Avertec Tools

GNS
User Guide

Software Release 3.4p5

June 7th, 2010

fa%

Avertec Copyright (c) 1998-2006 All Rights Reserved

GNS User Guide

About this Document

This document explains:

» Theinput formats supported

* How to perform the hierarchical recognition
o User constraints

 How touse GNS

Documentation issued and compliant with Avertec Tools Release 3.4p5.

Please contact support@avertec.com for comments relating to this manual.

GNS User Guide

Table of Contents

1. Hierarchical recognition With GNS ..o 9
I B @ 1V =T 1 PP TR 9
N D 1T ox o)1 o P 10
1.3. Hierarchical Generic RECOGNITIONcccuvuiiiiiiiiiiiiie e eanes 10
1.4, Integration With Yagleoouiiiiiiiiiiie e eaeaes 11
2. Configuration Variables ... 12
2.1, LICENSE SEIVEI ...ttt e e e e e e e e e e e et e e e et bbb as 12
2.2, ENVIFONIMENT ittt e e e e e e e et e et et et bbb e e e e e e e e e e e eaaeeeeeeennenes 12
2.3, NAIMES <.ttt e e e e e e e e e e e e nr e e e ennaans 12
2.4, Pattern MatChiNgGcoooiiiiiiii e e e e e aaaaaa 14
2.5. Hierarchical Pattern MatChingccoouuuiiiiiiiiiiiii e 15
2.6. APl SPECITIC .. 16
3. Performing the Hierarchical Recognitioncoooviiiiiiiiiiiiii e 18
I J0t R B T2] 0 (o PRSPPI 18
3.2. EXECULION MOUES ...t e e e e e e e bt bbb s 18
3.3. 0OptioNs AVAIIADIEco o 19
G J0 S @ 11 | o1 U) 1 = SPPPPS 19
4. Defining Recognition Rules and ACLIONSuuiiiiiiiiiiiiie e 20
I I =TT o3 o) (o o ISP 20
4.2. The Recognition MOUEIScoiiiiiiiiiie e e e e aeens 20
4.2.1. The Transistor Level MOAEIS ... 20
4.2.2. The Hierarchical MOEISccooiiiiiiiiiiii e 21
4.2.3. Generic Hierarchical MOEIS ..o 22
4.2.4. Exploiting Generic Variables ... 24
4.3. VHDL Recognition Rules Referencecccccoeviiiiiiiiii i 26
A4, TNE ACHONS ..ottt e e e e e e e e ettt e e aa bbbt e e e e e e eeeeeeaaeeeessnneees 29
g R 1Y/ 0T PP 29
4.4.2. SUPPOITEA OPEIALOIScciiiiiiiii ettt e e e e e e e e e e e aaa s 30
A.4.3. FUNCHONS ...ttt e e e e e e e e ettt et et bbbt r e e e e e e eaeaeeeeeeenenes 30
4.4.4. Loops and conditional StatemMeNntscoouuuiiiiiiiiiiiiii e 31
4.4.5. DYNAMIC LIDIAIIES ..cooviiiiiiiiiii e e e 31
4.5. The LIBrary Fileoo e e e e e eaaes 32
4.6. Symmetry and CoUPINGoovuiiiiiii e 34
A.7. Other PRAGMAS ...ttt e e e e e e e e e e eeeaebaaeaes 37
5. Extending GNS with Dynamic Librariescccooviiiiiiiiiiiciici e 38
5.0, OVEIVIEW ...ttt ettt s e e e e e e e e e e e e ettt e ettt bbb a e e e e e eeeeaaeeeeennnnes 38
LI B 1T] 01 o o IR OPRSPPPPRN 38
5.3. Integrating the APIs in an Avertec Tool FIOW ..o 38
6. Creating a User-Defined Dynamic Library API ... 39
0t I D TS T o] o1 0] o RSP RSPPIPIN 39

GNS User Guide

6.2. Executing the Genapi TOOIuuiiiiiiiiiiiiiii s 39
7. API Functions Available ... 40
7.1 GINS BUIIE-IN Lottt e e e e e e e 40
4% 0 O o = g (o T 11 o SRR UPRRRN 40
4% 7 o = T | A (o T o | USSP 40
4% RS T o =] o To | A (o T = C: U 40
4% o =] To | (o T o1 = WP 40
4% T o = o o] [o [(o T o | SR 41
4% R T o [=Toto] (o [(o TN 15 C- SRR 41
4% S R o [=Tox o] (o [(o T o Yo - SR 41
7.1.8. gENIUS_TALE ...ttt e e e e e e e e e e 41
7.1.9. gNS_MOAEIVISITEA ...ttt e e e e e 41
7.1.10. gnS_MarkMOAEIVISIEEAcoeviiiiiiiiieiieii e 41
7.2. Transistor NetlisSt RECOGNITIONoviiiiiiiiiiiiieeee e 42
7.3. Available Markingsoooiiiiiiiii e 42
7.3.1. fcIMarkCorrespondingSIgNaleeeeeeiiiiiiiiiieee e 43
7.3.2. fcIMarkCorrespondingTranSISTOrooiiiiiiiiiiiiiie e 44
7.3.3. fclOrientCorrespondingSigNalc..cuuueiiiiiiiiiiiiee e 44
7.3.4. TCICMPUPCONSITAINT ..o 44
7.3.5. TCICMPDNCONSIIAINT ... 44
7.3.6. TCIMUXUPCONSIIAINT ...ttt e e e e e e e e aeeas 44
7.3.7. TCIMUXDNCONSIIAINT ...ttt r e e e e e e eaeeas 44
7.3.8. TCIAIIOWSNAIE ..o 44
7.4, GNS RECOGNITION .coiiiieiiiiii ittt e e e e e e e e 45
T.4.1. gNS_STHPNELIST ..o 45
7.4.2. gnS_SHPNEtlSTFUITNETuiiiiiiiiee e 45
7.4.3. gNS_SETLOAMuiiiiiiiiiiiiii i a e 45
7.4.4. gns_FlattenNEtliStcoooiiiiiii e 45
T.4.5. gNS_Fre@NEtlISTooviiiieiieeeee e 46
T.4.6. gNS_AAARC ...t 46
7.4.7. gns_SetMOdElASLEATcooiii e 46
7.4.8. gNS_REAUCEINSIANCEccoiiiiiiiiieeee e 46
7.4.9. gNS_KEEPINSIANCEovviiiiiiiee et 46
7.4.10. gns_AddEXIerNalTranSIStOrSuiiiiiiiiiaaiieieie i a7
A o | o VA =Y X o PP PPPPUPPPPPPP a7
7.4.12. gNS_DIIVENELIST ..o a7
7.4.13. gNS_GEINETIST ..o a7
7.4.14. gnS_DUpliCAatENETlIStouieiiiiiiiiiiie s a7
7.4.15. gns_GetiNStanCeNEtlIStccccuiiiiiiiiiiiii e 48
7.4.16. gns_GetCorrespondingSigNalcoooeiiiiiiaiiiiiiiii e 48
7.4.17. gns_GetSIgNalNEAIMEoooiiiiiiii e 48
7.4.18. gNS_GetINSTANCENEGIMEuiuiiiiiiie e 48
7.4.19. gns_GetInStanCceMOdeINAIMEeiiiiiiiiiiiiiiieee s 48
7.4.20. gns_GetModelSIgnalRaNgecccccuiiiiiiiiiiiei e 48
7.4.21. gns_GetModelCONNECIONLISEuuiiiiiiiiiiiiiieee e 49
7.4.22. gns_GetINStanCeCONNECTONcciiiieieiiiiiieee et 49

GNS User Guide

7.4.23.
7.4.24.
7.4.25.
7.4.26.
7.4.27.
7.4.28.
7.4.29.
7.4.30.
7.4.31.
7.4.32.
7.4.33.
7.4.34.
7.4.35.
7.4.36.
7.4.37.
7.4.38.
7.4.39.
7.4.40.
7.4.41.
7.4.42.
7.4.43.
7.4.44.
7.4.45.
7.4.46.
71.4.47.
7.4.48.
7.4.49.
7.4.50.
7.4.51.
7.4.52.
7.4.53.
7.4.54.
7.4.55.
7.4.56.
7.4.57.
7.4.58.
7.4.59.
7.4.60.
7.4.61.
7.4.62.
7.4.63.
7.4.64.
7.4.65.
7.4.66.
7.4.67.
7.4.68.

ONS_GEUINSTANCEeeiiiii et e e e e e e e eeennnnes 49
ONS_GEtCONNECIONCAPA ..vvviviieee ettt e e e 49
ONS_GEtCONNECIOTLIST ..oeiiiiiiiiiiee e 49
gNS_GetCoNNECOrDIFECHIONuuuiriiiiiiiiiiiiiiee e 49
gNS_GEetCONNECIONNEAIMEuviiiiiii e 50
gNS_GetCoNNECIOrSIGNAlcoooviiiiiiei e 50
gNS_GEetMOdelSIgNAILISTuuiiiiiiiiiiiiiiiie e 50
ONS_ISSIGNAIEXIEINALcoeiiiiiiiiiieeee e 50
ONS_VECIONIZE ...ttt ettt e et e e e e e e e e e e e e e e e e e e 50
ONS_VECIONZE2D ..ottt 50
gns_GetInstanceCoNNECTOILISTuuuiiiiiiiiiiiiiiiiiie e 50
gns_GetAllCorrespondingINSLaNCEScccciiiiiiiiiiiiiiiieiee e 51
gns_GetAllCorrespondinginstanceModelscccoviiiiiiiiiis 51
gns_GetCorrespondingTranSIStOrcccccuuiiiiiiiiiiiiei e 51
gns_GetAllCorrespondingTranSISIOrScoooiiciiiiiiiiiiiiiiieeee e e e 51
gNS_GetTranSISIONGIIAoooiiiiiiiii e 51
ONS_GEetTranSISIOIDIAINcoiiiiiiiieeieeii e e e e 51
ONS_GEtTraNSISIOISOUITEuiiiiiiiiiiiiiiieiee e e e e 52
ONS_GEtTraNSISIOITYPE ...uiiiiiiiiiiieee ettt e e e as 52
gns_GetTransSiStorTYPENAMEcoooiiiiiiii e 52
gNS_GetTranSiStOrParamMEtereeeeiiiiiiiiiiaaeeee s 52
gNS_GetTranSISIOINAMEooiiiiiiiiiii e 52
gns_GetAllTransistorsConnectedtoSignaloooiiiiiiiiiiiiiiiiiiieeeeeee e 52
ONS_VECTONMNUEX .ottt e e 53
ONS_VECIOIRAICALuviiiiiiiiiiiiiiiiee e 53
gNS_CreateVhdINAME ... 53
gns_ChangelnstanceModelNaMEeooiviiiiiiiiiiiiii e 53
ONS_GEESIGNAI ... 53
ONS_GEECONNECION ...ttt e e e e e e e eees 53
ONS_GEITIANSISION ...ttt e e r e e e e e e e e eeeeas 54
gnNS_AWE_GetWOrStINSIANCEcooiiiiiiieieeie e 54
gnS_AWE_GetBeStINSIANCEcooouuiiiiiiii e 54
gns_AWE_KeepBestINStanCeooiiiiiiiiiii e 54
gns_AWE_KeepWOrStINSTANCEccooviiiiiiiiiiiii e 55
gns_AWE_GetOrderedInstancelndeXccooviiiiiiiiiiiiiiiiiieee e 55
gns_GetINStanCeLOOPINAEXuiiiiiiiiiiiiiieee e 55
gns_GetINStanCeLOOPREANGEuuuuiiii it 55
gns_GetCorrespondingINStaNCEcccccuuuiiiiiiiiiiiiiieie e 55
gns_GetCorrespondinglnstanceConnectorSignalevvciiiiiiiiieeeeeeneneee. 56
gns_GetCorrespondingINstanceNameooooiiiiiiiiiiiiiiiiie e 56
ONS_GEIGENEIIC ...ttt e et e e e e e e e eeeeas 56
ONS_GELCUITENTAICIT .ot 56
gNS_GetCurrentMOodel ... 56
gNS_GetCUITENTINSTANCEiiiiii e 56
CAUITUNC e e e e e e e eas 57
gNS_DriveSpPICENELlISIGIOUPoooviiiiiiii e 57

