235 F 0.089 (L) dff_s dff_s slave
 0.435 0.050 0.082 R 0.011 (S) t t inv

 0.435 0.435 (total)

 -> Specification: Must be stable before -0.200

HITAS User Guide

67

The hold time is calculated with the minimum set_output_delay value - minimum data path - which
is 200ps. The hold slack is given by data path - clock path = 435 + 200 - 0 (the clock is ideal in the
set_output_delay definition) = 635ps.

9.5. Skew Compensation

When computing hold slack values between two latches, taking into account the clock skew on the
full clock tree may lead to excessive pessimism.

The hold slack is the difference between the data arrival time and the clock arrival time on a latch.
The data is supposed to remain stable until after the latch has closed, i.e. the data is supposed to arrive
after the time the clock arrives. In the case of a master to slave data path, we have:

hold_slack = data_time - ck_to_slave

The data comes from the opening of the master latch, so we can express the data arrival time as follow:

data_time = ck_to_master + master_to_slave

All in all, we have: (minimized)

hold_slack = ck_to_master + master_to_slave - ck_to_slave
hold_slack_min = ck_to_master_min + master_to_slave_min - ck_to_slave_max

In this case, paths from clock to master and from clock to slave are almost identical, until the node
where they diverge towards master and slave. However, static timing analysis hypothesis may lead
to significant differences between min and max propagation delays on a given path (especially when
crosstalk effects are taken into account).

In the case of a hold slack, we check a data coming out from a master latch (opening), against the
memorizing event of a slave latch (closing). What should be emphasized here is that a single clock
edge generates both the opening event of the master latch and the closing event of the slave latch. The
signal is propagating through the common part of the clock-to-master and clock-to-slave paths, and
diverges to the master and the slave. Therefore, considering min and max propagation delays on the
clock paths only makes sense on the parts of the paths which are not common to the clock-to-master
and clock-to-slave paths. The following diagram illustrates this situation:

HITAS User Guide

68

HITAS supports this situation by a skew compensation mechanism. The global difference between
clock-to-master (minimum) and clock-to-slave (maximum) is computed. The difference relative to the
common part is removed afterwards. It appears in the slack report tagged as [SKEW COMPENSATION].

9.6. Multicycle Paths

HITAS supports multicycle paths through the SDC commands set_multicycle_path as described
in this section. Multicycle paths specifications typically allow the tool to perform timing checks for
data which requires more than one clock cycle to reach its destination. Let's consider the diagram
below, which summarizes what can be done with multicycle paths:

 ____ ____ ____ ____
ORIGIN_CK ___| |____| |____| |____| |____|
 0 1 2 3 4
 ____ ____ ____ ____ ____
DEST_CK ___| |____| |____| |____| |____| |____|
 0 1 2 3 4 5

In the 1-cycle default case, checks are done as follow:

• Setup timing check: ORIGIN(0) vs. DEST(1)

• Hold timing check: ORIGIN(0) vs. DEST(0)

Let's consider a multicycle path of 5, if one just writes the command:

set_multicycle_path 5 -end -to DEST_DATA

or its equivalent:

set_multicycle_path 5 -end -setup -to DEST_DATA

This gives:

• Setup timing check: ORIGIN(0) vs. DEST(5)

HITAS User Guide

69

• Hold timing check: ORIGIN(0) vs. DEST(4)

As you can see, by default the path multiplier (5 here) is applied to the setup check, effectively saying
that the data is allowed 5x more clock cycles than the default of 1 to arrive at the destination latch.
Note that changing the path multiplier for setup also affects the hold check since, by default, the hold
check is 1 cycle before the setup check.

If you want to have the hold checks done as in the 1-cycle case, one must moves the hold check
backwards by 4 cycles. This can be done by specifying a path multiplier of 4 for the hold chacks on
the same paths as follows:

set_multicycle_path 4 -end -hold -to DEST_DATA

This gives:

• Setup timing check: ORIGIN(0) vs. DEST(5)

• Hold timing check: ORIGIN(0) vs. DEST(0)

9.7. Tips

9.7.1. Disabling Master-to-Slave Timing Checks

Since 2.7p6 release, there is a way to disable the setup/hold checks between master and slave latches,
with a semi-manual method.

The SDC command set_false_path accepts the -hold and -setup options, so it is possible to
disable setup/hold checks on specific latches through this command, for example:

set_false_path -setup -to "*.dff_s"
set_false_path -hold -to "*.dff_s"

This will disable setup/hold checks on all the latches matching the pattern *.dff_s (assuming the latch
node's name is dff_s). This method assumes that you know the name of the latch node. Obviously it's
not always the case, so HITAS also provides an automatic master/slave detection mechanism. This
detection is done during the database construction (the hitas command), and is controlled by the
following configuration:

avt_config yagleAutomaticFlipFlopDetection mark

The effect of this configuration is to report master/slave information about the latches in the .rep
file, as follow:

[WRN 33] Loop between 2 gates at 409 'm1.dff_m' (master latch found)
[WRN 34] Loop between 2 gates at 411 'm1.dff_s' (slave latch found)

It is possible to extract the SDC commands from the .rep file with an AWK script looking like:

#!/usr/local/bin/gawk -f
{
 if ($2=="34]") {
 gsub ("'", "", $9);
 printf "set_false_path -setup -to "$9"\n" >"ms_chk.sdc";

HITAS User Guide

70

 printf "set_false_path -hold -to "$9"\n" >"ms_chk.sdc";
 }
}

9.8. On-Chip Variation

HITAS handles On-Chip Variation by considering additionnal margins on timing paths. An added
margin is associated with a timing path and is defined by an absolute delta value and a relative
factor value. The absolute value is an added or substracted propagation delay. The relative value is
a percentage of the propagation delay of the timing path itself.

Both the absolute value and the relative value should be specified by the user, with the
inf_DefinePathDelayMargin function:

path_delay + margin = path_delay * factor + delta

Those margins can be specified either path by path or by group of paths (data paths, clock paths, paths
arriving on special nodes...).

HITAS also considers positive and negative margins (if factor > 1, the margin is positive, else it
is negative). Positive margins are used when considering max paths, negative margins are used when
considering min paths (for example STA computes setup slacks by considering max data path vs. min
clock path, and the other way round for hold slacks).

9.9. Clock Schemes Handling

9.9.1. Clock Dividers

Under construction...

9.9.2. Pulse Generators

Under construction...

9.9.3. RS-based Clock Generators

Under construction...

HITAS User Guide

71

Chapter 10. Crosstalk Analysis

10.1. Requirements

Crosstalk Analysis is done after the UTD construction performed with the hitas function. Only the
detailed timing information file of the database is needed (DTX file), together with the interconnect
information (RCX file) and the delay models (STM file).

The Crosstalk Analysis is coupled with the Static Timing Analysis, and is therefore performed with the
same function stb. The inputs needed for crosstalk analysis are the same as the input needed for STA.

10.2. Understanding Crosstalk in STA

10.2.1. The Issues Involved

A coupling capacitance is a capacitance between two nets. Let us consider a signal carried by a net,
which we shall call the victim. All other signals carried by nets linked to the victim via a coupling
capacitance are called aggressors. A signal is considered to be 'quiet' when no transitions occur on it,
and 'active' whenever transitions occur. We define 'quiet' or 'active' to be the state of the aggressor.

The influence of a coupling capacitance depends upon the state of victim and the state of the aggressor.
From the point of view of the victim four cases exist:

• Victim and aggressor are both quiet. No coupling effect.

• Victim is active and aggressor is quiet. The coupling capacitance acts like a substrate
capacitance.

• Victim is quiet and aggressor is active. Noise is generated on the victim.

• Victim and aggressor are both active. Propagation delay of the driver of the victim signal,
and interconnect delay of the victim signal are affected by the aggressor.

In the last case, there are two different effects depending on victim and aggressor transitions:

• The signals switch in same direction. Driver delay and interconnect delay are reduced.

• The signals switch in opposite direction. Driver and interconnect delay are increased.

10.2.2. Algorithm

In order to compute the effect of a coupling capacitance, we need to know whether two signals
can switch at the same time, and if they switch in same or opposite direction. The detailed Static
Timing Analysis gives switching windows for all the edges (reference points and others) of a timing
graph. Given a victim and its set of aggressors, it is therefore possible to determine switching window
overlaps, and to detect aggressions inducing noise and delta-delays on the victim.

This approach requires that initial detailed switching windows propagation is performed from initial
delay values without any knowledge of aggressor behavior. Two options are possible:

HITAS User Guide

72

• The first is to consider an initial state with no aggression (default mode, can be enhanced
with the stbCtkObservableMode variable)

• The second is to consider an initial state with all possible aggressions (the
stbCtkWorstBeginCondition variable)

It is then possible to compute initial values for driver delays and interconnect delays, and perform
an initial switching windows propagation. For each victim, the algorithm creates its effective list of
aggressors, by analyzing the overlap of the switching windows of its aggressors.

Depending on the chosen initial state, the list of aggressors will either increase or decrease. In both
cases, the effective coupling capacitance seen by the victim will change, inducing a re-evaluation of
the driver delay and interconnect delay of each victim. Another STA (switching window propagation)
is performed with these updated delays. If this second propagation induces no change in the aggressor
lists, the algorithm finishes. If this is not the case, further iterations are performed until the algorithm
converges.

To render crosstalk analysis less pessimistic, it is possible to refine the modeling of the effect of an
aggression. In many cases, an aggression only changes the driver delay of the victim over a short time,
switching windows not being significantly affected (victim's earliest and latest switches not being
affected). This kind of aggression can then be considered as a non-observable aggression.

Ignoring non-observable aggression results in less pessimistic results, in regard of the setup and hold
violations, only affected by the earliest and latest switches. The user can choose to enable analysis
with only observable aggression with the stbCtkObservab1leModevariable.

HITAS User Guide

73

On the other hand, it might be usefull to consider very close - but non overlapping - switching windows
as overlapping, as shown in the following example:

The M value is controlled by the variable stbCtkMargin.