GNS User Guide

7.4.69. gNS_AUUCAPA ..eiiiiiiieieeieei et e e 57
T.4.70. gNS_AUURESI ... 57
7.4.71. gNS_AdALINERC ... 57
T.4.72. gNS_RUNGNS .ot e e e e e e e e e 57
7.4.73. gNS_DESrOYGNSRUNcoooiiiiiiiie e 58
7.4.74. gNS_ENerGNSCONIEXL ... 58
7.4.75. gNS_EXIEGNSCONTEXE ...ceiiiiiiiiiieiieee e e e 58
7.4.76. gns_GetBIackbDOXNELIISTuuuuiiiiiiiiiiiiiiei e 58
TAT7. gNS_ISTOPLEVEL ... 58
7.4.78. gns_RenamelnStanCeRIQUIE ... 58
7.4.79. gnS_FIlIBIACKBOXEScooiiiiiiiiii e 59
7.4.80. gns_ChangeNetlisStNamMe ... 59
7.4.81. gnS_GetGNSTOPLEVEISccooiiiiiiiii e 59
7.4.82. gNS_CULINELIST ... a e e 59
7.4.83. gnS_ShoWOULSIAEINTO ... 59
7.4.84. gnS_REJECT _INSTANCE ..ottt 60
7.4.85. gNS_KEEP_INSTANCE ...t 60
7.4.86. gNS_REJECT _MODELoiiiiii e 60
7.4.87. gNS_KEEP_MODELooiiiiiiii ettt 60
7.4.88. gns_GetWorkingFIQUIENAIMEoiiiiiiiiiiiieiaaaee e 60
T.4.89. ONS_ISVSS .ot 61
7.4.90. gNS_ISVA ... a e e as 61
7.4.91. gNS_ISBIACKBOXutiiiiiiiiiiiiiiiiiieee et 61
7.4.92. gns_GetSIigNalVoRageuuuieiiiiiiiiiii e 61
7.4.93. gns_GetSignalVoltag@SWINGeeeeeeeiiiiiiiieeeeeeeeee e 61
7.5, UHIIEY e e e e e e e e e e e e e e e e 61
7500 FOPEIN ettt e e 62
7.5.2. TCIOSE .ttt 62
A TR T 1 01 0] QS Yo] SRR 62
7.5.4. MBDK _FrEELIST ..evetiiiiiiiiii e e e e ettt a e e e e e e e e e e e eeeaeennnees 62
7.5.5. MDK_GELLISHIEEIM ..o e e e e e e e e e eeeaenees 62
AT T 1] o) Qe (o | 111 (= o R 63
7.5.7. MBK_APPENALIST ... 63
7.5.8. MK _GELLISINEXLciiiieeeeee ettt e e e e e e e e e e e e eeeeeenennnnns 63
TR TR 1] o G = o (o]] SRR 63
7.5.10. mbk_NewHashTabIle ... 63
7.5.11. mbK_FreeHashTabIlecoooiiiiiiiiii e 63
7.5.12. MbK_AdAHASHITEM ... e e e e eeeeaneees 64
7.5.13. MbK_GetHaShItEM ..o e 64
7.5.14. mbK_ISEMPLYHASNITEM ... 64
7.6. DAADASE ... 64
4L % S o 11 o T I - T 64
A I o 11 o S T = SR PPURPRT 64
AL TR T o 11 o 4 [>T o SRR 65
T7.6.4. AtD_SEICNAN ...euuiiiiiiii e e e e e e e e e e e aeaaeae 65
7.6.5. Ath_SEISIING ..eeeiiiiiiiiiie e 65

GNS User Guide

7.6.6. AtD_SEILONG ..oiiiiiiiieee i 65
AL o 11 o TS T o PP 65
7.6.8. dth_SetDOUDBIEeeeiee e 65
7.6.9. dth_GetDOUDIEeeiiiieie e 66
AL 0 0 TR o 11 o T = 11 | R PPPPUPURTR 66
7.6.11. Ath_ GEILONG ..eeeiiiiiiiiiiie ittt e e 66
7.6.12. Ath_GEISIIING ..eeeeeeiiiiiieiie ettt e e e 66
7.6.13. Ath_GeLCRNAI ... 66
7.6.14. dtb_REMOVEENTIY ..o 67
A 0 R T o 11 o O (== (= USRI 67
7.7. SPICE SIMUIATION ..eiiiiiiiiiiiiiii et e e 67
7.7.1. SIM_SetSIMUIATOITYPE ..ottt 67
7.7.2. SIM_Creat@CONTEXLEuuueeeiiiiee e e e e e e ettt eeeaaes 67
7.7.3. SIM_CreateNetliStCONTEXEuuuiiiieeeee e 68
7.7.4. SIM_GetCONIEXINETISTeveiiiiiei e 68
7.7.5. SIM_SEtDEIAYVTH ... 68
7.7.6. SIM_SetSIMUIatioNSIOPEoooiiiiiiiiii e 68
7.7.7. SIM_SetSIMUIAtIONTIME ..eueiiiiiiieiee e e e e e e es 68
7.7.8. SIM_SetSIMUIAtIONSTEP ...cooeiii e 68
7.7.9. SIM_SetSImUlatiONSUPPIY ...eeriiiiiieiiieeee e 69
7.7.10. SIM_SEINPUESWING ..oiiiiiiiiiiiii et e e e e e e e s 69
7.7.11. SIM_SetOUIPUESWING .eeeiiiiiiiiiiiiiiiiie i e e e e e e e e e e e 69
7.7.12. SIM_GetSIMUIAtiONSUPPIY ...eeriiiiiiiiiieiee e 69
7.7.13. sim_AddSimulationTeChnNOFIleouuiiiiiiii e 69
7.7.14. sim_SetSImulationCalloooomiiiiiii e 69
7.7.15. SIM_NOISESEtANAIYSETYPE ..ottt 70
7.7.16. sim_SetSimulatioNOULPULFIIE ... 70
7.7.17. SIM_AAASTUCKLEVE ... e e e e e e eeeeaeees 70
7.7.18. SIM_AdASTUCKLEVEIVECION ..ot 70
7.7.19. SIM_AdASTUCKVORAGE ... 70
7.7.20. SIM_AAASIOPE ..ot 71
7.7.21. sim_SetEXternalCapacitanCe ...t 71
7.7.22. SIM_AdAWAVEFOIM ...t e e e e e e e e e e eeeeeeneees 71
7.7.23. SIM_AAAINITLEVEI ..o 71
7.7.24. SIM_AAAINIEVOITAGE ...eeeieeieiieieieiii e 71
A2 T =111 1 T Y [0 [@ 0 Io - 1o I 71
7.7.26. SIM_AAAMEASUIEcoiiiiieeeeeiieeee ettt e e e e e e e e e e e e e eeeeeenannn s 72
7.7.27. SIM_AJAMEASUIECUITENT ..eeeeeeeiiieiiieee e e e e e e e e ettt e s e e e e e e e e e e eeeeeeeneennnnns 72
7.7.28. SIM_RUNSIMUIALION ..o e e e e e e e e eeeeeaeennnnes 72
7.7.29. SIM_EXIraCtMINSIOPEeiiiiiiiiiiiiiieee et 72
7.7.30. SIM_EXIraCtMaXSIOPEuuiiiiiiiiiiiiiiiie it 72
7.7.31. SIM_EXIraCtMINDEIAYuuuiiiiiiiiiiiiiiiieie e 72
7.7.32. SIM_EXIraCtMaXDEIAYuuuuiiiiiiiiiiiiiiiiieee s 73
7.7.33. sim_ExtractMIinTranSitioNDEIAYcooouiiiiiiiiiiiiieee e 73
7.7.34. sim_ExtractMaxTransitioNDEIAYccoooouriiiiiiiiiii e 73
7.7.35. sim_EXtractMINTranSitioNSIOPecooviiiiiiiiiiiii e 73

GNS User Guide

7.7.36.
7.7.37.
7.7.38.
7.7.39.
7.7.40.
7.7.41.
7.7.42.
7.7.43.
7.7.44.
7.7.45.
7.7.46.
1.7.47.
7.7.48.
7.7.49.
7.7.50.
7.7.51.
7.7.52.
7.7.53.
7.7.54.
7.7.55.
7.7.56.
7.7.57.
7.7.58.
7.7.59.
7.7.60.
7.7.61.
7.7.62.
7.7.63.
7.7.64.
7.7.65.
7.7.66.
7.7.67.
7.7.68.
7.7.69.
7.7.70.
7.7.71.
7.7.72.
7.7.73.
1.7.74.
1.7.75.
7.7.76.
1.7.77.
7.7.78.
7.7.79.
7.7.80.
7.7.81.

Sim_EXtractMaxTransitioNSIOPecooooiiiiiiiiiiii e 74
SIM_COMPULIESETUD ..ttt r e e e e e e e e e eee s 74
SIM_COMPULEHOIT ... 74
SIM_COMPULEBACCESS ...ceeiiiiiiiiieaaee ettt e e et e e e e e e e e e e e e e e e e e a e 75
elp_GetCapaFroMCONNECTIONoooiiiiiiiiiii e 75
SIM_COMPULEDEIAYcooiiiiiiiii e 75
sim_ComputeMaxDelayTranSitioncooooiiiiiiiiiiiieeeee e 75
sim_ComputeMinDelayTranSition ... 75
SIM_GetTIMINGFTOMLISTeeeiiiiiiiiiiee e 76
SIM_GEtTIMINGNEXL ...ttt e e e 76
SIM_GETTIMING .ottt r e e e e e e e e e aeeeeas 76
SIM_GetTIMINGBYEVENT ... 76
SIM_GetTimINgDeElayoooiiii e 76
SIM_GetTimMINGMINDEIAYooviiiiiiiieiiee e 76
SIM_GetTimINGMAaXDEIAYcouviiiiiiiiiiiiie et 77
SIM_GetTIMINGSIOPE ..o 77
SIM_GetTiMINGMINSIOPEoeiiiiiiiiiie et 77
SIM_GetTimMINGMAaXSIOPEcooviiiiiiiiieei e 77
SIM_GEetTIMINGROOTL ..o 77
SIM_GetTIMINGNOAEoooiiiiiiiiiiiiiee e 77
sSim_GetTimiNgROOLINNELISToooiiiiii e 78
sim_GetTimingNodelNNEtlSt ... 78
SIM_GetTIMINGROOIEVENT ...t 78
SIM_GetTimINgNOEEVENT ... 78
SIM_NOISEEXITACTcceiiieeeeeeee e e e e e e e e e 78
SIM_NOISEGEIVIN ... 79
SIM_NOISEGEIPEAKLISTvvviiiiiiii e 79
SIM_NOISEGEIMOMENTLISTcceeeiiieeeeeee e e 79
SIM_NOISEGEIMOMENT ...t e e e e e e e e e e e eeeeeeennne 79
SIM_NOISEGEIPEaKVAIUEoeeiiiiiiieie e 79
SIM_NO0ISeGetPeakMOMENLccooiiiiiiieeeeeer e 79
sim_NoiseExtractMaxPeakValueooooviiiiiiiiiiiiiieeeeee 80
sim_NoiseExtractMinPeakValueoooouiiiiiiiiiiii e 80
sim_NoiseExtractMaxPeakMOmMEeNtccoooiiiiiiiiiiiiiiiiiiee e 80
sim_NoiseExtractMinPeakMOmMENTuiiiiiiiiiieeeeeeeeeeeee e 80
sim_NoiseGetMomentBefOorePeakcooeeiiiiiiiiieiiiiiiiieee e 80
Sim_NoiseGetMOMENTATIEIPEAKcccoveiii i 81
SIM_DIVENOAESTALEcceiiiieeeiieiiiee e e e e e e e e e e e eeeeeeennnes 81
Sim_EXtractCommUEINSTANTcooiiiiiie e 81
SIM_DriveTranSiStOrASINSTANCEcooeeiiiiiiiieeeie e 81
SIM_AJASPICEMEASUIE ...ttt 81
SIM_AddSPICEMEASUIESIOPEcooeiiiiiiiieiet e 82
sim_AddSpiceMeasureDelay ..ot 82
SIM_REAUMEASUIEeeeiiiii i e e e et e e e e e e e e e aeeeees 82
SIM_RESEIMEASUIESoviiiiiiiiiiie e ettt e e e e e e e e e e e e re e eeeas 82
SIM_GetSPICEMEASUIESIOPEoiiiiiiiiiiiiiee s 82

GNS User Guide

7.7.82. SIm_GetSpiCeMeasUreDElaYeeiriiiiiiiiiiii e 83
7.7.83. SIM_SPICEMEASUIEoooiiiiiiiiieee ettt e e e e e 83
7.7.84. SIM_SPICEMEASUIEDEIAYeeiiiiiiiiiiiiiiee e 83
7.7.85. SIM_SPICEMEASUIESIOPEeeeeiiiieiiiiiieeee et 83
7.7.86. SIM_DefiNEINCIUAEccooiiiiiii e e e eeeaeaeees 84
7.8. BEhAVIOr GENEIALIONeiiiiiiiiiiiiiee ettt 84
7.8.1. DEGCIEAEMOUENoeiiiiiiieiiieieee e 84
7.8.2. DEGCIEAIEPONT ... 84
7.8.3. begCreateModelFrOMCONNECIONSuuiiiiiiiiiiiiiiiie e 84
7.8.4. begCreateModellNterfaceccoooiiiiiiiiiii e 84
7.8.5. begCreatelNterfacCeooooiiiii e 85
7.8.6. begRenameSignalsFromMOodel ... 85
7.8.7. DEGASSIGN ...ttt e e e e e 85
7.8.8. DEGAAUBUSDIIVEcooiiiiiieii ittt 85
7.8.9. DEGAAUBUSEISEoiiiiiiiiiiiiiiie ettt 86
7.8.10. DegAddBUSDIIVEILOOD . ..oiiiiiiiiit ettt 86
7.8.11. begAddBUSDIiVErDOUBIELOOPuvviiiiiiiiiiiiiieeeeee e 87
7.8.12. DEGAAAMEIMDIIVET ...ttt e e e e e e e e e e e e e 87
7.8.13. begAddMEMDIIVEILOOP ...ooiiiiieeiiieii et 87
7.8.14. begAddMemDriverDOUDBIELOOPuuiiiiiiiiiiiiiieeeeee e 88
7.8.15. DEgAdAMEMEISE ... 88
7.8.16. DEGSAVEMOUENoeiiiiiiiiiie e 88
7.8.17. DEGKEEPIMOUEI ... 88
7.8.18. DegDeStrOYMOUEIcoooiiiiiiii e 89
7.8.19. DEGVECIONZE ...t e e e e e e e e e e e e 89
7.8.20. DEGVAIVECIONZE ...oviiiiieiieeeeeee ettt 89
7.8.21. DEGVECIOIRANGEeiiiiiiiiiiiiiiiie i e e e e e e e e e e e e e e 89
7.8.22. begAddWarniNngCRECKcoooi i 89
7.8.23. DEGAAAEITOICRNECKooiiiiiiiiiiiee et 89
T.8.24. DEOSONT ...ttt e et ettt aaaaaaaaeas 89
7.8.25. DEGCOMPACT ...cooiiiiiiiiii e a e e as 90
7.8.26. DEGSEIDEIAYeeiiiiiiiiiiiee e 90
7.8.27. DegBUIIAMOUEI ... 90
7.8.28. begBuildCompactMOodelccuuiiiiiiiiiiiiei e 90
7.8.29. DEGBITEIIZE ... 90
7.8.30. DEGAAUSEIECIDIIVET ...t e e 90
7.8.31. DEGEXPOIT ..ottt 91
7.8.32. DEGIMPOIT ...ttt e e e e e e e e e e e e e e e 91
8. Creating a User-Defined Dynamic Library APl ..., 92
8.1, DESCIIPUION .ttt ettt ettt e b nne e 92
8.2. Executing the Genapi TOOIccooiiiiiiiii e 92
O. EITON IMESSAUES .. .oiiiiiiiiiiiiiti ettt a e e e e e e e e et e e e e et e e e e e e e 93
9.1. WArNiNG MESSAUTEScoeiiiiiuiiiiiiiiiitiee ettt et et et e e e e e e e e e e e e st e e e e e e e e eeeeeeeas 93
9.2, FALAI EITOISuiiiiiieeeiieeeee et 93
00 = TP TP PP PPPPPPPPP 96

GNS User Guide

Chapter 1. Hierarchical recognition
with GNS

1.1. Overview

The use of automatic toolsin thedesign of integrated circuits allowsthe generation of complex circuits
made up of alarge number of blocks of identical structure. In many cases these blocks represent a
significant part of the circuit, and require a particular attention of the designer during verification in
order to validate the structure generated by the automatic design tools.

The Yagle tool automatically generates a functional description without requiring any a priori
knowledge of the circuit. This capability is ideal in the case of digital circuits made up of many
diversified structures. However, rule-based recognition, the alternative to the automatic approach, is
significantly more efficient in the handling of repetitive structures. Furthermore, pattern matching is
the only way to cope with mixed analog / digital designs.

Embedded memory cores are the perfect example of the use of regular, repetitive structures. A
large part of the design is made up of the arrays of memory cells together with analog blocks for
pre-charging and amplification. Such designs can be represented by highly compact, hierarchical
structural descriptions.

GNS allowsthe user to provide hierarchical abstraction rulesin asimilar way to the original structural
description.

Hierarchical recognition of regular structure blocks from transistor level allow to perform faster
validation on high complexity circuits. Performing the validation at transistor level guarantees the
precision of thevalidation, sincethetransistor level isthe most accurate description of thefinal circuit.

GNS provides the means for today's circuit designers to satisfy the demand for rapid time-to-market
whilst enhancing the robustness of their validation strategy.

The most important application of the GNS tool are:
» Combined structural and functional verification of custom blocks.
» Automatic functional characterization of embedded memory cores.
» High speed formal verification of extremely large, regular designs, such as memory cores.
» Verification of in-house structural design rules.

GNS User Guide

1.2. Description

The GNStool offers designersthe possibility of writing generic rulesto verify the structural integrity
of al or part of their circuits. Each recognition rule is written in a syntax compatible with VHDL.
Therulesarefully hierarchical, allowing concise descriptions of complex structures. In addition, each
rule can be made generic, meaning that interconnections of arbitrary numbers of components can be
represented.

e The input file is a netlist of transistors (including capacitances and resistances of the
interconnecting wires) extracted from the layout in SPICE format.

» GNSIsolates al circuit structures matching the user-defined recognition rules.

» Each recognition rule can be associated with an ACTION which is executed upon validation
of therule.

» ACTIONS can be used for example to customize VHDL or Verilog code generation for
particular structures.

1.3. Hierarchical Generic Recognition

GNS combines functional and structural verification in a single tool. Structural verification is
performed by the application of user-defined hierarchical rules, starting at the transistor-level. These
rules, written in VHDL, specify interconnections of afixed or arbitrary number of components. The
structure of even complex circuit architectures can be fully described.

Behavioral models can be automatically generated even for totally generic structures. Thisis done by
associating actions with the recognition rules. Each actionisasmall program, written by the user, ina
subset of 'C' which dynamically generatesthe model based upon the sizes of the recognized structures.

10

GNS User Guide

1.4. Integration with Yagle

With the addition of the GNS module, Yagle is a complete functional abstraction solution.
This technology, coupled with the FCL technology to isolate basic building-blocks, alows rapid
verification of the regular structuresin a design using compact user-defined rules.

Rules
+
Actions

Hierarchical
Recognition
GNS
Unrecognized Recognized
Elements Models
Automatic Method Execution of

Actions

Yagle

—— S ———

Hierarchical Netlist
Behavioral Behavioral
Model Models

The circuit is automatically partitioned into regular and non-regular parts. Yagle calculates a
functional model which seamlessly integrates with the models generated by GNS to allow simulation

and verification of the complete design.

11

GNS User Guide

Chapter 2. Configuration Variables

2.1. License Server

avtL icenseSer ver
<string>

avtL icensePr oj ect
<string>

2.2. Environment
avtLibraryDirs
<string>
avtBlackboxFile

<string>

avtCatalogueName
<string>

2.3. Names

avtVddName
<string>

avtVssName
<string>

Hostname of the machine running the license server

Project name. Used in license logging.

The set of library directories which are scanned for required
subcircuits.

Name of the file containing the cells to exclude of analysis.

File containing alist of subcircuits to be considered as leaf cells
when flattening a design. Each line in this file refers to a single
subcircuit, with the format <subci rcui t > C. The default value
IS CATAL.

Name of any signal or connector which is to be considered as
power supply (a* inthe name matchesany string). Several names,
separated by : , may be specified.

Name of any signal or connector which is to be considered as
ground (a * in the name matches any string). Several names,
separated by : , may be specified.

12

GNS User Guide

avtGlobalVddName
<string>

avtGlobalVssName
<string>

avtCaseSensitive
yes

no

preserve

avtl nstanceSepar ator
<char >

Name of an internal signal to be considered as power supply (a*
in the name matches any string). Signals in different subcircuits
of ahierarchical netlist with aname given here will be considered
as equipotential and thisnamewill be used in the flattened netlist.
Thisisidentical to the use of the .GLOBAL directive in a spice
netlist. Several names, separated by : , may be specified.

Name of an internal signal to be considered as ground (a * in
the name matches any string). Signalsin different subcircuits of a
hierarchical netlist with a name given here will be considered as
equipotential and this name will be used in the flattened netlist.
Thisisidentical to the use of the .GLOBAL directive in a spice
netlist. Several names, separated by : , may be specified.

Upper and lower case characters are distinct
Upper and lower case characters are seen asidentical

Default, upper and lower case characters are seen asidentical but
the original caseis preserved

Character used to separate instance names in a hierarchical
description. Default valueis.

avtFlattenK eepsAllSignalNames

yes

no

avtVectorize

When flattening a netlist, each signal keeps al its names through
the hierarchy.

Default, only one name (the shortest) is kept per signal.

Controls the internal representation of vector-signals.

13

GNS User Guide

yes

no

<string>

Default, vector-signalsare represented internally asvectors, asfar
as the vector indexation is one of [], <>, _. For example, if both
foo[1], f oo<1>andf oo_1 appear in the sourcefile, they will all
be represented internally asf oo 1

Vector signals are represented internally as they appear in the
sourcefile.

Explicits the vector-signals indexations that will be interpreted
as vectors, and the represented internally as vectors. string isa
comma-separated list of single or paired delimiters. For example,
if string is setto"[],_", only foo[1] and foo_1 will be
represented internally asf oo 1.

Specia attention should be paid to the Verilog case. Verilog only accepts [] as
legal vector indexation. Legal verilog vectors are represented internally as vectors if
avt Vect ori ze isdifferent to no.

Illegal Verilog vectors are supported and controlled by avt Vect ori ze as far as they
areescaped and avt St ruct ural Veri | ogVect or s iSset toyes. For example, \ f oo<1>
Is represented internally as a vector if avt St ruct ural Veri | ogVect ors IS Set to yes
and avt Vect ori ze is set to <>.

2.4. Pattern Matching

fclLibraryName
<string>

fclLibraryDir
<string>

fclGenericNM OS

<string>

Name of thefile containing thelist of cellsin the user-defined cell
library used. The default isLI BRARY.

Access path to the directory containing the user-defined cell
library used. Default isadirectory / cel | s inavt Wor kDi r .

A colon separated list of transistor model names which the
FCL pattern-matching engine considers will match to any N-
typetransistor. If apattern netlist contains non-generic N-channel
transistorsthen thesetransistorswill only match to transistorswith
an identical model. Default ist n: TN.

14

GNS User Guide

fclGenericPM OS

<string>

fclWriteReport
yes

no

fclAllowSharing
yes

no

fclCutM atchedTransistors
yes

no

fclM atchSizeT oler ance
<int>

fclTracel evel
<int>

fclDebugM ode

<i nt>

A colon separated list of transistor model names which the
FCL pattern-matching engine considers will match to any PMOS
transistor. If a pattern netlist contains non-generic P-channel
transistorsthen thesetransistorswill only match to transistorswith
an identical model. Default ist p: TP.

A correspondencefileiscreated if the-fcl optionisused. Thisfile
details al the recognized instances.

Default

Matched cells are allowed to share transistors.

Default

Matched transistors are eliminated from the transistor netlist.
Resultsin astrict partitioning of the cones and the matched cells.

Default

Percentage tolerance for matching transistor sizes.

Number greater than 0. Trace information is displayed during the
pattern-matching phase.

Number greater than 0. Additional debugging information is
displayed during the pattern-matching phase.

2.5. Hierarchical Pattern Matching

gnsLibraryName
<string>

Name of the file (recognition library) containing the list of cells
to recognize. Default is LI BRARY.

15

GNS User Guide

gnsLibraryDir

<string>

gnsK eepAllCélls
yes

no

gnsTemplateDir
<string>

gnsTracel evel
<int>

gnsTraceFile
<string>

gnsTraceM odel
<string>

gnsFlags

Access path to the directory containing the recognition library.
Default isdirectory cel | s/ inavt WorkDi r .

All matched structures are extracted from the netlist.