10.2.3. Delay Calculation

The main factor in computing crosstalk-aware delays is the proper modeling of the effective
capacitance. In HITAS, the effective capacitance is computed by an enhanced Miller model, taking
into account the relative strengthes of the drivers (actually the slopes at their outputs). The tool
computes a crosstalk-aware delay by feeding this updated capacitance to the timing model of a driver.

In order to reduce computational time, HITAS makes the following assumptions:

• Resistances are not taken into account in the coupled network

• The coupling capacitance used in the Miller calculus is the sum of the distributed coupling
capacitances on the net

• The Miller calculus uses the slope at the output of the driver for the aggressor, and the slope
at the end of the RC network for the victim (maximizing the Miller effect)

HITAS User Guide

74

The figure below illustrates those assumptions:

The most accurate delay calculation is done with the following configuration:

avt_config rcxCtkSlopeDelay SLOPE_DELAY_ENHANCED

10.2.4. Noise Calculation

The figure below illustrates those assumptions:

HITAS computes voltage peaks on each net, by modeling the coupled network as illustrated in the
figure below:

The assumptions made are:

• Resistances are not taken into account in the coupled network

• The coupling capacitance used is the sum of the distributed coupling capacitances on the net

• The slope used is the one at the output of the driver for the aggressor (this maximizes the
noise)

• Multiple aggressors are handled by linear superposition of the noises they independantly
produce

• The driver of the victim is modeled as a resistance, as shown in the figure below

HITAS User Guide

75

The most accurate noise analysis is done with the following configuration:

avt_config rcxCtkSlopeNoise SLOPE_REAL

10.3. Running the Crosstalk Analysis

Relevant configuration:

stbCrosstalkMode Activates the crosstalk analyzer within the STA
engine. Aggressions are detected according the switching
windows intersections. Multiple iterations are automatically
performed until no more aggression is detected. This
variable should be set to yes.

stbDetailedGraph Aggressor detection has a meaning only on a detailed graph,
(and not on a path graph). This variable should be set to yes.

stbDetailedAnalysis Tunes the building of switching windows either to single or
multiple windows per period. Less pessimistic results are
obtained with multiple switching windows. It is better to set
this variable to yes, but it requires more memory.

stbCtkNoInfoActif If the aggressor is not a timing signal (eg: internal signal in
a gate), there is no timing information for it. If this variable
is set to yes, then this aggressor is considered to be always
active, else it is considered to be always quiet. It is better to
set this variable to yes (default).

stbCtkReportFile Activates the generation of the report file (.ctk). Since
Tcl functions provide an efficient way to browse crosstalk
results, and considering the size of this file, this variable is
better set to no (default).

HITAS User Guide

76

The crosstalk analysis is done with the stb Tcl command, based on a previously generated timing
DB. The timing DB may come from the hitas Tcl command:

set fig [hitas my_design]

avt_config stbCrosstalkMode yes
avt_config stbDetailedGraph yes
avt_config stbDetailedAnalysis yes

stb $fig

The timing DB may also come from disk, loaded with the ttv_LoadSpecifiedTimingFigure
command:

set fig [ttv_LoadSpecifiedTimingFigure my_design]

avt_config stbCrosstalkMode yes
avt_config stbDetailedGraph yes
avt_config stbDetailedAnalysis yes

stb $fig

10.4. Output Files

Since HITAS crosstalk engine is coupled with the STA engine, it generates the same output files (STO
and STR files). In addition, the crosstalk engine creates two or three extra files. The first one contains
details of all crosstalk adjusted delays throughout the design hierarchy. This file .ctx is intended to
be browsed using Xtas or the functions of the Tcl interface. The second file (.agr) contains the list
of all nodes with the states of their aggressor. This file is intended to realize the report of crosstalk
analysis with the Tcl interface. The third file is a human readable file (.ctk file) which contains all
crosstalk related information. This file is drived if the stbCtkReportFile is set

The CTX file is an ASCII text file containing all the delays calculated with crosstalk effects of a
complete design hierarchy. This file is associated with all of the original files describing the hierarchy
(DTX, STM and RCX). It is intended to be viewed using the timing browser Xtas. This file contains
top level delays and instance delays.

10.5. Browsing Crosstalk Analysis Results

10.5.1. Crosstalk Impact on Delays

After the run of the stb Tcl command, the timing DB contains nominal propagation delays and
crosstalk-aware propagation delays. Therefore, when based upon a crosstalk-annotated timing DB,
browsing commands such as ttv_GetPaths show crosstalk impact on propagation delays:

set fig [ttv_LoadSpecifiedTimingFigure my_design]
avt_config stbCrosstalkMode yes
stb $fig
set clist [ttv_GetPaths $fig * * uu 5 critic path max]

HITAS User Guide

77

This stb command (the crosstalk analysis) generates the .ctx file for crosstalk impact on delay,
suitable for further browsing, in order to dissociate crosstalk analysis and browsing. As crosstalk
analysis may be cpu consuming, this will save time. It is then possible to browse crosstalk-annotated
timing DBs generated from previous crosstalk analysis runs:

set fig [ttv_LoadSpecifiedTimingFigure my_design]
ttv_LoadCrosstalkFile $fig
set clist [ttv_GetPaths $fig * * uu 5 critic path max]

10.5.2. Crosstalk Noise

HITAS provides a set of Tcl functions for crosstalk noise analysis. Those functions work on the
crosstalk database generated with the stb function. If the stb function has been launched in the current
Tcl script, the crosstalk database is available in memory, and the Tcl noise analysis functions can be
used directly:

set fig [ttv_LoadSpecifiedTimingFigure my_design]
avt_config stbCrosstalkMode yes
set stbfig [stb $fig]
ctk_DriveStatCtk $stbfig

If the stb function has been launched in a separate script, then the crosstalk database (.ctx, .sto and
.agr files) must be loaded from disk before using noise analysis functions:

set fig [ttv_LoadSpecifiedTimingFigure my_design]
ttv_LoadCrosstalkFile $fig
set stbfig [stb_LoadSwitchingWindows $fig my_design.sto]
ctk_LoadAggressionFile $stbfig

ctk_BuildCtkStat $stbfig
ctk_DriveStatCtk $stbfig

The ctk_BuildCtkStat function is used to re-built consistent information from the crosstalk database
files, according to the scoring configuration variables (see later in this chapter).

10.5.3. Browsing Information on Event

For noise and score, the Timing Event stores informations corresponding to the initial state of this
transition : the up event correspond to the low logical level, and the down event correspond to the
high logical level.

Crosstalk information on nodes are stored in an internaly table. This table can be sorted
with the command ctk_SortCtkStatNode. Information are available through the command
ctk_GetStatNodeProperty. The index parameter is the position in the internal table, from 1 to the
value returned by the command ctk_GetNumberOfCtkStatNode. To get the position of a particular
event, uses command ctk_GetCtkStatNodeFromEvent.

HITAS User Guide

78

10.5.4. Browsing Local Crosstalk Impact on Delay

This information allow to know the elementary delays the most modified by crosstalk effect due to
two net switching simultaneously. This information is stored in an internale table. This table can be
sorted with the tcl command ctk_SortCtkStatLine. Information on delays are available with the
tcl command ctk_GetStatLineProperty. The index parameter is a number from 1 to the value
returned by the command ctk_GetNumberOfCtkStatLine.

10.5.5. Browsing Aggressor

The aggressor list of a Timing Event is available through the tcl command ctk_GetAggressorList.
Property for an aggressor in this list are available with the tcl command ctk_GetAggressorProperty.
This list must be freed with the tcl command ctk_FreeAggressorList.

The property SIGNAL return the Timing Signal corresponding to the aggressor. If the aggressor is an
internal net of a gate, there is no Timing Signal built on it, then the property SIGNAL return NULL.

10.6. Score-Based Result Analysis

Signals presenting a risk of noise violation are sorted by a score based method. Four scores, ranging
from 0 to 10, are reported. Scores assess both the crosstalk impact and the aggression occurrence
probability. Scores are reported in the output files, and in the slack and path reports, under the
following tags:

C Number of significant aggressors; the closer to 10 is the
score, the more significant part of crosstalk is due to a few
number of aggressors.

N Noise peak value; 0 means that the noise peak reaches or
exceeds the logical threshold of at least one gate in the
fanout.

I Switching windows criteria; based upon number of
aggressors simultaneously active

A Activity of the aggressor; 10 means that aggressors belong
to a clock path, or belong to another clock domain (and
assumed to be always active); 0 means that nothing can be
gathered about activity, it doesn't mean that aggressors are
not active.

A total weighted score is also reported, under the T tag, combining the individual scores. The
individual weighting of the C, N, I and A scores can be tuned with the variables stbCtkCoefCtk,
stbCtkCoefNoise, stbCtkCoefInterval and stbCtkCoefActivity, respectively.

If a signal obtains a mark lower than the value specified in stbCtkMinNoise, stbCtkMinInterval,
stbCtkMinCtk or stbCtkMinActivity, it is not displayed in the report file.

HITAS User Guide

79

Chapter 11. Spice Deck Generation

The HITAS platform provides the means to generate a simulatable netlist of any timing path of the
timing database. This generated simulatable netlist contains all the transistors that participate to the
timing path. Actually, as a timing path runs through a set of cones (partitions), the simulatable netlist
contains the transistors belonging to this set of cones. Transistors that do not directly participate
to the path (out-of-path transistors) can be either modeled as blocked transistors or as equivalent
capacitances.

The path transistor netlist comes with all the stimuli enabling the propagation of the signal through
the path. The tool automatically generates the stimuli enabling the appropriate transitions. The path
transistor netlist and the stimuli form what is called the Spice Deck.

The HITAS platform also provides the means to link with external Spice simulators for simulating
the Spice Deck, and to get back the results for pertinent comparison of HITAS results. The accuracy
of most of Spice simulators is heavily dependant on their operating mode (digital/analog) and on
convergence configuration. Pertinent comparison of HITAS results should be made with simulators
in the mode allowing the most accurate results.

Path simulation is not available for hierarchical timing databases.