Default

Directory where to find the GNS templates. Default is
$AVT_TOOLS DI R/ gns_tenpl at es.

From O to 6. Indicates the level of trace displayed during the
recognition phase. Default is 0.

Name of the output trace file. Default is stdout.

When tracing the recognition, indicates the name of the
recognized model to trace. If not specified, traces all models.

This configuration controls the behavior of GNS. The values (flags) are added
separated with commas. Available flags are:

Enabl eCor e

NoGns

Ver boseGns

NoOr deri ng

2.6. APl Specific

apiFlags

Enable the generation of acorefile for acrash in auser compiled
API.

Disables the generation of the. gns file
Produces a more readable . gns file.

Disablesthe top-level instance connectors reordering. Should not
be set if using the BEG functions.

Controls the behavior of the GNS API. The values (flags) are added separated with
commas. Available flags are:

16

GNS User Guide

ttvUsel nst anceMode

ttvDri veDTX

Sets the TTV functions to generate/use one timing
view per instance of the same matched subcircuit.

Enablesthedriveof the. dt x and. st mfilesfor timing
views created with the TTV functions

17

GNS User Guide

Chapter 3. Performing the Hierarchical
Recognition

3.1. Description

GNS is a hierarchical recognition tool for digital and mixed-signa circuits. Starting from a flat
transistor level circuit description, thetool identifiesthe hierarchical structure within the circuit based
on user-defined generic recognition rules. The recognition rules are written in a subset of structural
VHDL. The genericity of the rules comes from the use of generics in VHDL. These generics are
used for loop variables of VHDL GENERATE statements. In standard VHDL, the value associated
with the genericsis assigned by the higher level instantiating description, but in GNS the values are
assigned according to what is identified in the circuit. Whenever arecognized structure is important
for the user, the tool can be programmed to generate automatically, through ACTIONS, a behavioral
description of the entire structure using the computed generic variables.

Inthefirst phase, GNStransparently usesthe FCL pattern-matching technology integrated in Y agleto
identify transistor level blocks. In the second phase, GNStriesto apply the hierarchical rulesfrom the
lowest level of the hierarchy composed of the recognized transistor level blocks. Therulesare applied
in order of their hierarchical dependence up to the top level of the hierarchy. For each recognized
instance, GNS executes an action if one has been provided by the user. The action is written in
interpreted C code to which the identified values of the rule generics are passed as parameters. The
nature of the action is evidently highly customizable, but an obvious application is the generation of
abehavioral description customized to the identified structure.

3.2. Execution Modes

In general, the GNS command is used as follows :
yagl e -gns [options] input_name

GNS reads the transistor net-list given by input_name. If input_name corresponds to the top level
of a hierarchical net-list, then this net-list is first flattened. The hierarchical recognition is then
performed until all the rules have been exhausted. The netlist is then partitioned into recognized and
non-recognized parts. The standard Y agle automatic functional abstraction is performed on the non-
recognized part, with all optionsof Y agle being taken into account. A VHDL or Verilog descriptionfor
thisis generated with the name <input_name>_yagcore, in aaddition a structural Netlist is generated
(in the format specified by avtOutputNetlistFormat) regrouping the recognized and non-recognized
parts with the name <input_name>_yagroot. However, using the behavioral APl (beg_APl), it is
possible to obtain asingle file <input_name>.vhd.

GNS can also be executed as :

yagl e -xg [options] input_nane

18

GNS User Guide

In this mode execution terminates after the recognition phase and the transistor netlist of the non-
recognized parts of thecircuit isgenerated (in the format specified by avtOutputNetlistFormat) instead
of the behavioral description.

3.3. Options Available

All the options available to Yagle are available to GNS to control the functional abstraction of the
unrecognized parts.

3.4. Output Files

<input netlist>_yagroot.<vhd|v|spi>
Thisfile containsastructural description regrouping the blocks recognized by the GNS
module and the remainder of the transistor netlist.

<input netlist>_yagcor e.<vhd|v|spi>
Depending on the execution mode, thisfile contains either an automatically abstracted
behaviora model of the unrecognized remainder of the transistor netlist, or the
transistor netlist itself.

<input netlist>.<vhd|v>
If al the recognized blocks are given a behavior using the behavioral API (beg_API),
this file will replace the two previous and will contain the merge of all the behaviors
including the behavior automatically generated by YAGLE.

19

GNS User Guide

Chapter 4. Defining Recognition Rules
and Actions

4.1. Description

GNS provides ahighly efficient way to identify a hierarchical structure within aflat transistor netlist.
This process is done by first identifying basic blocks made up exclusively of transistors. Those
blocks are then merged by hierarchical rulesto a higher level of abstraction. The processis repeated
until all the user specified hierarchical rules have been fully exhausted. Each user-specified rule
is a model corresponding to a single hierarchical level. Genius will try to find all the instances of
each level starting from the models describing the transistor level blocks right up to the top-level
hierarchical model. In addition, the user is given the possibility of specifying actions which are
performed whenever instances of a model are identified within the circuit. This action consists of
a C or TCL function which can do practically whatever the user wants. The operation of the GNS
hierarchical recognition therefore requires a certain amount of user-supplied information and files.
To provide this information the user must create a GNS library file which basically contains the file
names of the models and actions.

4.2. The Recognition Models

4.2.1. The Transistor Level Models

Thefirst step in the hierarchical recognition isto identify the blocks at the lowest level. Those blocks
are composed exclusively of transistors. The user must therefore provide models for each of the basic
blocks to recognize. The actual recognition of these transistor-level blocks is performed by FCL,
however thisis transparent to the user since the GNS module handles the communication with FCL.
The description of the transistor level blocks can be given either as a SPICE netlist or in a structural
VHDL file.

The spice netlist isaclassical flat transistor netlist but the VHDL description is done by instantiating
transistors N or P. For this, there are two special components to describe the transistors:

COVPONENT tn

PORT (

grid: INBIT,;

source, drain: |INOUT BIT)
END COVPONENT;

COVPONENT t p
PORT (
grid: in bit;
source, drain: inout bit);
END COVPONENT;

20

GNS User Guide

From the GNS point of view, there is no difference between these representations. For instance, an
inverter could be described as:

InVHDL:

ENTITY inverter IS
PORT (
dout: out bit;
din: in bit;
vdd, vss: in bit);
END i nverter;

ARCHI TECTURE structural OF inverter IS

COMPONENT tn
PORT (grid: IN bit; source, drain: INOUT bit);
END COVPONENT;

COVPONENT t p
PORT (grid: IN bit; source, drain: INOUT bit);
END COVPONENT;

BEG N
tn_1: tn
PORT MAP (grid=>din, source=>vss, drain=>dout);

tp_1: tp
PORT MAP (grid=>din, source=>vdd, drain=>dout);
END structural;

Or in SPICE:

. SUBCKT inverter dout din vdd vss
ML vdd din dout vdd tp

M2 vss din dout vss tn

. ENDS

The user has the freedom to use whichever format he/she prefers. The library file is used to specify
the format to be used for a particular model.

4.2.2. The Hierarchical Models

Once the basic transistor-level blocks have been identified within the circuit, the higher-level
hierarchical models can be identified. In order to perform this hierarchical recognition, the user
must specify, for each of the hierarchical levels, how the blocks are interconnected. This is done by
providing a standard VHDL structural description of how the lower-level blocks are interconnected.

Structural VHDL providesanatural way of describing ahierarchical structure. TheENTITY construct
effectively serves as a declaration for the recognition rule, as well as providing the interface of
the component abstracted by application of the rule. The ARCHITECTURE block specifies the
interconnection of blocks from the lower levelsrequired by therule. Asin VHDL, the required lower-
level blocks must be declared using the COMPONENT construct, this allows both implicit (order
based) and explicit (name based) component instantiations. Anyway, using the format spice_hr rather
than VHDL permits the description of a smple hierchical model without al the possibilties of the
VHDL model (loops, vectors, ...).

21

GNS User Guide

For example, the rule required to recognize a bi-stable made up of two NAND gates would be written
asfollows:

ENTITY bistable IS

PORT (

r: INBIT;

s: INBIT;

q: QUT BIT;

qgqn: OUT BIT,

vdd, vss: IN BIT);
END bi st abl e;

ARCHI TECTURE nand_based OF bistable IS

COVPONENT nand
PORT (y: OQUT BIT; inl, in2: INBIT;, vdd, vss: INBIT);
END COVPONENT;

BEG N
nand_1: nand
PORT MAP (q, r, gn, vdd, vss);
nand_2: nand
PORT MAP (gn, s, q, vdd, vss);
END nand_based,;

However, it is aso possible to generate a bi-stable from two NOR gates. The user may therefore
require that a single recognition rule consist of alternative internal structures. This is possible by
providing multiple ARCHITECTURE blocksfor asingle ENTITY.

To recognize a bistable made up of either NAND or NOR gates, the user would add the following
architecture construct to the preceding rule:

ARCHI TECTURE nor _based OF bistable IS

COVPONENT nor
PORT (y: OQUT BIT; inl, in2: INBIT;, vdd, vss: INBIT);
END COVPONENT;

BEG N
nor_1: nor
PORT MAP (q, r, gn, vdd, vss);
nor_2: nor
PORT MAP (gn, s, q, vdd, vss);
END nor _based;

4.2.3. Generic Hierarchical Models

One of the most powerful features of the GNS recognition language is the ability to represent
interconnections of an arbitrary number of identical structures. Both parallel structures and serial
structures can be represented.

» Parald structures are those where an arbitrary number of identical blocks share one or more
common signal.

» Serid structures are those where an arbitrary number of identical blocks are connected in
cascade.

22

GNS User Guide

This important capability is provided for through the use of VHDL Generics coupled with
GENERATE constructs. In standard VHDL a structural model can be made generic in exactly this
way; it isthe responsibility of the instantiation to specify the actual value of the generic variable. In
our semantic, it isthe role of the recognition module to identify the value.

A typical example of a parallel structure would be arule to identify a column of an arbitrary number
of bit-cells as part of a static RAM:

ENTITY colum | S
GENERI C (capacity: |NTECER);
PORT (
g, ng: INQUT BIT,;
com |IN BIT_VECTOR (1 TO capacity);
vdd, vss: IN BIT);
END;

ARCHI TECTURE structural OF columm IS
COMPONENT bi tcel |

PORT (g, ng: INOUT BIT, com vdd, vss: INBIT);
END COVPONENT;

BEGA N
loop: FORi IN 1 TO capacity GENERATE
bit i: bitcell
PORT MAP (q, nq, com (i), vdd, vss);
END GENERATE;

END structural;

e The generic variable must be declared inthe ENTITY block.
» A GENERATE loop must be defined using the generic variable to define the upper limit.

» Oneor moresignalsor external connectors must be vectorized using the value of the generic
variable to define the range.

Both theloop limits and the vector bounds can be specified as expressions. In this case, the expression
for the lower limit must necessarily resolve to a constant and for the upper limit, the generic variable
must be the only unknown.

In any case, in any one rule, it is not possible to have more than one GENERATE loop for which
the limits are specified by a GENERIC whose value is to be identified. However, thisis not a real
limitation thanks to the unlimited hierarchy of the rules.

It is also possible to describe arbitrary numbers of components connected in cascade, for example, a
chain of inverters can be represented by the following rule:

ENTITY invchain IS
GENERI C (1l ength: | NTEGER);
PORT (
g, ng: INOQUT BIT,;
con: INBIT_VECTOR (0 TO Il ength);
vdd, vss: IN BIT);
END;

ARCHI TECTURE structural OF invchain IS

COVPONENT i nverter

23

GNS User Guide

PORT (y: OUT BIT; a, vdd, vss: INBIT);
END COVPONENT;

BEGA N
loop: FORi IN 1 TO | ength GENERATE
inv_i: inverter
PORT MAP (con (i), con (i-1), vdd, vss);
END GENERATE;
END structural;

4.2.4. Exploiting Generic Variables

At each hierarchical rule level it is possible to exploit the value of generic variables obtained from
lower levels of the hierarchy. The mechanism for thisisidentical to standard VHDL apart from the
fact that the direction of transmission is from the lower levels upwards rather than from the upper
levels downwards.

The transmission of generic values is specified using the GENERIC MAP construct. This construct
specifies which generic variable in a rule takes the value of a generic variable defined in rule
corresponding to an instantiated model.