11.1. Simulator Configuration

First a few variables need to be set to control spice deck generation. They are related to the simulator
being used. Supported simulators are:

• ELDO (Mentor Graphics)

• HSPICE (Synopsys)

• TITAN (Infineon)

• NGSPICE (GEDA)

The minimal required configuration is as follow (example is given for ELDO):

Spice deck target simulator
avt_config SimToolModel eldo

Simulator invoking (command line)
avt_config avtSpiceString "/tools/eldo $"

Transistor models (.INCLUDE to be added in spice deck)
avt_config SimTechnologyName bsim3_018.tech

Setting the SimToolModel variable to a specific simulator also controls the default value of the
following variables:

• avtSpiceOutFile

• avtSpiceStdOutFile

HITAS User Guide

80

• simSpiceOptions

• simExtractRule

• simMeasCmd

Be aware that setting values for those variable overwrite their default value.

11.2. Spice Deck Generation

A spice deck is related to a timing path, and spice deck generation is based upon the detail of the timing
path. Therefore, one should be able to get a timing path from a timing database before generating the
spice deck. The following operations must be performed:

set fig [ttv_LoadSpecifiedTimingFigure my_design]
set paths [ttv_GetPaths $fig * * ?? 1 critic path max]
set path [lindex $paths 0]

set detail [ttv_GetPathDetail $path]

The spice deck generation is then done as follow:

ttv_DriveSpiceDeck $fig $detail "path.spicedeck"

This method only generates the spice deck file path.spicedeck. It does not allow the reading of the
results for comparison. Thsi operation is described in the next section.

11.3. Spice Deck Simulation

Spice deck generation, simulator launch and result reading can be all done together within
the function ttv_DisplayPathListDetail, given that it has been enabled through the
ttv_DisplayActivateSimulation function. The ttv_DisplayPathListDetail requires a timing
path as argument, but no timing detail. It gets it automatically:

set fig [ttv_LoadSpecifiedTimingFigure my_design]
set paths [ttv_GetPaths $fig * * ?? 1 critic path max]
set path [lindex $paths 0]

ttv_SetupReport "ps ff"
ttv_DisplayActivateSimulation y
ttv_DisplayPathListDetail stdout $path

This script performs the following actions:

• Gets the timing path $path

• Activates the simulation engine

• Generates the spice deck: my_design_ext.spi and cmd_my_design_ext.spi

• Performs the simulation: /tools/eldo cmd_my_design_ext.spi

• Reads the simulation result: cmd_my_design_ext.chi

HITAS User Guide

81

• Prints the path detail on standard output, displaying HITAS and simulator delay and slope
values

11.4. Out-of-path Transistors

The variable simOutLoad controls the way out-of-path transistors are modeled.

If simOutLoad is set to dynamic, the tool transforms out-of-path transistors into equivalent
capacitances in the spicedeck. In such a case transistor models are needed for the grid and source/
drain capacitances evaluations.

If simOutLoad is set to transistor, the tool does not transform out-of-path transistors into
capacitances, but just print them in the spicedeck in a blocked configuration. In such a case the
transistor models are not needed. One must be careful with this configuration, as the generated spice
deck may be very big, for a very little accuracy gain.

The load of a file containing transistor models (bsim3_018.tech) at the beginning of the script is
necessary when simOutLoad is set to dynamic.

HITAS User Guide

82

Chapter 12. Analog Sub-circuit
Characterization

12.1. Objective

HITAS is designed to compute propagation delays in digital designs. The advantage of this restrictive
target is to enable very fast computing times. The drawback is that non-digital block characterization
is not directly handled by HITAS and should be supplied to 3rd-party analog simulators. However,
HITAS provides various ways to link with external characterizations.

First, the tool provides the means to choose between integrating a pre-characterization (such as a .lib
or .dtx file) and integrating an on-the-fly characterization (by piloting an analog simulator).

The pre-characterization strategy is easier to set-up, but has the drawback to provide only
one characterization for (potentially) several instances of an analog sub-circuit. The on-the-fly
characterization is a little more difficult to set-up, but provides environment-dependant (PVT, input
slopes, output loads) characterizations, and therefore greater accuracy.

Second, the tool is able to integrate the characterizations within either a pre-layout or a post-layout
timing analysis.

In a pre-layout timing analysis, the source netlist is hierarchical. With appropriate directives, the
tool just ignores the analog sub-circuits during the parse of the netlist. It then constructs the timing
database on the remaining only-digital netlist, and fills the "analog holes" with either pre- or on-the-
fly characterization.

In a post-layout timing analysis, the situation is a little trickier, as the source netlist is the most often a
flat-transistor netlist (if the extracted netlist is hierarchical, the integration process is just the same as
in a pre-layout timing analysis). The challenge is here to identify in the top-level netlist the transistors
that belong to the analog sub-circuits, in order to ignore them and create the "analog holes" and the
remaining only-digital netlist. Assuming that the pre-layout netlist of the analog sub-circuit exists,
the identification in the top-level netlist of the transistors that belong to that sub-circuit is done by
pattern matching.

12.2. Pre-Characterization

In this section, we present how to create a DTX file within a Tcl script, and how to get timing values
from analog simulation results. We then present how to integrate this pre-characterization in the top-
level timing database construction, the latest either being based upon a hierarchical or flat transistor
netlist.

The pre-characterization approach implies that this DTX file should be created before invoking
HITAS on the entire design.

HITAS User Guide

83

12.2.1. Database Construction

The API functions provided with the avt_shell Tcl interface enable the creation of custom timing
databases (DTX files). We will just present here a few of those functions , as well as the global
construction mechanism.

The ttv_CreateTimingFigure function creates the timing database itself. The function takes a netlist
as argument, and builds the interface of the new timing database upon the interface of the netlist
provided. If the new timing database is intended to replace an analog sub-circuit, it ensures interface
consistency between the "hole" in the top-level netlist and the newly created timing database. Note
that the Vdd and Vss names must be specified if they appear on the interface.

The ttv_AddTiming functions add timing arcs in the database.

The ttv_FinishTimingFigure function updates the database.

The ttv_DriveTimingFigure function prints the database on disk (DTX file).

See HITAS Tutorial for example.

12.2.2. Simulator Linking

The construction script described above associates "hard" values to the delays and slopes given as
parameters of the ttv_AddTiming function (timing arc creation). It is the responsibility of the user
to associate pertinent values to the parameters of the ttv_AddTiming function, by all the ways Tcl
scripting provides.

However, the avt_shell Tcl interface also provides means to retrieve the values from analog
simulations results. Provided functions cover:

• Stimuli description and formatting

• Simulator call

• Delay and slope values retrieving

All these functions require the same configuration as the one required for SPICE deck generation.
See HITAS Tutorial for example.

12.2.3. Hierarchical Netlist Integration (Pre-Layout)

The first step to perform when integrating the pre-characterized DTX file within a hierarchical netlist
is the blackboxing of the instances of the analog sub-circuits, in order to obtain "analog holes" in the
netlist. This is done with the avt_SetBlackBoxes function, taking as argument the list of the sub-
circuits to blackbox.

The default behavior of HITAS is not to try to fill the "holes". To tell the tool to fill the holes with
timing characterizations, the tasIgnoreBlackbox variable should be set to yes

The timing arcs for the instances rs_clock_gen are directly integrated in the new database.

See HITAS Tutorial for example.

HITAS User Guide

84

12.2.4. Flat Netlist Integration (Post-Layout)

Obtaining the "analog holes" for a flat netlist is a little more difficult than for a hierarchical netlist, as
the blackboxing mechanism can not be applied. In order to create these holes, HITAS uses a method
based on pattern-matching (the GNS pattern-matching engine). User must provide a transistor pattern
(i.e. a transistor level netlist) of the analog sub-circuit which should be substituted by a custom timing
database. The most common way is to provide the tool with the schematic SPICE netlist of the analog
sub-circuit. The tool then tries to identify the set of transistors in the top-level netlist that matches
the provided pattern. The tool then removes those transistors from the top-level netlist, thus creating
the "analog holes".

The following steps must be performed to activate the pattern-matching method:

• Create a directory for the transistor patterns. The default one should be cells, located in the
working directory. However, it is possible to give any name and location to this directory,
assuming it is specified in the main script with the gnsLibraryDir variable, e.g.:

avt_config gnsLibraryDir ../on-the-fly

• Copy a SPICE netlist of the pattern to match in this directory

• Still in this directory, create the file LIBRARY. This file intends to tell the tool the files in
which it will find the patterns. The LIBRARY name can be changed to any name, assuming
it is specified in the main script with the gnsLibraryName variable.

• Add the following line in the main script to invoke the GNS pattern matching engine:

avt_config yagleUseGenius yes

If HITAS is invoked with the configuration set up to now, it will integrate the timing description
(DTX file) of the "analog holes" corresponding to the removed transistors matching the given pattern.

12.2.5. Netlists Consistency

The pre-characterization process is the same in the case of a flat or hierarchical top-level netlist. It
just requires the netlist of the analog sub-circuit to simulate, in order to obtain the appropriate values
for the timing arcs.

When dealing with a hierarchical netlist, the user should provide a netlist of the analog sub-circuit
coming from the same source as the top-level (schematic editor or hierarchical extractor). Thus both
netlists contain (or not) parasitics, and the analysis is consistent.

When dealing with a flat netlist, it is most of the times in a post-layout approach. Actually, the only
reason for using a flat netlist is that it is sometimes the only output parasitic extractors provide. In
such a case, the top-level netlist contains parasitics, and one must take care that the netlist used for
simulation of the analog sub-circuit also contains parasitics.

12.3. On-the-Fly Characterization

The on-the-fly characterization follows the same principles as the pre-characterization, i.e.:

• Link with an analog simulator

HITAS User Guide

85

• Create a timing database of the analog subcircuit

• Integrate the database in a hierarchical or flat top-level netlist

The difference is that the steps one and two are performed for each instance of the analog subcircuit,
taking into account instantiation-specific parameters (output load). It then provides greater accuracy
but implies a different implementation.

On-the-fly characterization is based upon the GNS pattern-matching engine. The methodology is to
associate an "action" with a matching event i.e., each time the tool identifies a pattern in the top-level
netlist, it executes the corresponding action. Here the corresponding action will be the steps one and
two described above (link with an analog simulator and create a timing database of the analog sub-
circuit).

The difference of implementation lies in the description language used to write the action. As
the pre-characterization method uses the Tcl language, the writing of the "action" for on-the-fly
characterization uses the C language. By the way, the prototypes of the functions used in both cases
are identical.

An action is then typically a C file. The association of an "action" with a pattern takes place in the
LIBRARY file.

12.3.1. Database Construction

Apart from the syntax, the C file used for simulator link and database creation is very close to the Tcl
script used for pre-characterization.

12.3.2. Hierarchical Netlist Integration (Pre-Layout)

The integration of on-the-fly characterization in a hierarchical netlist uses a combination of the
blackboxing and pattern-matching mechanisms.

• The blackboxing mechanism should be used in the same way as in the pre-characterization
approach. It creates the "analog holes" in the top-level netlist.

• The pattern matching mechanism is used to execute the action described above, each time
the tool encounters a pattern matching the "analog hole". As the analog sub-circuit has been
removed from the netlist, no information about the transistor structure of the analog sub-
circuit remains in the top-level netlist. Therefore, the pattern the tool will try to match with the
"analog hole" is just the interface of the provided pattern. The user can provide as a pattern,
either a sub-circuit containing transistors, parasitics and so on, or an empty sub-circuit.

The remaining configuration is the same as in the approach of integration of a pre-characterization
in a flat netlist.

HITAS User Guide

86

12.3.3. Flat Netlist Integration (Post-Layout)

The integration of on-the-fly characterization in a flat netlist also uses a combination of the
blackboxing and pattern-matching mechanisms. Here, the "analog holes" are created by the pattern
matching mechanism itself, as in the integration of a pre-characterization in a flat netlist approach. The
blackboxing configuration (tasIgnoreBlackbox) should not be used. However, it will have no effect
on the netlist itself (as there is no instance to blackbox), but it may have a side effect on the sub-circuit
provided for the pattern matching engine (if the name of the latest appears in the avt_SetBlackBoxes
function, it may be unintentionally blackboxed, making the pattern matching process to fail).

The main advantage of on-the-fly characterization is to provide a specific timing database for each
instance of an analog sub-circuit, depending on instantiation context (e.g. output load). Another
advantage of the on-the-fly approach is that the analog simulations are performed on the transistors
of the sub-circuit matching the pattern provided. Therefore each instance matching the pattern has its
own parasitic information.

HITAS User Guide

87

Chapter 13. Timing Characterization
(.lib)

13.1. Setup and Hold Constraints Formulas

Interface Setup and hold constraints are computed for each latch and register. They are computed with
respect to the following formulas:

setup = data_path_max - clock_path_min
hold = clock_path_max - data_path_min

The following diagram gives an example of clock path and data path.

data

ck

m em
M

t LOOP

F

VDD

VDD-VT

VDD/2

rising t ransit ion of com

t1 t2

com

• Clock path: from ck to com (the command of the latch)

• Data path: from data to mem (the memory point itself).

With such definitions of data and clock paths, the above formulas give optimistic values for setup and
hold times. Therefore, a corrective factor is added to those values. The corrective factor for setup is
called the "intrinsic setup of the latch"; the corrective factor for hold is called "intrinsic hold of the
latch". The formulas now become:

HITAS User Guide

88

setup = data_path_max - clock_path_min + intrinsic_setup
hold = clock_path_max - data_path_min + intrinsic_hold

13.1.1. Setup Correction

For setup time, the calculus is as follow:

• clock_path_min delay is computed at com crossing Vdd/2 (time t1), as the transitor M closes
at time t2: t2 - t1 must be added to clock_path_min

• Setup time must ensure that data is correctly written into the latch, i.e. that data crosses the
feedback loop. This is modeled by adding t_loop to data_path_max.

The formula for setup becomes:

setup = data_path_max + t_loop - (clock_path_min + t2 - t1)

The corrective factor for setup is:

intrinsic_setup = t_loop - (t2 - t1)

13.1.2. Hold Correction

For hold time, the calculus is as follow:

• clock_path_max delay is computed at com crossing Vdd/2 (time t1), as the transitor M closes
at time t2: t2 - t1 must be added to clock_path_max

The formula for hold becomes:

hold = clock_path_max + (t2 - t1) - data_path_min

The corrective factor for hold is:

intrinsic_hold = t2 - t1

13.2. Performing the Characterization

The purpose of timing abstraction is to create a .lib file - containing setup, hold and access
information of the design - from an already existing timing figure. Within the avt_shell Tcl interface,
timing abstraction is performed with the function tmabs

BehFigure is a description of the functionality that can be associated with the design in the .lib file.
For the moment it takes the NULL value.

TimingFigure is the database itself, the one the .lib file will be created from. Timing abstraction
only uses the .dtx file. The database can be obtained by two ways. Through the hitas function, with
the appropriate configuration allowing correct database construction:

avt_config ...
avt_config ...

set fig [hitas my_design]

HITAS User Guide

89

If the timing database has already been constructed, the path view can be obtained from the .dtx file
with the following command:

set fig [ttv_LoadSpecifiedTimingFigure my_design]

Timing abstraction requires additionnal information concerning clock definition (in order to construct
correct setup/hold/access relationships). Clock definition and timing abstraction are then done as
follow:

inf_SetFigureName my_design
create_clock -period 3000 ck
set abs_fig [tmabs $fig NULL * * *]

The -period value is irrelevant but is needed to respect SDC syntax. The .lib file is generated from
the abstracted timing figure abs_fig as follow:

lib_DriveFile [list $abs_fig] NULL my_design.lib max

13.3. Advanced Configuration

13.3.1. Input Slope and Output Load Axis

User-defined input slopes can be defined with the function inf_DefineSlopeRange. This function
affects the way lookup-table axis are constructed. Be aware that inf_DefineSlopeRange should be
applied before calling the hitas function:

inf_SetFigureName my_design
inf_DefineSlopeRange default {100e-12 150e-12 350e-12} custom
set fig [hitas my_design]

The same remarks apply to inf_DefineCapacitanceRange.

13.3.2. Capacitances in the .lib file

By default, capacitance values are given for input connectors only, as an average value. The given
value is the equivalent capacitance allowing to compute the driving gate's delay at vdd/2. Capacitance
ranges as well as different rise/fall capacitances can be obtained by tuning the elpCapaLevel variable
(values 1 or 2).

Capacitances can also be given for output connectors (set tmaDriveCapaOut variable to yes). In such
a case, the output delay is given WITHOUT taking into account the output connector's capacitance.

13.4. Cell Library

Here is given an example Tcl script performing the timing abstraction of a list of standard cells, into
a single .lib file:

avt_config tasBefig yes
avt_config tmaFunctionalityMode w

HITAS User Guide

90

avt_LoadFile ./bsim3_018.tech spice

foreach cell { ao2o22 ff2 inv mux2 na2 } {
 avt_LoadFile $cell.spi spice

 set fig [hitas $cell]
 set beh_fig NULL
 set abs_fig [tma_abstract $fig $beh_fig]

 lappend fig_list $abs_fig
 lappend beh_list $beh_fig
}

lib_drivefile $fig_list $beh_list "stdcells.lib" max

HITAS User Guide

91

Chapter 14. Using the GUI

14.1. Timing Database Browsing with XTAS

14.1.1. Overview

Execution of the HITAS results in the generation of a flat or hierarchical timing database (UTD)
describing, in a compressed form, all the timing paths, cone details and interconnect details in the
design under analysis. Xtas should be used in order to visualize the information in this timing database.
It provides a fast, interactive and user friendly environment in which to perform timing requests. It
also provides the means of performing the full static timing analysis and the visualization of accurate
timing diagrams for any signals which do not satisfy the constraints.

14.1.2. Description

The XTas tool is used after generation of the UTD. It is used in order to interpret the information in
the DTX file. The timing database must first be loaded into XTas. The DTX file contains gate details.
In the case of a hierarchical database, it is the top-level DTX file which should be specified.

After loading the database, reference points (connectors, latches, commands, and precharges) can
easily be visualized. You can then ask XTas to display critical and near-critical paths based on
constraints such as, for example, the display of the ten longest paths ending on a particular point. For
any given critical path, it is possible to display instantaneously paths with the same reference points
but not the most critical; these are the so-called parallel or near critical paths. Optimization of a critical
path is often useless if parallel paths are not similarly optimized.

For any critical or near-critical path, XTas can also instantaneously display the full gate and
interconnection details of the path. Unlike most timing analyzers, this is possible even if the path
traverses several levels of the hierarchy.

Finally, it is also possible to launch the static timing analysis engine from within XTas. In order
to perform this analysis, it is first necessary to create a constraints file (see chapter "Static Timing
Analisys" of this Guide). If this file exists alongside the timing database, then a single button launches
the analysis after specifying a few options. Any violations are displayed in a new window from which
the timing diagrams can be obtained.

14.1.3. Execution

XTAS Command

XTAS is started as follow:

XTAS
Upon entering this command the XTAS main window appears.

HITAS User Guide

92

XTAS Resource File

The file AvtTools/etc/Xtas allows modification of certain characteristics of the graphical interface.
For example, the color and the size of the windows of xtas can be modified in this file.

XTAS Splash Screen

The XTAS main desk window is the starting point for using XTAS. You can choose to use the menus
or the buttons. Buttons are shortcuts giving the same results as a selection in the menus.

The Main window looks like:

14.2. Configuration

The "Config" menu in XTAS provides access to a number of dialogs containing configuration options
affecting the performance and appearance of the graphical database browser. These options are
detailed in the following sections.