For example, imagine we need the height of a column of bit cellsin order to add an inverter in front
each of the command inputs. We could use the following rule:

ENTITY buffered_col IS
GENERI C (hei ght: | NTEGER);
PORT (
g, ng: I NOUT BIT,;
bufconb: IN BIT;
vdd, vss: IN BIT);
END bi st abl e;

ARCHI TECTURE structural OF buffered_col IS

COVPONENT col umm
GENERI C (capacity: | NTEGER);
PORT (
g, ng: INQUT BIT;
com INBIT_VECTOR (1 TO capacity);
vdd, vss: INBIT);
END COVPONENT;

COMPONENT i nverter
PORT (out: QUT BIT; a: INBIT, vdd, vss: INBIT);
END COVPONENT;

SI GNAL bufcom BIT_VECTOR (1 TO hei ght);

BEG N
colum_ins: colum
GENERI C MAP (hei ght =>capacity);
PORT MAP (g, nq, bufcom vdd, vss);

loop: FORi IN 1 TO hei ght GENERATE
buf _i: inverter
PORT MAP (bufcom (i), bufcomb (i), vdd, vss);
END GENERATE;

24

GNS User Guide

END structural;
As we can see from the above example, in order to exploit a generic variable whose value obtained
by arule at alower level, isis necessary to:

» Declare the GENERIC in the COMPONENT corresponding to the lower-level rule.

» Supply the appropriate GENERIC MAP with the instantiation of the model corresponding
to the lower-level rule.

The GENERIC MAP can be either explicit (as in the above example) or implicit, in which case the
association is made based upon the order of the GENERIC declarations in the COMPONENT.

Generic variables whose values are obtained through GENERIC MAPs can be used in the same way
as generic variablesidentified in therule. That isfor:

» Range declarationsin signals and/or connectors.
e Loop limitsin GENERATE statements.

A rule can contain any number of GENERATE statements defined by GENERIC variables obtained
in thisway, since their limits are precisely defined at the beginning of the validation of the rule.

25

GNS User Guide

4.3. VHDL Recognition Rules Reference

This section contains the complete grammar of the structural VHDL subset used to represent the GNS
recognition rules. Only entity and structural architecture declarations are required. Before giving the
BNF for each of these two parts, we illustrate them with a general example.

The legend for the following BNF grammar definitions are:

<name> isasyntax construct item

name isalexeme

[<name>] or [name] isan optional item

<name>* iSzero or more items

<name>+ iSone or more items

<name> -> indicate a syntax definition to an item

I introduces an other syntax definition for an item

First of al, each rule requires an entity declaration such as:

ENTITY level A IS

GENERI C (VAR, VARL, ...: integer)
PORT (
a | NOUT BIT,

b: INBIT_VECTOR(1 TO var)

vdd, vss: INBIT);
END;

The entity describes the model "levelA". A model can be instantiated with parameters. All the
parameters used later in the architecture part of the model must be present in the model entity. One,
and only one, of the generic variables can be the special variable whose value must be determined
during execution of the rule.

The complete entity grammar allowed is as follows:

<entity> -> ENTITY <name_of _nodel > IS

[GENERIC (<list_of_variables>+);]

PORT (<list_of _ports>+);

END [<name_of _nodel >];
<list_of variables> -> <<variabl e_decl >; > <vari abl e_decl >
<vari abl e_decl > -> [VARI ABLE] <<identifier_list> |NTEGER
<identifier list> -> <<identifier> > <identifier>

<list_of_ports> -> <<port_decl >; >* <port_decl >

<port_decl > -> <identifier_list> <port_type>

26

GNS User Guide

<port_type> -> | N <node>
|| OQUT <node>
|| 1'NOUT <node>

<node> -> BIT
|| BIT_VECTOR <array>

<array> -> (<expression> TO <expression>)
|| (<expression> DOANTO <expression>)

The expression in the array statement is a standard arithmetic expression which can depend on all
the generic variables defined in the entity, even the specia generic variable whose value must be
identified during execution of the rule.

The architecture section of arule is composed of 2 parts: the component declarations and the model
instantiations in the architecture body. The component of a model should have the same interface
and the same generic variables found in the entity statement for the same model. The grammar of the
architecture body is elementary.

A typical example shows loops instantiating multiple instances and single instantiations:

architecture ArchiLevel A of levelAis

COVPONENT | evel Bl
GENERI C (varB2, ...: integer)
PORT (...

g: INBIT_VECTOR(1 TO varB2);

vdd, vss: IN BIT);
END COVPONENT;

BEGA N
|l oop0: FOR i IN 1 TO var GENERATE
instBl i: level Bl
GENERI C MAP (varB2=>varl, ...)
PORT MAP (...);
END GENERATE;

loopl: FORj IN 1 TO var1l*2 GENERATE
instDl_j: |evel D1
GENERIC MAP (...)
PORT MAP (...);
END GENERATE;

instance_fcl: level FCL1 GENERIC MAP (...) PORT MAP (...);
instance_| 2: levelC PORT MAP (...);
END;

The complete architecture grammar allowed is as follows:

<architecture> ->
ARCHI TECTURE <nane_of _archi > OF <nane_of _nodel > | S
<conponent >*
<si gnal _decl >*
<archi t ect ure_body>*

<signal _decl> -> SIGNAL <identifier_list> <nbde>;

<component > -> COVPONENT <name_of _nodel >

27

GNS User Guide

[GENERIC (<list_of_variables>+);]
PORT (<list_of _ports>+)
END COVPONENT

<architecture_body> -> BEG N
<archi tecture_el enent >*
END [<name_of _ar chi >];

<architecture_el ement> -> <sinple_instantiation>
|| <loop_instantiation>

<l oop_instantiati on> ->
<bl ocknane>:
FOR <identifier> IN <expr> <direction> <expr>
GENERATE
<instantiati on>+
END GENERATE

<sinple_instantiation> ->
<bl ocknanme>: <identifier>
[GENERI C MAP (<generic_assi gnment>)]
PORT MAP (<port_assignnment>);

<direction> -> TO
|| DOANTO

<instantiation> -> <l oop_instantiation>
|| <sinple_instantiation>

<generic_assignment> -> <identifier_list>
|| <explicit_assignment_list>

<explicit_assignment_list> ->
<<explicit_assi gnment >, >* <explicit_assi gnnent >

<explicit_assignment> -> <identifier> => <identifier>

<port_assi gnnent> -> <signal _|ist>
|| <explicit_sig assign_list>

<signal _list> -> <<signal > >* <signal >
<signal > -> <identifier> [<array>]

<explicit_sig_assign_list> ->
<<explicit_sig_assign> >* <explicit_sig_assign>

<explicit_sig_assign> -> <identifier> => <signal >

The instantiation of a model is done by assigning the generic variable of the instance to the local
generic variables of the current model and by linking the instance port to the model signals. The
<identifier> isthe model name and <blockname> the instance name.

The user can also usea"for" statement to try to instantiate a set of instances whose number is known.
In this case, the expressions defining the bound of the "for" statement have no restriction and can
depend on any of the known generic variables.

28

GNS User Guide

The user may also wish to recognize an unknown number of instances such as cellsin parallel or in
series. In this case, the left or right expression in the "for" statement contains an unknown generic
variable and at | east one of the port vector will depend on thisvariable. The expression with the generic
variable has certain restrictions. The only legal operators are '+, '-', /" and '*".

When trying to find a number of cellsin a"for" statement, Genius will always try to match as many
Instances as possible.

4.4. The Actions

The user can associate an action to a model. This action can be put directly at the end of the VHDL
fileif it'sa C action or in a separate file. If the action iswritten in TCL it can be defined in the main
TCL script. The action isa C or TCL function which has the same name as the model. This function
is given the values computed for all the generic variables of the model. Those values are assigned to
variables with the same name as the generic variables of the model.

For any given model, there can be several versions due to the fact that each recognized instance of
amodel can differ from another depending on the values attributed to the generic variables used to
match the model. A unique name for each version is passed as an argument to the function as a string
"char *model”.

The action is called for each recognized instances remaining after all the recognition rules have been
applied. A unique name for each instance is passed as an argument to the function "char *instance".

void | evel A (char *nobdel, char *instance, int VAR int VARL, ...)

{
o

In TCL, generic variables are made available as global TCL variables. Be aware that calling TCL
script within GNS, affects main TCL script.

proc level A {} {
gl obal nodel instance VAR VARL ...

}

The actions are called at the end of the complete recognition phase for all the instances to keep (see
Library File) in the circuit. The instances to keep but only used by an higher hierarchical level are
destroyed. Their actions will therefore not be executed.

The C action function is interpreted by GNS, therefore there are certain limitations in what the user
can do. However, the action functionality can be expanded by the use of dynamic libraries. Dynamic
libraries, containing user-defined functionswhich can be called from within actions, are easily created
with the help of the genapi tool.

4.4.1. Types

The action interpreter authorizes use of the following base types:
e char

29

GNS User Guide

int
double
FILE*

Pointers types or one dimensional arrays types based on the above type ar also recognized.

Additionally, any other pointer types can be specified so long as they are only used in user-defined
function calls (see dynamic library).

Static variables are authorized. They are global to all the actions.

4.4.2. Supported Operators

All the basic C arithmetic and logic operations are possible on the authorized interpreter types.

4.4.3. Functions

The interpreter can manage the following standard C functions:

printf
fprintf
sprintf
malloc
free
strcpy
strcat
fopen
fclose

The following built-in non standard functions are also implemented:

FILE *avtfopen(char *name, char *extension, char mode)

opensafiletaking into account the global configuration filefor the seek directoriesand
compression filter. Legal valuesfor the mode are: READ_TEXT and WRITE_TEXT

int gnsM odelVisited(char *model);

Returns 1 if the given model has already been marked as visited, O otherwise. Used to
avoid duplicating actions.

void gnsMarkM odelVisited(char *model);

Marks the given model as having been visited, to avoid duplicating the action.

char *char_to_string(int size, char caract);

returns a string which length is'size’. The string isfilled with the character ‘caract'.

char *onehot_to_bit(int size, int bitnum);

returns a string which length is 'size’. The string is filled with the value (1<<bitnum)
in binary format.

30

GNS User Guide

char *onehot_to_hexa(int size, int bitnum);
returns a string which length is 'size'. The string is filled with the value (1<<bitnum)
in hexadecimal format.

char *onehot_to_octa(int size, int bitnum);
returns a string which length is 'size'. The string is filled with the value (1<<bitnum)
in octal format.

char *onecold_to_bit(int size, int bithum);
returnsastring which lengthis'size’. The string isfilled with the value not(1<<bitnum)
in binary format.

char *onecold_to_hexa(int size, int bitnum);
returnsastring which lengthis'size'. The string isfilled with the value not(1<<bitnum)
in binary hexadecimal format.

char *onecold_to_octa(int size, int bithum);
returnsastring which lengthis'size'. The string isfilled with the value not(1<<bitnum)
in octal format.

char *genius_date();
returns a string containing the current date and time.

Note that each of the string generation functions always returns a pointer to the same address. If you
wish to keep the string over multiple calls of the same function, you will have to copy the result into
another string variable.

4.4.4. Loops and conditional statements

Geniusinterpreter handle the following C loop and conditional constructs:
o for (v {.}
e do{..} while(...)
o while(...){...}
o if(.){..} dse{..}

The reserved words "return” and "break" are also supported as well as the standard function call
"exit(<errcommand>)".

4.4.5. Dynamic Libraries

The user can create his own dynamic library whose functions can be called from within GNS actions.
Todo so, hehasto provideasimplified header file containing the function prototypes. Global variables
are not allowed. The use of the tool genapi will automatically generate the dynamic library from the
header file and the .c files given by the user.

31

GNS User Guide

4.5. The Library File

The library file contains a list of al the rule files and supplementary information required by the
recognition module. The transistor level models, the hierarchical models and the action files are all
referenced here. The library file can also indicate built-in template recognition rules and actions to
use in the recognition process.

Each line of thelibrary file can have two format. Thefirst oneisfor the user defined rules and actions
and the second one for the template instantiations:

<nmodel _file> [: [priority=<nunp]
[, keep=<yes| no>]
[, format =<spi ce| vhdl | spice_hr>]];

Thenames of amodel_file does not haveto respect aparticular format, except if thefileis supposed to
beaTCL script. Inthiscasethefile must beinterpreted by TCL the suffix must be".tcl" elsethefileis
considered to be VHDL or C. Theformat directive specifieswhether atransistor-level recognitionrule
isin SPICE or VHDL format. In the case of files containing actions, the format must not be specified.

The priority defines the order of recognition for models. Lower value means higher priority.
Independent recognition rules are applied in order of specified priority. This option can be critical if
one model is a subset of another model.