14.2.1. Memory Size

The memory size dialog allows the user to set the maximum and the current amount of memory used
as the cache for loading delay and signal details. This dialog looks as follows:

HITAS User Guide

93

14.2.2. Toolbar Buttons

This dialog box allows the user to add or remove Xtas' tool bar buttons. If a button is not checked, it
does not appear in the Xtas' tool bar. The dialog also indicates which action corresponds to the button
and in which menu this action is also available. In addition, the user can customize the button's bar
by checking or not a button. This dialog appears as follows:

A similar dialog is available in the menu "Option" of other windows.

14.2.3. Display Type

This dialog allows the user to choose between a graphical or textual display for the path or delay
windows. The graphical display uses static text boxes and icons whereas the textual one displays
information in plain text. The textual display is recommended for long signal names and long lists as
it has faster display. This dialog appears as follows:

The textual display can be forced as default using the xtasTextualDisplay configuration variable.

HITAS User Guide

94

14.3. Loading the Timing Database

14.3.1. Timing Database

After opening the XTAS main window you need to load a DTX format timing database. Choose open
in the file menu of the XTAS main window.

This button acts like a shortcut for the opening of the
database.

you will then be presented with the XTAS database request dialog. Choose which timing database to
load by selecting it in this dialog.

The default filter can be changed using the xtasDatabaseFilter configuration variable.

14.3.2. Crosstalk Timing Database

It is also possible to load a CTX format timing database containing information given by crosstalk
analysis (See chapter 'Output Files' of the HITAS Reference Guide for further information on this
format).

To do this, you must select the timing database in DTX format in the XTAS database request dialog
(change Filter to "*.dtx" to have access to the list of DTX files). Then, if a corresponding CTX file
exists, the following dialog will appear asking confirmation to load it:

HITAS User Guide

95

14.4. Accessing XTAS Features

14.4.1. Exiting XTAS

Choose exit in the File menu in order to close XTAS.

Clicking this button in the main window will exit XTAS. In
any other window, it will close the current window.

14.4.2. Browsing Connectors

Select Connectors in the View menu of the XTAS main window in order to open the XTAS connectors
window

This button opens the XTAS connectors window.

The XTAS connector window allows viewing of the list of the connectors of the Instance. This list
can be filtered according to name and/or hierarchical level.

14.4.3. Browsing Registers

Select Registers in the View menu of the XTAS main window in order to open the XTAS registers
window

This button opens the XTAS registers window.

The XTAS registers window allows viewing of the list of the registers of the Instance. This list can
be filtered according to name and/or hierarchical level.

14.4.4. Browsing Commands

Select Commands in the View menu of the XTAS main window in order to open the XTAS commands
window

This button opens the XTAS commands window.

The XTAS commands window allows viewing of the list of the commands of the Instance. This list
can be filtered according to name and/or hierarchical level.

HITAS User Guide

96

14.4.5. Browsing Precharges

Select Precharges in the View menu of the XTAS main window in order to open the XTAS precharges
window

This button opens the XTAS precharges window.

The XTAS precharges window allows viewing of the list of the precharges of the Instance. This list
can be filtered according to name and/or hierarchical level.

14.4.6. Browsing Break Points

Select Break Points in the View menu of the XTAS main window in order to open the XTAS break
points window

This button opens the XTAS break points window.

The XTAS break points window allows viewing of the list of the break points of the Instance. This
list can be filtered according to name and/or hierarchical level.

14.4.7. Browsing Internal Signals

Select Internal Signals in the View menu of the XTAS main window in order to open the XTAS all
signals window

This button opens the XTAS all signals window.

The XTAS all signals window allows viewing of the list of all internal signals of the Instance. This
list can be filtered according to name and/or hierarchical level.

14.4.8. Browsing Paths

Select Get Paths in the Tools menu of the XTAS main window in order to open the XTAS get paths
window

This button opens the XTAS get paths window.

The XTAS get paths window allows the setting of numerous parameters. From these parameters
XTAS will display the selected critical paths.

HITAS User Guide

97

14.4.9. Browsing Delays

Select Get Delays in the Tools menu of the XTAS main window in order to open the XTAS get delay
window

This button opens the XTAS get delay window.

The XTAS get delay window allows the setting of numerous parameters. From these parameters
XTAS will display the selected max delays.

14.4.10. Stability Analysis

Select Stability in the Tools menu of the XTAS main window in order to open the XTAS stability
parameterization window

This button opens the XTAS stability parameterization
window.

The stability parameterization window allows you to specify the stability and/or crosstalk analysis
options and then performs the analysis.

14.4.11. Common applications

From any window in XTAS it is possible to identify the use and associated menu of any of the Xtas'
tool bar buttons. To do this, open the XTAS Button Configuration window from the Options menu.

The following functions are available from most of the window types:

Clicking this button will make the XTAS main window
appear at the foreground.

This button closes the current window.

This button opens the XTAS Signals Info window.

This button opens the XTAS Crosstalk Info window.

If the INF file has been modified during a XTAS session (for example for false path information), it
is possible to reload it from the File menu.

HITAS User Guide

98

14.5. Browsing Timing Signals

This section describes timing signals browsing features. Example is given below for memory
elements. Browsing of connectors, commands, precharges, break points and internal signals is done
the same way.

Open the XTAS Registers window in order to display the memory elements.

Clicking this button opens the XTAS registers window.

The following options are available:

Signal Mask You can give the name of a particular register in order to
display this register. The '*' is a wildcard you can use to
select a set of signals whose names will fit the conditions
you have given. The default value is '*' and will display all
the registers.

Figure name This is the name of the database you have load in XTAS

Instance name This is the name of the instance whose registers you are
looking for.

List This option opens the Hierarchy window. It displays the
hierarchy of the figure, and allows you to select another
instance. It is possible to make the search through all levels.
An On-Line help is available for this option in the hierarchy
window.

Items You can set the number of registers you want to display in
the Information Area. The resulting list will be given either
in a single page or on several pages depending if the number
of registers is greater than the value given.

Search Displays the registers in the Information Area.

Signals List If the number of register is greater than the figure for Item
XTAS will give the registers list on several pages. The
signals list allows you to access all the signals. If the number
of register is inferior to the value given, there is only one
page.

After Search, this option shows information on a selected
signal.

The resulting XTAS Registers window of a Search looks like:

HITAS User Guide

99

Double clicking on a register displays more information about that register in the XTAS Signals Info
Window.

14.6. Browsing Critical Paths

14.6.1. General Procedure

Open the XTAS Get Paths window in order to select options for displaying critical paths.

Clicking this button opens the XTAS Get Paths window.

The XTAS Get Paths window looks like:

HITAS User Guide

100

This window is the first step to viewing the critical paths of the instance. Use the options to set criteria
for displaying critical paths.

14.6.2. Options

You can use the following options in the XTAS Get Paths window:

Start Text Box
This text box describes the regexp (including *) to be matched for the beginning signal
of the path. The Start button permits browsing of path extremity signals in the loaded
figure.

End Text Box
This text box describes the regexp (including *) to be matched for the terminating
signal of the path. The End button permits browsing of path extremity signals in the
loaded figure.

Clock(s) Text Box
This text box describes the regexp (including *) to be matched for the clock signal
when viewing access.

Time Bounds
These text boxes indicate the time bounds between which paths must be found.

Request Type
Choose the search criteria. When choosing to view "Paths and Access" the "Clock(s)"
text box becomes available.

Slopes Mask
Select here the desired types of transitions between the start signal and the end signal.

HITAS User Guide

101

Max/Min
The Max button performs the search for the longest paths. The Min button performs
the search for the shortest paths.

Order by
These buttons select the source signal of the paths search. In order to reduce computing
time, the signal (start or end) with the most restrictive mask must be chosen.

Search Level
These text boxes allow limiting of the path search to certain levels of hierarchy. The
List button allows selecting of instances. By default, search is performed in all levels
of hierarchy.

14.6.3. Critical Paths Display

XTAS display the XTAS Critic Paths Window:

Each line in the window corresponds to a critical path. The name and transition of the path terminals
are given, together with the path delay and output slope.

Select a register signal in the list to get all the paths that
end on the command of this register by clicking on this
button. It will open the XTAS Get Paths window with the
End Text Box filled with the name of all the commands of
that register.

HITAS User Guide

102

14.7. Browsing Near Critical Paths

14.7.1. Overview

Near critical paths (or parallel paths) are paths with the same terminals as a critical path. Optimization
of a critical path is often useless if parallel paths are not similarly optimized.

14.7.2. Options

In the XTAS Critic Paths window open the XTAS Get Parallel Paths in order to view the near critical
paths.

Clicking this button opens the XTAS Get Parallel Paths
window.

The XTAS Get Parallel Paths window looks like:

This window is the first step to viewing the near critical paths.

The following options are available:

Signals Bounds The On Path text box describes the regexp (including *) to
be matched for intermediary signals of the parallel path. The
On Path button permits browsing of signals in the loaded
figure.

Slopes Mask Select here the desired type of selection of the intermediary
signal. Available types of selection are:

• And: All signals must appear on parallel paths.

• Or: At least one signal must appear parallel paths.

• Not: the signals must not appear on parallel paths.

HITAS User Guide

103

Max/Min The Max button performs the search for the longest paths.
The Min button performs the search for the shortest paths.

Order by These buttons select the source signal of the paths search.
In order to reduce computing time, the signal (start or end)
with the most restrictive mask must be chosen.

Time Bounds These text boxes indicate the time bounds between which
paths must be found. Only critical paths or all paths can be
searched, by selecting or not the button Critical Paths.

Search Level These text boxes allow limiting of the path search to
certain levels of hierarchy. The List button allows selecting
instances. By default, search is performed in all levels of
hierarchy.

14.7.3. Near Critical Paths Display

XTAS display the XTAS Parallel Paths Window:

14.8. Browsing Path Details

14.8.1. Overview

If a DTX file has been generated, it is possible to display elementary gate or RC delays according
to certain criteria.

HITAS User Guide

104

14.8.2. Options

In the XTAS Main window open the XTAS Get Delay window in order to view elementary delays.

Clicking this button opens the XTAS Get delay window.

The XTAS Get Delay window looks like:

The following options are available:

Start Text Box This text box describes the regexp (including *) to be
matched for the beginning signal of the path. The Start
button permits browsing of path extremity signals in the
loaded figure.

End Text Box This text box describes the regexp (including *) to be
matched for the terminating signal of the path. The End
button permits browsing of path extremity signals in the
loaded figure.

Slopes Mask Select here the desired types of transitions between the start
signal and the end signal.

Max/Min The Max button performs the search of the maximum
delays. The Min button performs the search of the minimum
delays.

Order by Those buttons select the type of delay to be searched. RC
means interconnect delays, Gate means Gate delays.

HITAS User Guide

105

Time Bounds Those text boxes indicate the time bounds between which
paths must be found. Only critical paths or all paths can be
searched, by selecting or not the button Critical Paths.

Search Level Those text boxes allow the search of paths in but chosen
levels of hierarchy. The List button permits to select
instances. By default, search is performed in all levels of
hierarchy.

14.8.3. Delay Display

Xtas display the Xtas Delay Max Window:

Each line in the window corresponds to an elementary delay or timing arc. The input and output
transitions of the timing arc are given, as well as the delay and the output slope. The type icon identifies
the delay as corresponding to a gate or RC interconnection.

14.9. CPE Path Simulation

14.9.1. Overview

When designers use an electrical simulator such as ELDO or HSPICE to obtain path timing
information, the path must be extracted manually and appropriate stimuli provided. XTAS can
automate this procedure for any identified path.

From the XTAS Path Detail window, it is possible to run a simulation with the electrical simulator
of your choice. You need only to configure the simulation parameters. Path extraction and stimuli
generation are automatic.

HITAS User Guide

106

In a new XTAS Path Detail window, you can compare results given by HITAS with these given by
the simulator.

14.9.2. Options

Clicking this button opens the XTAS Simulation
Parameterization window.

The XTAS Simulation Parameterization window looks like:

This window is the first step to simulate a path.

The following options are available:

Technology File Click on the Open button to choose the directory of the
technology file and select it in the list. This is equivalent to
the avtTechnologyName configuration variable.

Simulation Tool Allows the user to choose the electrical simulator he
wants to use and the corresponding command line. He
can also specify the output format generated by the
simulator and the file format for stdout redirection. It
is equivalent to the simToolModel, the avtSpiceString,
the avtSpiceOutFile and the avtSpiceStdoutFile

configuration variables respectively. Checking the "Use
Print" box allows getting an array of value for a node, it is
equivalent to setting simUsePrint configuration variable to
"yes". Checking the "Use Measure" box specify to extract

HITAS User Guide

107

value from waveform using combination of arithmetic
expressions, it is equivalent to setting simUseMeasure
configuration variable to "yes".

Constraints Allows the user to set the input/output constraints
parameters for simulation. Specify the input slope start time
and the transient time of the input slope in picoseconds.
Specify the output capacitance value in Femto-farads. It is
equivalent to the simInputStartTime and the simSlope
and the simOutCapaValue configuration variables.

Conditions Allows the user to set the simulation conditions like the
duration (in nanoseconds), the maximum voltage (in Volts)
and the temperature (in degrees Celsius). It is equivalent
to the simTransientTime, the simPowerSupply and the
simTemperature configuration variables respectively. The
user can also specify the spice options to be driven
into the spice file for simulation it is equivalent to the
simSpiceOptions configuration variable.

Thresholds Allows the user to set the thresholds of a slope as a
percentage of VDD. It is equivalent to the simVth, the
simVthHigh and the simVthLow configuration variables.

Step Allows the user to set the transient calculation step
for the simulation in nanoseconds. Equivalent to the
simTransientStep configuration variable.

14.9.3. Simulation Path Display

Xtas displays the Xtas Simulated Critic Max Path Detail Window:

HITAS User Guide

108

For all timing arc data (Slope, Delay and Total) there are two columns:

These columns give the values obtained with the static
timing analysis.

These columns give the values obtained with the selected
simulator.

14.10. Path Visualization

14.10.1. Overview

It is possible to view a graphical representation of a path.

14.10.2. Options

Clicking this button opens the XTAS Path Visualization
window.

The XTAS Path Visualization window looks like:

This window is the first step to visualize a path.

There are two modes of representation:

Highlight displays all the circuit and highlights the selected path.

Extract displays only the selected path.

14.10.3. Path Visualization Display

Xtas displays the following window:

HITAS User Guide

109

14.11. Browsing Delays

14.11.1. Overview

If a DTX file has been generated, it is possible to display elementary gate or RC delays according
to certain criteria.

14.11.2. Options

In the XTAS Main window open the XTAS Get Delay window in order to view elementary delays.

Clicking this button opens the XTAS Get delay window.

The XTAS Get Delay window looks like:

HITAS User Guide

110

The following options are available:

Start Text Box This text box describes the pattern (including *) to be
matched for the beginning signal of the path. The Start
button permits browsing of path extremity signals in the
loaded figure.

End Text Box This text box describes the pattern (including *) to be
matched for the terminating signal of the path. The End
button permits browsing of path extremity signals in the
loaded figure.

Slopes Mask Select here the desired types of transitions between the start
signal and the end signal.

Max/Min The Max button performs the search of the maximum
delays. The Min button performs the search of the minimum
delays.

Order by Those buttons select the type of delay to be searched. RC
means interconnect delays, Gate means Gate delays.

Time Bounds Those text boxes indicate the time bounds between which
paths must be found. Only critical paths or all paths can be
searched, by selecting or not the button Critical Paths.

Search Level Those text boxes allow the search of paths in but chosen
levels of hierarchy. The List button permits to select
instances. By default, search is performed in all levels of
hierarchy.

14.11.3. Delay Display

Xtas display the Xtas Delay Max Window:

HITAS User Guide

111

Each line in the window corresponds to an elementary delay or timing arc. The input and output
transitions of the timing arc are given, as well as the delay and the output slope. The type icon identifies
the delay as corresponding to a gate or RC interconnection.

14.12. Static Timing Analysis and Signal Integrity

14.12.1. Overview

It is possible to launch the static timing analyzer with or without the crosstalk analysis from within
XTas. In order to perform this analysis, it is first necessary to create a constraints file (.inf file). If this
file exists alongside the timing database, then a single button launches the analysis after specifying a
few options. Any violations are displayed in a new window from which the timing diagrams can be
obtained and the noise analysis can be launched.

14.12.2. Static Timing Analysis Results

Launching the Analysis

In the XTAS Main window open the XTAS in order to begin the static timing analysis.

Clicking this button opens the XTAS Stability
Parameterization window.

The XTAS Stability Parameterization window looks like:

HITAS User Guide

112

This window is the first step of the static timing analysis.

Loading Switching Windows

If static timing analysis has been performed on the current figure, the user can directly load the results
from the .sto file.

Crosstalk Analysis Parameterization

The user can choose to perform the static timing analysis with full handling of crosstalk effects. If this
box is checked, the user has access to the crosstalk analysis parameterization area. See the HITAS
Reference Manual for more detailed explanations of the configuration options.

Crosstalk Analysis Type
In the "Remove Non-Aggression" mode, all aggression is assumed initially. In the
"Detect Aggression" mode, no aggression is assumed initially. In addition to that mode,
you can check the box "Observable Only" in order to have less pessimistic results.

No More Aggressions Stop Conditions
These are conditions for stopping slope recalculation when no further aggression is
detected or removed: "Min Slope Change" represents the minimum significant slope
variation in picoseconds (equivalent to the stbCtkMinSlopeChange configuration
variable) and "Max Iteration Number" represents the maximum number of
recalculation iterations (equivalent to the stbCtkMaxLastIter configuration variable).

HITAS User Guide

113

Crosstalk Model
Capacitance For Delays

Is equivalent to setting the rcxCtkModel configuration variable:
"0C 1C 2C" corresponds to the MILLER_0C2C value, "OC to
2C" corresponds to the MILLER_NOMINAL value and "-1C to
3C" corresponds to the MILLER_NC3C value.

Noise For Delays
Is equivalent to setting the rcxCtkNoise configuration variable.

Aggression Margin
Is equivalent to setting the stbCtkMargin configuration variable.

Slope For Noise
Is equivalent to setting the rcxCtkSlopeNoise configuration
variable.

Slope For Delays
Is equivalent to setting the rcxCtkSlopeDelay configuration
variable.

Options
The crosstalk analysis can generate a report file (.ctk), which contains delay changes,
detailed aggression reports and noise estimation. You can set lower limits to avoid
reporting excessive information:

Minimum delta delay
Equivalent to the ctkDeltaDelayMin configuration variable.

Minimum delta slope
Equivalent to the ctkDeltaSlopeMin configuration variable.

Minimum noise
Equivalent to the ctkNoiseMin configuration variable.

Minimum crosstalk
Equivalent to the ctkCapaMin configuration variable.

In order to manage the memory more efficiently, you can choose to use a cache and
give its size in Megabytes. The bigger the cache, the faster the analysis. It is equivalent
to setting the avtParasiticCacheSize configuration variable.

Stability Parameterization

Analysis type The best case analysis is performed by assuming that in
the initial conditions, latch transparency is at maximum.
The worst case analysis is performed by assuming that
in the initial conditions, there is no latch transparency. In
Multi-Interval mode, all switching windows are maintained

HITAS User Guide

114

whereas in Mono-Interval mode, they are merged into a
single interval for setup/hold verification. To perform the
crosstalk analysis, the Mono-Interval mode is required. See
HITAS Reference Guide for further information.

Monophase Latch In the Flip-Flop mode, a latch clocked on the same phase
than the latch generating its input data is assumed to be a
flip-flop. In the Transparent mode, a latch clocked on the
same phase than the latch generating its input data is always
transparent. In the Error mode, a latch clocked on the same
phase than the latch generating is input data is not allowed,
and an error is reported. See HITAS Reference Guide for
further information.

Level In the All Levels mode, constraints are calculated using
all paths throughout the hierarchy. In the Top Level mode,
constraints are calculated using only the paths at the top
level (i.e. the interconnections at the top level).