32

GNS User Guide

MODELS CIRCUIT

~ >
>0
o

MODEL A

o
>0

¥ oYY

|
¥ Y

MODEL B

(GeNIUS)
A has priority over B B has priority over A

1 instance of A and 1 instance of B recognized 3 instances of B recognized

Finally, the "keep" flag tells genius whether the user isinterested in keeping the recognized instances
of amodel. The user is generally interested by the top level of his hierarchy but he can keep other
recognized instances (see also gnsKeepAllCells configuration). The <modelname>_yagroot.<vhd|
spi> file will contain only the instances whose model keep flag have been set.

In the case of template instantiations, the syntax follows:

<nodel _nane> <nodel _i nst ance_nane> {

[rule=<file_spec>]

[rules={ <file_spec> [, ...]1 }]

[action=<file_spec>]

[actions={ <file_spec> [, ...] } 1]

[<nodel _identifier>=<new_identifier> /[, ...]]
} [: [priority=<nunp]

[, keep=<yes|no>] [;

33

GNS User Guide

The model_name is the name of one of the built-in templates available in the distribution or in the
paths given by 'gnsTemplateDir' and 'gnsLibraryDir' variables. The model hame can be overridden
by model_instance_name but the model _name can be used if the template is instantiated once.

By default, the template rules and actions will be used for the recognition but they can also be
overridden by specifying a <file_spec> which has exactly the same syntax as the user defined rule
except the trailing semicolon. Several files can be specified for the rules and the actions, for instance,
iIf different architectures are spread over multiplefiles.

All the identifier <model_identifier> of the template rules can be renamed by <new_identifier>
depending on the user wish. Thisis handy to change the instance models, connector names or generic
variable namesin therules.

Finally, an overall priority and keep flag can be specified for the instantiated model. Their meaning
Is the same as for the user defined rules and actions.

4.6. Symmetry and Coupling

Due to the nature of bottom up recognition, any symmetry in the identified components can cause
recognition difficulties which are not immediately obvious. Cells are identified at a particular
hierarchical level without knowing how they will be connected in the higher level. Because of this,
GNS cannot guarantee the precise ordering of any symmetric cell connectors. In the example below
representing the memory cell, the connectors q and nq are symmetric. This means that from the
perspective of theindividual cell there is nothing to distinguish between these two connectors. When
performing the recognition of the memory cell, There is nothing to prevent the memory cell being
recognized the other way round to that which the user would have expected.

34

GNS User Guide

CI { ~
{4 nqf |
P _ J
| [ng a | |
{ 0 i1)
Cmd i ’J i
: Cmd . i i i
i0 il i :
MUX . i2 B3
2 s | .~~~ SYMMETRIC and COUPLED

The user must pay careful attention to any possible symmetry inthe modelsto recognize. For example,
if the user wants to recognize a column of memory cells connected in parallel, he would provide a
rule to identify an arbitrary number of memory cells with the g ports connected together and the gn
ports connected together. However, if g and gn ports are symmetric then g ports may be connected to
gn ports and vice versa but nonethel ess corresponding to a column of memory cells.

The case of symmetry also occurs often when dealing with vectors. A user may require the
identification of two instances connected together by vectored ports. However, the signal connected
to bit(0) of one of the portsis not necessarily the signal connected to bit(0) of the other port. The order
of the indexing of the vectored ports depend on the order of the recognition agorithm.

To copewith this problem of symmetry, GNS providesfor amechanism of pragmadirectivesincluded
as comments in the model files. Each pragma directive consists of the list of symmetric connectors.
The connectors can be single connectors or the radical of a vectored connector. Use of the radical
of avector implies that all the connectors of the vector are symmetric to each other. Each group of
symmetric connectors must be declared in a unique pragma.

In VHDL rules, the pragmais declared in the model entity after the port declarations as follows:
- pragma symetric [<single_connector>| <connector_radical]+

In SPICE, for symmetric connector in transistor-level cells, the pragma can be placed anywhere as
follows:

* pragnma symmetric [<single_connector>| <connector_radical]+

35

GNS User Guide

With symmetry comes the additional difficulty of coupled symmetry. When GNS tries to match
together recognized instances with symmetric connectors and theinitial match fails, it only knowsthat
there are connectors which can be swapped. It will then try to swap around the symmetric connectors
until a match is found. In redlity, the symmetry handling is more efficient than this, but that's the
basic idea.
In the above example of a column multiplexer, there are 2 sets of symmetric connectors:

e i0issymmetricwithil

o a0issymmetric with al

In the exampleiO depends on a0 and i1 dependson al. It'sobviousthat if i0 and i1 are swapped, a0 and
al must also be swapped. a0 is effectively coupled with i0 and al is coupled with i 1. If the coupling
dependencies are not explicitly stated, GNS may swap the connectors in one of the symmetric sets
but not the other, thus corrupting the connectivity of the recognized instance.

The user must therefore also be careful about the coupled symmetric connectorsin amodel else GNS
will be able be match instances for which the connectivity described by the rule is not respected.

In the same way as for standard symmetric connectors, pragma directives must be used to define the
couplings:

In VHDL rules, the pragmais declared in the model entity after the port declarations as follows:

- pragma coupl ed [<si ngl e_connect or >| <connector _radical]+

In SPICE, for symmetric connector in transistor-level cells, the pragma can be placed anywhere as
follows:

* pragnma coupl ed [<singl e_connect or >| <connector_radical]+

The entity declaration for the multiplexer would therefore be as follows:

ENTITY mux IS
PORT (
i0, il: INOUT BIT,
a0, al: INOQUT BIT
)
- pragma symetric i0 il
- pragma symetric a0 al
- pragma coupled i0 a0
-- pragma coupled il al
END;

The user should be aware that symmetric connector imposes a restriction on how the rules can be
written. If a particular rule contains a loop instantiation (of the special kind which determines the
value of a generic) and the instances in the loop are connected together by symmetric connectors,
then is not possible, in the same rule, to connect these connectors to anything outside the loop apart
from a set of symmetric connectors.

Thisisnot actually arestriction on what can be recognized since structures which require thiskind of
description can always be handled by introducing an additional rule hierarchy.

36

GNS User Guide

4.7. Other PRAGMAS

- pragma w t hout <nanme0> [<nanel]*

Matches the hierarchical recognition rule only in no correspondance is found for the given instances
or transistors.

- pragma exclude <nane0> [<nanel]*

After the each recognition of the rule, the given instances are put back in the available instance list
so they can be used again in the recognition rules (even the current one). This permits sharing of
instances/transistors between rules.

- pragma exclude_at _end <name0> [<nanel] *

The same as "exclude" but the given instances can not be reused by the current rule. They will be
available for the next ones.

- pragma forcematch <nanme0O> [<nanel] *

The given names apply to transistor, instances and net names. Thisoption, will match the namesin the
ruleif they arein the given list. Name match for instances won't work for GNS recognized instances
as their name is automatically generated. Instead blackboxed instances can use this option. If ' " is
used in a given name, it can be matched with a hierarchy separator. eg. circuit blackbox instance
xlevel xcellswill be matched by xlevel _cells.

- pragma unused <nane0> [<namel]*

Each connector in the given list is unused meaning there is no real correspondance to them in the
netlist.

37

GNS User Guide

Chapter 5. Extending GNS with
Dynamic Libraries

5.1. Overview

The Avertec set of verification tools provide a complete platform for the verification of electrical and
functional aspects at the back-end of adesign flow. The standard tools in themselves provide a means
of performing most of the standard verification requirements.

However, users with particular verification flow requirements may require a higher degree of
customizability of the various technology modules. For example, the GNS hierarchical recognition
module allows for the execution of operations upon recognized objects, the user way require that
certain complex verification operations be performed on these objects involving other Avertec
modules, or even external tool.

The GNS provides a high-level programmatical interface to a growing number of the Avertec
technology modules providing, in combination with GNS, a powerful mechanism for generating
turnkey verification flows for custom components. In addition, a mechanism is provided for the user
to dynamically link his own verification code directly into the Avertec platform.

5.2. Description

The GNS is a set of dynamic libraries which act as high-level APIs to the complete Avertec
verification platform. A growing number of the components which make up the Avertec tools have a
corresponding dynamic library API. These dynamic libraries contain functions designed to be called
from within GNS recognition actions (see GNS User Guide) or for theavt _shel I Tcl script interface
to the technology modules.

In addition, it isalso possible for the user to create hisown APIs. The GNS provides a simple method
for user code to be transformed into a shared library for direct use from within GNS.

5.3. Integrating the APIs in an Avertec Tool Flow

The APIs are available whenever the GNS recognition moduleis activated. Currently, thisispossible
in the Yagle, GNS and TMA tools. The activation of the GNS module by the appropriate options
results in the loading of al the dynamic libraries specified in the configuration file. The functions
defined in these libraries are then available for use in user-defined GNS actions.

The set of APIs provided as standard with the Avertec tools are documented in subsequent chapters
of this guide. The include, amongst others, functions to interrogate the recognition database, perform
'in situ’ SPICE simulations to calculate delays and timing constraints, build behavioral models and
build timing models.

38

GNS User Guide

Chapter 6. Creating a User-Defined
Dynamic Library API

6.1. Description

It isan extremely ssmple task for the user to generate his own APIswhich can be dynamically linked
into an Avertec verification flow. In order to do this, we provide the genapi tool which, from a set
of C source files, together with header files declaring the visible functions, creates a shared library
which can be used in exactly the same way as the supplied APIs.

6.2. Executing the Genapi Tool

To generate your own dynamic library for linking with the Avertec tools, you should use the Genapi
tool asfollows:

genapi <f.c g.c ...> -i <interface.h> [-0 <lib.so>] [--keep_files] [-kf]

This takes the specified set of C source code files, together with a header file declaring the visible
functions and generates directly a shared library compatible with GNS actions. The header file
must contain full ANSI prototype declarations, since thisis used to create wrapper functions for the
functions to be made visible. By default the shared library generated (file with ".s0" suffix) has the
same base name as the header file but this can be modified using the "-0" option. The "-kf" (or "--
keep files") option prevents the removal of the intermediate files generated, such as the source code
for the wrapper functions and the Makefile.

39

GNS User Guide

Chapter 7. APl Functions Available

7.1. GNS Built-in

The gen_builtin_funtions API provides a set of basic functions useful in GNS actions which need to
generate output files.

7.1.1. char_to_string

char *char_to_string(int size, char caract)

char_to_string createastringwhichlengthis'size'. Thestringisfilled with
the caracter 'caract'.

7.1.2. onehot_to_bit

char *onehot _to_bit(int size, int bitnum

onehot_to_hit(size, bitnum) returns a binary string whose length is 'size’.
The string represents a binary value where bit number 'bitnum’ issetto 1
and the othersto 0. The 'bitnum' is little endian oriented.

7.1.3. onehot_to_hexa
char *onehot _to_hexa(int size, int bitnum

onehot_to_hexa(size, bitnum) returnsa hexadecimal string whose lengthis
'size'. Thestring represents a hexadecimal value wher e bit number 'bitnum
isset to 1 and the othersto 0. The 'bitnum' islittle endian oriented.

7.1.4. onehot_to_octa
char *onehot _to_octa(int size, int bitnum

onehot_to_octa(size, bithum) returns an octal string whose lengthis'size'.
The string represents an octal value where bit number 'bitnum’ isset to 1
and the othersto 0. The 'bitnum' is little endian oriented.

40

GNS User Guide

7.1.5. onecold_to_bit

char *onecold to _bit(int size, int bitnum

onecold_to_bit(size, bitnum) returns a binary string whose length is'size'.
The string represents a binary value where bit number 'bitnum’ is set to O
and the othersto 1. The 'bitnum' islittle endian oriented.

7.1.6. onecold_to_hexa

char *onecold to_hexa(int size, int bitnum

onecold_to_hexa(size, bitnum) returns a hexadecimal string whose length
is 'size’. The string represents a hexadecimal value where bit number
'bitnum’ isset to 0 and the othersto 1. The'bitnum’ islittle endian oriented.

7.1.7. onecold_to_octa

char *onecold to_octa(int size, int bitnum

onecold_to_octa(size, bitnum) returnsan octal string whoselengthis'size'.
The string represents an octal value where bit number "bitnum'’ is set to O
and the othersto 1. The 'bitnum' islittle endian oriented.

7.1.8. genius_date
char *geni us_date()

genius_date() return a string containing the current date and time.

7.1.9. gns_ModelVisited

i nt gns_Mdel Vi sited(char *nane)

gns_ModelVisited(<name>) returns O if the model <name> has been set
as visited thru the function gns_MarkModel Visited.

7.1.10. gns_MarkModelVisited

voi d gns_Mar kMbdel Vi sited(char *nane)

41

GNS User Guide

gns_MarkModelVisited(<name>) adds <name> in the list of model
already visited.

7.2. Transistor Netlist Recognition

The FCL API allowsthe user to use GNS actions to generate all the transistor netlist markings of the
FCL transistor recognition module.

7.3. Available Markings

The markings available for the signals are the following ones:
NET_LATCH
Signal corresponds to alatch memory-point.

NET_FLIPFLOP
Signal correspondsto a flip-flop memory-point.

NET_MASTER
Signal corresponds to the master memory-point of a flip-flop.

NET_SLAVE
Signal corresponds to the slave memory-point of aflip-flop.

NET MEMSYM
Signal corresponds to one side of a symmetric memory.

NET_RS
Signal corresponds to one side of an RS bistable.

NET_VDD
Signal corresponds to an alimentation.

NET_VSS
Signal corresponds to ground.

NET_BLOCKER
No branch of a cone (see man gns) can go through the signal.

NET_STOP
Cannot exploit logic beyond this point for functional analysisin the disassembler.

NET _BYPASS
Signal cannot appear in atiming path.

42

GNS User Guide

NET_MATCHNAME
The signal is only matched if the name in the pattern to recognize and the name in the
source netlist are identical.

NET_SENSITIVE
Marks the signal as a particularly sensitive signal. If atimed behaviora model of this
signal is produced then the most precise (but cumbersome) model will be generated.

The markings available for the transistors are the following ones:

TRANS BLEEDER
Transistor corresponds to a bleeder.

TRANS FEEDBACK
Transistor corresponds to a feedback transistor of a memory-point.

TRANS COMMAND
Transistor corresponds to a command transistor of a memory-point, i.e driven by
command signal.

TRANS NOT_FUNCTIONAL
Transistor should be ignored when cal culating gate functionality.

TRANS BLOCKER
No branch of a cone can contain this transistor unless it is the first transistor of the
branch.

TRANS UNUSED
No branch of a cone can contain this transistor.

TRANS_SHORT
Thetransistor is considered short-circuited, the gate signal no longer contributesto the
list of inputs.

TRANS MATCHSIZE
Thetransistor isonly matched if the dimensions correspond exactly or to withinagiven
tolerance (see FCL configuration).

TRANS SHARE
The transistor can be matched by several patterns.

7.3.1. fcIMarkCorrespondingSignal
i nt fcl MarkCorrespondi ngSi gnal (char *signane, char *marks)

fclMarkSgnal marksa signal inthe circuit according to the given marking
string.

43

GNS User Guide

7.3.2. fcIMarkCorrespondingTransistor
i nt fcl MarkCorrespondi ngTransi stor(char *transnane, char *nmarks)

fclMarkTransistor marks a transistor in the circuit according to the given
marking string.

7.3.3. fclOrientCorrespondingSignal
void fcl Orient Correspondi ngSi gnal (char *signane, int |evel)

fclOrientSgnal orients a signal according to the given output level.

7.3.4. fclCmpUpConstraint
void fcl CnpUpConstraint (StringList *siglist)

Soecifies that one and only one of the signalsin the list can be high.

7.3.5. fclCmpDnConstraint
void fcl ChpDnConstraint (StringList *siglist)

Foecifies that one and only one of the signalsin the list can be low.

7.3.6. fcIMuxUpConstraint
void fcl MuxUpConstraint (StringList *siglist)

Foecifies that at most one of the signalsin the list can be high.

7.3.7. fcIMuxDnConstraint
void fcl MuxDnConstrai nt (StringList *siglist)

Soecifies that at most one of the signalsin the list can be low.

7.3.8. fclAllowShare

void fcl Al'l owShar e(Transi stor *transistor)

44

GNS User Guide

Soecifies that the given transistor can be shared with another transistor
level model.

7.4. GNS Recognition

The GEN API providesaset of functions useful in GNS actions which need to obtain correspondence
information between the hierarchical netlist generated by the GNS recognition moduleand the original
circuit.

7.4.1. gns_StripNetlist
void gns_StripNetlist(Netlist *netlist)

Suppresses all unconnected RC networks. This function isvery useful after
using netlist reduction.

7.4.2. gns_StripNetlistFurther
void gns_StripNetlistFurther(Netlist *netlist)

Suppressesall unconnected RC networks* AND* connectors. Thisfunction
isvery useful after using netlist reduction.

7.4.3. gns_SetLoad

voi d gns_SetLoad(Netlist *netlist, char *connector, double |oad)

Sets an additional capacitance on the connector “connector'. Thisfunction
should be primarily used for characterization purposes. Further call of
gns_SetlLoad overrides previous characterization capacitance setting.

7.4.4. gns_FlattenNetlist
Netlist *gns_ FlattenNetlist(Netlist *netlist, int rc)

Flattens the given netlist to the transistor level or to a cell level. The
cell levels can be specified by using gns_SetModel AsLeaf(< model name>)
where model name is the cell name. The RC information can be added by
specifying theflagswhosevaluecanbe INTERNAL _RC, IN_RC, OUT_RC,
ALL_RCor 0. Thosevalues can be ORed. In most cases, thereturned netlist
must be freed by the user.

45

GNS User Guide

Ifusedin TCL, f I ags isalist of the different flags.

7.4.5. gns_FreeNetlist

void gns FreeNetlist(Netlist *netlist)

Deletes a Netlist. It should not be called on a netlist obtained with
gns_GetNetlist().

7.4.6. gns_AddRC
Netlist *gns AddRC(Netlist *netlist, int rc)

Adds the RC information in the current netlist. The flags whose value can
be INTERNAL_RC, IN_RC, OUT_RC, ALL_RC or 0 indicates where the
RC should be added. Those values can be ORed. |n most cases, the returned
netlist must be freed by the user.

Ifusedin TCL, f I ags isalist of the different flags.

7.4.7. gns_SetModelAsLeaf

voi d gns_Set Model AsLeaf (char *nane)

Adds the model <name> to the list of models for which the flatten process
won't flat the instances to transistor level. In the flattened netlist should
appear the instances whose model is <name>. Beware, the leaf model
<name> will be taken into account for all the flatten process. To clear the
list of leaves, use gns_SetModel AsLeaf(NULL).

7.4.8. gns_Reducelnstance
voi d gns_Reducel nstance(Netlist *netlist, char *ins_nane)

Reduces an instance to the corresponding capacitances of its interface
pins.

7.4.9. gns_Keeplinstance
void gns_Keeplnstance(Netlist *fig, char *ins_nane)

Keeps an instance from a reducing process.

46

GNS User Guide

7.4.10. gns_AddExternalTransistors
voi d gns_AddExt er nal Transi stors(char *str)

Allows the user to choice between two possibilities of representation of
external transistors connected to an output pin. When the parameter 'str' is
set to 'dynamic’, capacitances are extracted fromthe grid, source or drain
of the external transistor, and added into the netlist. When the parameter
'str' is set to 'transistor’, the external transistors are added into the netlist,
and the transistor's connectors that are not connected to the pin, are
connected either to 'gnd' or 'vdd', in a way that they always remain non-
passant.

7.4.11. gns_ViewLo
void gns_ViewLo(Netlist *ptfig)

Displays debugging infor mation about the netlist. Information is displayed
on stdout.

7.4.12. gns_DriveNetlist

void gns DriveNetlist(Netlist *ptfig, char *format, char *path, char
*nane)

Drives the netlist in path with the specified format. <format> can be
"spice". The filename will be <name>.EXT where EXT depends on the
<format> and the figure name in the file will be <name>.

7.4.13. gns_GetNetlist
Netlist *gns GetNetlist()

Returnsthe netlist corresponding with the currently recognized model. PS.
this netlist must not be freed.

7.4.14. gns_DuplicateNetlist
Netlist *gns DuplicateNetlist(Netlist *source)

Duplicates the netlist <source>. The copied netlist should be freed later.

47

GNS User Guide

7.4.15. gns_GetlnstanceNetlist
Netlist *gns_GetlnstanceNetlist(char *nane)

Returns the netlist corresponding with a recognized instance used in the
current hierarchy. <name> can be hierarchical. PS: this netlist should be
freed.

7.4.16. gns_GetCorrespondingSignal
Si gnal *gns_Get Correspondi ngSi gnal (char *nane)

Returns the signal in the circuit corresponding to a signal in the model.

7.4.17. gns_GetSignalName
char *gns_Get Si gnal Nanme(Si gnal *signal)

Returns the name of a signal. When used with a signal in the model, there
will not be any information about the signal index range in the returned
string.

7.4.18. gns_GetlnstanceName

char *gns_Get | nst anceNane(| nstance *instance)

Retur ns the name of an instance.

7.4.19. gns_GetIinstanceModelName
char *gns_Get | nst anceModel Nanme(| nstance *i nstance)

Retur ns the name of the model of an instance in the circuit.

7.4.20. gns_GetModelSignalRange
voi d gns_Get Model Si gnal Range(char *name, int *left, int *right)

Returns the index range of a signal in the model. If left = -1, the signal is
not a vector. If <left> < <right> then the signal is range is left to right
elseif <left> > <right> then the signal range is|eft downto right.

48

GNS User Guide

7.4.21. gns_GetModelConnectorList
Li st *gns_Get Model Connect or Li st ()

Returnsthelist of all the interface connectors of the model.

7.4.22. gns_GetlnstanceConnector

Connect or *gns_Get | nst anceConnector (I nstance *instance, char *nane)

Returns the connector <name> of <instance> the model.

7.4.23. gns_Getlnstance
I nstance *gns_GCetlnstance(Netlist *netlist, char *nane)

Returns the instance <name> present in <netlist>.

7.4.24. gns_GetConnectorCapa
doubl e gns_Get Connect or Capa(Connect or *I|c)

Returns the computed capacitance of the connector “Ic'. This capacitance
isthe sumof all capacitances corresponding with thedrain, grid or source
connectors linked to “Ic'. the model.

7.4.25. gns_GetConnectorList
Li st *gns_Get ConnectorList(Netlist *netlist)

Returnsthelist of all the interface connectors of the netlist.

7.4.26. gns_GetConnectorDirection

char *gns_Get Connect orDi recti on(Connect or *connector)

Returns the direction of a connector.

49

GNS User Guide

7.4.27. gns_GetConnectorName

char *gns_Get Connect or Name(Connect or *connect or)

Returns the name of a connector.

7.4.28. gns_GetConnectorSignal
Si gnal *gns_Get Connect or Si gnal (Connector *connector)

Returnsthe signal linked to the connector.

7.4.29. gns_GetModelSignalList
Li st *gns_Get Model Si gnal Li st ()

Returnsthe list of all the signal in the model.

7.4.30. gns_IsSignalExternal
int gns_IsSignal External (Signal *signal)

Returns 1if the signal islinked to a connector in theinterface, O otherwise.

7.4.31. gns_Vectorize
char *gns_Vectorize(char *name, int index)

Returns a string containing the name associated with a vector index :

name(index).

7.4.32. gns_Vectorize2D

char *gns_Vectorize2D(char *nane, int index0, int indexl)

Returns a string containing the name associated with a 2 vector index :
name(indexl)(index2).

7.4.33. gns_GetlnstanceConnectorList

Li st *gns_GCet | nstanceConnectorlLi st(lnstance *Is)

50

GNS User Guide

Returnsthelist of all the connectors of an instance.

7.4.34. gns_GetAllCorrespondinglinstances
Li st *gns_Get Al | Correspondi ngl nst ances()

Returns the list of all the instances in the circuit used when matching the
model.

7.4.35. gns_GetAllCorrespondinglinstanceModels
Li st *gns_Get Al | Correspondi ngl nst anceModel s()

Returns the list of all the models in the circuit used when matching the
model.

7.4.36. gns_GetCorrespondingTransistor
Transi stor *gns_Get Correspondi ngTr ansi stor (char *nane)

Returns the transistor in the circuit corresponding to a transistor instance
in the model.

7.4.37. gns_GetAllCorrespondingTransistors
Li st *gns_Get Al | Correspondi ngTr ansi stors()

Returnsthelist of all the transistorsin the circuit used when matching the
model.

7.4.38. gns_GetTransistorGrid

Connector *gns_Get Transi storGri d(Transi stor *transistor)

Returns grid connector of a transistor.

7.4.39. gns_GetTransistorDrain
Connect or *gns_Get Transi storDrai n(Transi stor *transi stor)

Returns grid connector of a transistor.