Error Type In the Setup mode, only errors due to setup time violations
are reported. In the Hold mode, only errors due to hold time
violations are reported

Error Reports In sto mode, a .sto file is driven. This file contains the
switching windows of all the signals in the figure. In str
mode, a .str file is driven. This contains the signals on which
a setup or hold violation occurs. For each error on a signal,
the corresponding origin signals are also reported.

Error Report The Error Margin is added to the hold and setup constraints
of the figure. For example, if there is an error margin of
100ps, a signal with a setup or a hold time below 100ps will
be reported as an error.

Information File Specification for the stability analysis can be loaded from
information file. Click on the 'Open' button to choose this
file. It is possible to merge information from several files.
In that way, you have to select files one by one setting
the 'Complete' option. If you want to erase all information
to load a new one, choose the 'Replace' option. If the
avtReadInformation File is set, no need to do this
operation, unless you want to merge another information.
About the information file see the chapter 'Input File' of the
HITAS Reference Guide.

HITAS User Guide

115

The Crosstalk Analysis Results

After performing crosstalk analysis from within XTAS, all delays are subsequently given with
crosstalk effect values (see HITAS Reference Guide for further information). To view these new delay
values you have to open the critic path detail window (see section 'Viewing Path Details').

The Violating Signals Display

Any reference points for which the timing checks show errors re displayed in the static timing analysis
results window.

In order to understand the violations, it is possible to display detailed timing diagrams for any terminal
in the circuit.

Click on this button to open the signal Selection dialog.

Enter the name of any terminal in this dialog. If you selected a signal in the list of errors this signal is
given by default. When you click on OK then XTAS displays the Debug... window.

The XTAS Debug window looks like:

HITAS User Guide

116

The Input Signals List displays the input terminals of the paths which give rise to violations at the
specified signal.

Selecting an input signal displays a timing diagram giving the signal switching windows of the path
terminals as well as illustrating the required timing constraints.

14.12.3. Noise Analysis

Overview

Coupling capacitance has the effect of generating noise on signals. The Noise Analysis calculates
upper and lower peak voltages on a signal as a result of any aggression due to crosstalk. Then XTAS
displays the results of the analysis as a list of signals sorted according to the peak noise value.

Analysis

The Noise Analysis needs to obtain information on aggressor and victim signals from memory. So
Crosstalk Analysis must have been run from XTAS before launching the Noise Analysis. In the Static
Timing Analysis Results window open the noise window in order to begin the Noise Analysis.

Clicking this button opens the XTAS Noise
Parameterization window.

The XTAS Noise Parameterization window looks like:

HITAS User Guide

117

This window is the first step of the noise analysis.

The user can configure the results display by giving the number of item he wants to view per page.

Noise Analysis Results

The Noise analysis results window looks like:

The results are displayed as a list of signals with their noise information. To check which signals
present a risk of crosstalk errors, a score based place is performed. There are four criteria: one for
the crosstalk impact and three for the probability the aggression occurs. Each of these criteria gives
a mark on 10 points.

Each line of the results list gives the following information on the corresponding signal:

General Information
• The rank in descending order of peak noise value

• The static level of the signal (High or Low).

• The signal name.

Rise and Fall Peak Information
• The electrical model used to evaluate peak noise.

• The "real" noise calculated considering possible switching configurations of
aggressors.

HITAS User Guide

118

• The maximum noise calculated with all aggressors considered active.

Scores
• Global: the total score computed with weighting provided by user (see next

section).

• Noise: the impact of the noise peak. A mark of 10 means the noise peak
reaches or exceeds the static threshold of the following gate.

• Interval: the part of aggressors which crosstalk can be simultaneously active
at the same time.

• Crosstalk: the number of significant aggressors. The more the mark is about
10, the more the most significant part of crosstalk is due to a few number of
aggressors.

• Activity: the activity of aggressor. For now, only aggressors located on a path
clock are supposed to be always active, weighted by the part of crosstalk
capacitance to this aggressor.

The user can find the same information in the Noise section of the Crosstalk Report (.ctk file). See
HITAS Reference Guide for further information.

The user can sort the results on his favorite criterion by clicking on the corresponding button. The sort
is always in descending order. The first five buttons from the right allows to sort on the corresponding
score (Global, Noise, Interval, Crosstalk or Activity). The other criteria, based on the noise peak value,
are the following:

Inside Alim Max
Signals are sorted on the maximum peak noise value, according to their level. This
means that if the level of a signal is High, the selected peak noise value is the maximum
fall peak noise value. If the level of a signal is Low, the selected peak noise value is
the maximum rise peak noise value.

Inside Alim Real
Signals are sorted on the real peak noise value, according to their level. This means
that if the level of a signal is High, the selected peak noise value is the real fall peak
noise value. If the level of a signal is Low, the selected peak noise value is the real
rise peak noise value.

Rise Peak Max
Signals are sorted on the maximum rise peak noise value, regardless of the static level.

Rise Peak Real
Signals are sorted on the real rise peak noise value, regardless of the static level.

Fall Peak Max
Signals are sorted on the maximum fall peak noise value, regardless of the static level.

Fall Peak Real
Signals are sorted on the real fall peak noise value, regardless of the static level.

HITAS User Guide

119

Scores Configuration

In the Noise Analysis Results window the user can configure the scores coefficients and minimum
values.

Clicking on this button opens the Scores Configuration
window.

The Scores Configuration window looks like:

This window allows the user to set two parameters for each score (Noise, Interval, Crosstalk and
Activity). The first one is the weighting to compute the global score obtained by each signal. The
second one is the minimum value required for the signal to be reported in the results list. These actions
are equivalent to set the following configuration variables:

Noise stbCtkCoefNoise and stbCtkMinNoise.

Interval stbCtkCoefInterval and stbCtkMinInterval.

Crosstalk stbCtkCoefCtk and stbCtkMinCtk.

Activity stbCtkCoefActivity and stbCtkMinActivity.

Crosstalk Information

In the Noise Analysis Results window the user can access crosstalk information.

Selecting a signal and clicking on this button opens the
Crosstalk Information window.

The Crosstalk Information window looks like:

HITAS User Guide

120

General This part gives the signal state and its name. It gives also
the ground capacitance and the total crosstalk capacitance
on this signal.

Noise This part displays the electrical noise on the signal as it
is specified in the Noise Analysis Results window (See
previous section). Vth is the static threshold of the following
gate.

Aggressors List This part gives the list of the signal aggressors. Each line
indicates the aggressor signal Name, its Net Name, the
kind of influence it has on the victim and the coupling
capacitance on the victim due to this aggressor.
If the signal does not appear on the line, there is no
corresponding timing signal. As no stability information is
provided for this signal, the crosstalk engine assumes that
this signal is always an active aggressor.

If the character 'B' or 'W' or both are present on a line, this
means that the aggressor can modify minimum propagation
delays (B = Best Case) or maximum propagation delays (W
= Worst Case).

If the character 'R' or 'F' or both are present on a line,
this means that the aggressor has made a contribution to
calculate the real rise (R) peak noise value or the real fall
(F) peak noise value.

These characters can appear in lower case ('b','w','r','f') when
crosstalk mutex are used. This means the influence of the
signal is ignored because of the crosstalk mutex.

HITAS User Guide

121

Aggressors can be sorted by the signal name or by the
capacitance value using the button at the top of the
corresponding column. Successive press on the button sort
alternatively in ascending or descending order.

The user can find the same information in the Crosstalk section of the Crosstalk Report.

HITAS User Guide

122

Chapter 15. Managing Big Designs

HITAS offers a set a variables dedicated to speed up execution or to limit the use of memory.

Memory-use strategies can be classified in three categories: the ones that use disk cache, the ones
removing non-critical information, and the ones reducing the number of objects to treat by introducing
sharing. Disk-caching strategies are accuracy lossless, but can severely impact execution runtimes.
Object-sharing strategies try to use the same model for objects having close shapes. It can be really
efficient, and is done in such a way that accuracy is preserved.

Execution speeding-up is most of the times done by keeping more objects in memory. However, it can
also be correlated with the memory-use sharing strategies, as they limit the number of objects to treat.

15.1. File Compression and Disk Caching

HITAS is able to make a system call to any compression command. To get this mechanism work
for input files, one only needs to set two variables: avtInputFilter for specifying the compression
command to use, and avtFilterSuffix, in order to tell the tool which files it should apply the
compression command on, for example:

avt_config avtInputFilter "gzip -d"
avt_config avtFilterSuffix ".gz"

avt_LoadFile my_design.spi spice

This will load seamlessly my_design.spi or my_design.spi.gz.

If avtOutputFilter is used, all output files will be compressed with the specified command and will
have the suffix avtFilterSuffix.

The stmCacheSize, avtMaxCacheFile and avtParasiticCacheSize allow disk caching for very
big design.

15.2. Information removal

Non-critical information can be removed through the variables avtNoTransistorName and
tasShortNamesForModels.

15.3. Object sharing

Object sharing can be applied to the Timing Models, through the stmShareModels variable.

HITAS User Guide

123

15.4. Execution Speed-up

Speeding-up strategies are essentially performed for crosstalk analysis, through variables
stbCtkFastMode and rcxFastMode.

HITAS User Guide

124

Chapter 16. Glossary

16.1. Logical Description

Subcircuit Base object of a hierarchical description. The subcircuit
is defined by its components, which may be elementary
objects (transistors, resistances, capacitances...) or instances
of other subcircuits.

Cell Predefined subcircuit, only containing elementary objects,
that may be selected and arranged to create custom or semi-
custom integrated circuit.

Instance Call of a subcircuit in a specific context

(Logical) Signal Object carrying logical information between instances or
elementary objects

Connector Object carrying the logical information of a signal through
the interface of an instance.

16.2. Physical Description

RC network Connected set of R and C devices

Net Individual RC network linked to a logical signal. The RC
network presents a resistive path between connectors of
connected instances. Capacitances are substrate or coupling
ones.

Node Single point in a RC network

16.3. Timing Description

(Timing) Signal Point of the circuit where the timing propagation of the
logical information is measured. Whereas the logical signal
is linked to a net, the timing signal is linked to a node.
Indeed, as propagation delays in RC networks must be
taken into account, it is necessary to measure the timing
propagation of the logical information on several points of
the net. The methodology in HITAS is to associate a timing

HITAS User Guide

125

signal with each terminal node of a net. As a result, several
timing signals may exist where only one logical signal exist.

Event Rising or falling logical transition on a timing signal

Reference point Timing signal where timing checks must be performed:
input or output connectors, latch, precharge, latch or
precharge commands.

Path List of timing signals, from reference point to reference
point, through which logical information is carried

Break point User defined reference point

HITAS User Guide

126

Index

No index for this document.

	1. Software Installation
	1.1. System Requirements
	1.2. What the Distribution Provides
	1.3. Scope of the Installation
	1.4. Performing the Installation
	1.5. Setting-up the Environment
	1.6. The FLEXLM Licence Server

	2. Overview
	2.1. Static Timing Analysis
	2.2. Signal Integrity Analysis
	2.3. Applications
	2.4. Key Features

	3. Theory Understanding
	3.1. Principles
	3.2. Timing Database Generation
	3.2.1. MOS Characterization
	3.2.2. Netlist Disassembly
	3.2.3. Timing Arcs
	3.2.4. Timing Models
	3.2.5. Timing Paths

	3.3. Timing Database Analysis
	3.3.1. Database Analysis Flow
	3.3.2. Static Timing Analysis
	3.3.3. Crosstalk Analysis
	3.3.4. Path Searching
	3.3.5. Timing Abstraction

	4. Scope of Usage
	4.1. Introduction
	4.2. HITAS Basic Assumptions
	4.2.1. Circuit Partitioning
	4.2.2. Timing Arcs
	4.2.3. Current Characterization
	4.2.4. Algorithm Assumptions

	4.3. HITAS Digital Structures
	4.3.1. CMOS Gates
	4.3.2. Pass-Transistor and Transmission Gate Logic
	4.3.3. Clocked CMOS Logic
	4.3.4. Static Latches and Flip-Flops
	4.3.5. Dynamic Latches

	4.4. HITAS Analog Structures
	4.4.1. Sense Amplifier
	4.4.2. Differential Amplifier
	4.4.3. Voltage Generator
	4.4.4. Typical Analog Devices

	5. Design Flow Integration
	5.1. Transistor-Level Analysis
	5.2. Full-Chip Analysis
	5.3. Input Files
	5.3.1. Netlist
	5.3.2. Parasitics
	5.3.3. Technology
	5.3.4. Timing characterizations
	5.3.5. Timing Constraints

	5.4. Output Files
	5.4.1. Disassembly
	5.4.2. Timing Database Generation
	5.4.3. Static Timing Analysis
	5.4.4. Crosstalk Analysis
	5.4.5. Abstraction

	6. Using Tcl Interface
	6.1. Script Launch
	6.2. Tools Configuration
	6.3. Error Policy
	6.4. Objects
	6.5. Functions

	7. Timing DB Construction
	7.1. File Loading
	7.1.1. Transistor Technology Models
	7.1.2. Input Netlist
	7.1.3. Parasitics

	7.2. DB Construction
	7.2.1. Defining Power Supplies
	7.2.2. Defining Simulation Thresholds
	7.2.3. Defining Simulation Temperature
	7.2.4. Invoking DB Construction

	7.3. Output Files
	7.3.1. REP file
	7.3.2. LOOP file
	7.3.3. CNS, CNV files
	7.3.4. DTX and STM files

	7.4. Latch Detection and Modeling
	7.4.1. Detection Sequences
	Manual Identification
	Simple Detection
	Automatic Detection
	Dynamic Latches Detection

	7.4.2. Enabling Detection Sequences

	7.5. Static Latch Modeling
	7.5.1. Asynchronous Set and Reset
	7.5.2. Manual Configuration
	7.5.3. Intrinsic Setup and Hold
	Intrinsic Setup
	Intrinsic Hold

	7.6. RS-Latches
	7.6.1. Modeling of NOR-based structures
	All States Allowed
	Legal States Only

	7.6.2. Modeling of NAND-based structures
	All States Allowed
	Legal States Only

	7.6.3. Fine Tuning
	7.6.4. Manual Tuning

	7.7. Symmetric Latches
	7.7.1. Symmetric Pulldown
	Typical Structure
	Latch Nodes and Commands
	Timing Arcs

	7.7.2. Symmetric Bitcell
	Typical Structure
	Latch Nodes and Commands
	Timing Arcs

	7.7.3. Asymmetric Pulldown
	Typical Structure
	Latch Nodes and Commands
	Timing Arcs

	7.8. Dynamic Latches
	7.9. Special Elements
	7.9.1. Transmission Gates
	7.9.2. Transmission Gate Multiplexers
	7.9.3. Domino Precharge

	7.10. Case Analysis
	7.11. Integrating External Timing Abstractions

	8. Timing DB Browsing
	8.1. Timing DB
	8.2. Details Browsing
	8.3. STA Browsing

	9. Static Timing Analysis
	9.1. Performing the Analysis
	9.2. Output Files
	9.3. Tcl Reports
	9.4. Timing Checks
	9.4.1. Input to Latch
	Inputs Specifications
	Timing Checks Description
	Setup Slack
	Hold Slack

	9.4.2. Latch to Latch
	Timing Checks Description
	Setup Slack
	Hold Slack

	9.4.3. Latch to Output
	Output Constraints
	Setup Slack
	Hold Slack

	9.5. Skew Compensation
	9.6. Multicycle Paths
	9.7. Tips
	9.7.1. Disabling Master-to-Slave Timing Checks

	9.8. On-Chip Variation
	9.9. Clock Schemes Handling
	9.9.1. Clock Dividers
	9.9.2. Pulse Generators
	9.9.3. RS-based Clock Generators

	10. Crosstalk Analysis
	10.1. Requirements
	10.2. Understanding Crosstalk in STA
	10.2.1. The Issues Involved
	10.2.2. Algorithm
	10.2.3. Delay Calculation
	10.2.4. Noise Calculation

	10.3. Running the Crosstalk Analysis
	10.4. Output Files
	10.5. Browsing Crosstalk Analysis Results
	10.5.1. Crosstalk Impact on Delays
	10.5.2. Crosstalk Noise
	10.5.3. Browsing Information on Event
	10.5.4. Browsing Local Crosstalk Impact on Delay
	10.5.5. Browsing Aggressor

	10.6. Score-Based Result Analysis

	11. Spice Deck Generation
	11.1. Simulator Configuration
	11.2. Spice Deck Generation
	11.3. Spice Deck Simulation
	11.4. Out-of-path Transistors

	12. Analog Sub-circuit Characterization
	12.1. Objective
	12.2. Pre-Characterization
	12.2.1. Database Construction
	12.2.2. Simulator Linking
	12.2.3. Hierarchical Netlist Integration (Pre-Layout)
	12.2.4. Flat Netlist Integration (Post-Layout)
	12.2.5. Netlists Consistency

	12.3. On-the-Fly Characterization
	12.3.1. Database Construction
	12.3.2. Hierarchical Netlist Integration (Pre-Layout)
	12.3.3. Flat Netlist Integration (Post-Layout)

	13. Timing Characterization (.lib)
	13.1. Setup and Hold Constraints Formulas
	13.1.1. Setup Correction
	13.1.2. Hold Correction

	13.2. Performing the Characterization
	13.3. Advanced Configuration
	13.3.1. Input Slope and Output Load Axis
	13.3.2. Capacitances in the .lib file

	13.4. Cell Library

	14. Using the GUI
	14.1. Timing Database Browsing with XTAS
	14.1.1. Overview
	14.1.2. Description
	14.1.3. Execution
	XTAS Command
	XTAS Resource File
	XTAS Splash Screen

	14.2. Configuration
	14.2.1. Memory Size
	14.2.2. Toolbar Buttons
	14.2.3. Display Type

	14.3. Loading the Timing Database
	14.3.1. Timing Database
	14.3.2. Crosstalk Timing Database

	14.4. Accessing XTAS Features
	14.4.1. Exiting XTAS
	14.4.2. Browsing Connectors
	14.4.3. Browsing Registers
	14.4.4. Browsing Commands
	14.4.5. Browsing Precharges
	14.4.6. Browsing Break Points
	14.4.7. Browsing Internal Signals
	14.4.8. Browsing Paths
	14.4.9. Browsing Delays
	14.4.10. Stability Analysis
	14.4.11. Common applications

	14.5. Browsing Timing Signals
	14.6. Browsing Critical Paths
	14.6.1. General Procedure
	14.6.2. Options
	14.6.3. Critical Paths Display

	14.7. Browsing Near Critical Paths
	14.7.1. Overview
	14.7.2. Options
	14.7.3. Near Critical Paths Display

	14.8. Browsing Path Details
	14.8.1. Overview
	14.8.2. Options
	14.8.3. Delay Display

	14.9. CPE Path Simulation
	14.9.1. Overview
	14.9.2. Options
	14.9.3. Simulation Path Display

	14.10. Path Visualization
	14.10.1. Overview
	14.10.2. Options
	14.10.3. Path Visualization Display

	14.11. Browsing Delays
	14.11.1. Overview
	14.11.2. Options
	14.11.3. Delay Display

	14.12. Static Timing Analysis and Signal Integrity
	14.12.1. Overview
	14.12.2. Static Timing Analysis Results
	Launching the Analysis
	Loading Switching Windows
	Crosstalk Analysis Parameterization
	Stability Parameterization
	The Crosstalk Analysis Results
	The Violating Signals Display

	14.12.3. Noise Analysis
	Overview
	Analysis
	Noise Analysis Results
	Scores Configuration
	Crosstalk Information

	15. Managing Big Designs
	15.1. File Compression and Disk Caching
	15.2. Information removal
	15.3. Object sharing
	15.4. Execution Speed-up

	16. Glossary
	16.1. Logical Description
	16.2. Physical Description
	16.3. Timing Description