51

GNS User Guide

7.4.40. gns_GetTransistorSource

Connect or *gns_Get Tr ansi st or Source(Transi stor *transi stor)

Retur ns sour ce connector of a transistor.

7.4.41. gns_GetTransistorType
char gns_Get Transi stor Type(Transi stor *transistor)

Returns the type of a transistor.

7.4.42. gns_GetTransistorTypeName
char *gns_Get Tr ansi st or TypeNanme(Transi stor *transi stor)

Returns the circuit type of a transistor.

7.4.43. gns_GetTransistorParameter

doubl e gns_GCet Transi st or Paranet er (char *nane, Transistor *transistor)

Returnsthe value of a transistor parameter. <name> can be"w", "|", "as",
Iladll’ Ilpsll Or Ilpdll.

7.4.44. gns_GetTransistorName
char *gns_Get Transi st or Nanme(Transi stor *transi stor)

Returns the name of a transistor.

7.4.45. gns_GetAllTransistorsConnectedtoSignal

Li st *gns_Get Al | Transi st or sConnect edt 0Si gnal (Si gnal *si gnal)

Returns the list of all the transistorsin the circuit connected to the given
signal at the current step of genius recognition.

52

GNS User Guide

7.4.46. gns_Vectorindex
i nt gns_Vectorlndex(char *nane)

Returns the index in a signal name. If the signal is not a vector, the value
returnedis-1.

7.4.47. gns_VectorRadical

char *gns_Vect or Radi cal (char *nane)

Returns the base name of a signal name. The basic action isto remove the
index from a vector name.

7.4.48. gns_CreateVhdIName

char *gns_Creat eVhdl Nanme(char *nane)

Returns transforms <name> so it is suitable for a VHDL syntaxe.

7.4.49. gns_ChangelnstanceModelName
voi d gns_Changel nst anceMdel Nane(| nst ance *instance, char *nane)

Changes the model name of a recognized instance. If instance is NULL,
the new name is applied to the current instance.

7.4.50. gns_GetSignal

Signal *gns_Get Signal (Netlist *netlist, char *signane)

Retrievesthesignal 'signame’ inthenetlist 'netlist’. The netlist maybe either
flat or hierarchical. To retrieve a signal in a hierarchical netlist, one
must provide a hierarchical name, i.e containing the successives instances
separated with dots. For example, the signal 'insl.ins2.sig' describes the
signal 'sig' in the instance 'ins2’, the instance 'ins2' being contained in the
instance 'insl'.

7.4.51. gns_GetConnector

Connector *gns_Get Connector(Netlist *netlist, char *con_nane)

53

GNS User Guide

Retrieves the connector 'conname’ in the netlist 'netlist'.

7.4.52. gns_GetTransistor
Transistor *gns_Get Transistor(Netlist *netlist, char *tr_nane)

Retrieves the transistor 'con_name' in the netlist 'netlist’.

7.4.53. gns_ AWE_GetWorstinstance

char *gns AVWE GetWorstlinstance(Netlist *netlist, char *insname, Connector
*| ¢, doubl e vdd)

Retrieves the worst instance (worst AWE delay) which is connected to
the connector 'Ic. 'netlist’ is the hierarchical netlist. 'insname’ is the
generic name of theinstance to reduce. For example, if the netlist contains
"mem _cell.0", "mem cell.1", "mem cell.2" ... 'insname’ is "mem cell”
'vdd' is the value of power supply needed to compute AWE delays.

7.4.54. gns_ AWE_GetBestIinstance

char *gns_ AWE Get Bestlnstance(Netlist *netlist, char *insname, Connector
*| ¢, doubl e vdd)

Retrieves the best instance (worst AWE delay) which is connected to the
connector 'Ic'. 'netlist’ is the hierarchical netlist. ‘insname' is the generic
name of the instance to reduce.

7.4.55. gns_ AWE_KeepBestinstance

Netlist *gns AWE KeepBestlnstance(Netlist *netlist, Netlist *flatnetlist,
char *insname, Connector *lc, double vdd)

Keeps the best instance (best AWE delay) which is connected to the
connector 'Ic', the other instance are reduced. 'netlist' is the hierarchical
netlist, 'flatnetlist’ is the flattened netlist. ‘insname’ is the generic name of
the instance to reduce. For example, if the netlist contains "mem_cell.0",
"mem cell.1", "mem cell.2" ... 'insname’ is "mem cell” 'vdd' is the value
of power supply needed to compute AWE delays.

54

GNS User Guide

7.4.56. gns_ AWE_KeepWorstinstance

Netlist *gns_ AVWE KeepWrstlnstance(Netlist *netlist, Netlist
*flatnetlist, char *insnanme, Connector *lc, double vdd)

Keeps the worst instance (worst AWE delay) which is connected to the
connector 'Ic', the other instance are reduced. 'netlist' is the hierarchical
netlist, 'flatnetlist’ is the flattened netlist. ‘insname’ is the generic name of
the instance to reduce. For example, if the netlist contains "mem_cell.0",
"mem cell.1", "mem cell.2" ... 'insname’ is "mem cell” 'vdd' is the value
of power supply needed to compute AWE delays.

7.4.57. gns_ AWE_GetOrderedinstancelndex

void gns_AWE Get Orderedl nstancel ndex(Netlist *lofig, char *rule,
Connector *connector, int **tab, int *nb)

Creates and fills an array with the index of the instances on the signal
connected to <connector>. The Instances are ordered with respect to their
delay versus connector <connector>. The <rule> defines how to retreive
the instance index fromthe instance name. The'?" in theruleisthe number
desired. eg. "bitline(?).low(5).latch”.

7.4.58. gns_GetIinstancelLooplindex
i nt gns_Getl nstanceLoopl ndex(Instance *ins, char **ptptnane)

Returns the index of <instance> and if <radical>!=NULL, fetch
<radical> with the name of the instance in the model.

7.4.59. gns_GetlnstanceLoopRange

void gns_Getl nstanceLoopRange(Netlist *If, Instance *ins, int *left, int
*right)

Returns the <left> and <right> range value of instances in a loop where
<instance> is one of those instances. If <instance> is not in a loop, both
<left> and <right> are assigned -1.

7.4.60. gns_GetCorrespondinglnstance

Cor respondi ngl nst ance *gns_Get Cor r espondi ngl nst ance(char *nane)

55

GNS User Guide

Returns the instance in the circuit corresponding to an instance in the
model. An instance in a loop can be referenced using the instance name
vectorized. <name> can be hierarchical.

7.4.61. gns_GetCorrespondinglnstanceConnectorSignal

Si gnal *gns_Get Correspondi ngl nst anceConnect or Si gnal (Cor r espondi ngl nst ance
*ins, char *nane)

Returns the signal connected to the connector <name> of <instance>.

7.4.62. gns_GetCorrespondinglnstanceName

char *gns_Get Correspondi ngl nst anceNane(Corr espondi ngl nstance *crt)

Returns the name given by YagleGNSto a recognized instance.

7.4.63. gns_GetGeneric

i nt gns_Get Generic(char *nane)

Returns the integer value of a generic variable in the current instance.

7.4.64. gns_GetCurrentArchi
char *gns_Get Current Archi ()

Returns the architecture name of the current instance.

7.4.65. gns_GetCurrentModel
char *gns_Get Current Mbdel ()

Returns the modd name of the current instance.

7.4.66. gns_GetCurrentinstance

char *gns_Get Currentlnstance()

Retur ns the name of the current instance.

56

GNS User Guide

7.4.67. callfunc

void *call func(char *funcnane, ...)

Generates a function call. The number of arguments is variable. When
the results of 'callfunc' is used, <funcname> will be called with the given
arguments.

7.4.68. gns_DriveSpiceNetlistGroup
void gns_DriveSpiceNetlistGoup(List *list, char *fil enane)

Saves the <list> of netlist in <filename> using the spice format.

7.4.69. gns_AddCapa

void gns_AddCapa(Netlist *fig, char *con_nane, doubl e capa)

Add <capa> between <con_name> member of <netlist> and the ground.

7.4.70. gns_AddResi

void gns_AddResi (Netlist *fig, char *conl nanme, char *con2_nane, double
resi)

Add <resi> between <conl name> and <con2 name> member of
<netlist>.

7.4.71. gns_AddLineRC

void gns_AddLi neRC(Netlist *fig, char *conl nanme, char *con2_nane, double
resi, double capal, double capa2)

Add <resi> between <conl name> and <con2 name> member of
<netlist>. Add <capa(n)> to <con(n)_name>

7.4.72. gns_RunGNS
GNSRun *gns_RunGNS(Netlist *netlist, char *celldir, char *libnane)

Initiate a GNS recognition on the specified netlist. <dir> isthe directory
where to search for GNS rules and actions. <lib> is the library file

57

GNS User Guide

describing the rules and actions to use. If they are set to NULL, befault
directory and library file will be used.

7.4.73. gns_DestroyGNSRun
voi d gns_DestroyG\SRun(GNSRun *af g)

Destroys the <gnsrun>.

7.4.74. gns_EnterGNSContext

voi d gns_Ent er GNSCont ext (GNSRun *gnsrun, char *instance)

Changes GNS environment to match the one of <instance_name> in the
<gnsrun>. The old environment is pushed into a stack. It can be retreive
(poped) using gns_ExitGNSContext().

7.4.75. gns_ExitGNSContext
voi d gns_Exi t GNSCont ext ()

Changes GNS environment to the previous one.

7.4.76. gns_GetBlackboxNetlist

Net | i st *gns_Get Bl ackboxNet | i st (char *nane)

Returns the Netlist <name>. The Netlist is searched in the main netlist.

7.4.77.gns_IsTopLevel
int gns_IsTopLevel ()

Indicatesif the current instanceif a top level of genius recognition.

7.4.78. gns_RenamelnstanceFigure

voi d gns_Renanel nst anceFi gure(Netlist *If, char *instance, char
*orignane, char *newnane)

58

GNS User Guide

Changes the figure name of <instance> in <netlist>. The<original figure
name> is replaced by <new figure name>. If instance is NULL, all
instances will be checked for a figure name change.

7.4.79. gns_FillBlackBoxes

void gns_Fill Bl ackBoxes(Netlist *If, List *norenetlist)

Will try to retreive the blackbox figures fromthe list of netlist <modellist>
then in the original netlist, flatten the <netlist> blackbox instances to
transistor level. The <modellist> is not freed.

7.4.80. gns_ChangeNetlistName
voi d gns_ChangeNetlistNane(Netlist *If, char *nane)

Changes the name of the netlist <netlist> by <name>.

7.4.81. gns_GetGNSTopLevels
Li st *gns_Get GNSTopLevel s(GNSRun *gnsr un)

Returnsthe list of all the instances at the top level of the <gnsrun>. Each
element of the list is a string containing an instance name.

7.4.82. gns_CutNetlist

Netlist *gns_ Cut Netlist(GNSRun *gnsrun)

Returns a new netlist where the instances recognized at top level of
<gnsrun> are cut. For each of those instances, a new figure at transistor
level isal so created and instanciated in theretur ned netlist. Concerning the
parasitics, all couplings between blocks are put to ground and depending
on the connector direction or user which, the RC trees are put inside or
outside the instances.

7.4.83. gns_ShowOutsidelnfo

voi d gns_ShowQut si del nfo(char *signame, FILE *f)

59

GNS User Guide

Drives the connections of signal <signal> outside of the GNS instance.
Theresultisputinfile<file>.

7.4.84. gns_ REJECT INSTANCE
void gns REJECT | NSTANCE()

If called will result in the exclusion of the current instance from the
instancesto keep at the top level. This option overridesthe GNSLIBRARY
file settings.

7.4.85. gns_ KEEP_INSTANCE
voi d gns_KEEP | NSTANCE()

If called will result in the inclusion of the current instance in the instances
to keep at the top level. This option overrides the GNS LIBRARY file
Settings.

7.4.86. gns_ REJECT _MODEL
void gns REJECT MODEL()

If called will result in the exclusion of all the instances of the current
instance model from the instances to keep at the top level. This option
overrides the GNSLIBRARY file settings.

7.4.87.gns_ KEEP_MODEL
voi d gns_KEEP MODEL()

If called then all the instances of the current instance model are kept at the
top level. This option overrides the GNS LIBRARY file settings.

7.4.88. gns_GetWorkingFigureName
char *gns_Get Wor ki ngFi gur eNane()

Returns the name of the figure the GNS recognition is working on.

60

GNS User Guide

7.4.89. gns_IsVss

int gns_IsVss(Signal *sig)

Returns 1 if the signal <sig> isavssalimsignal, O otherwise.

7.4.90. gns_IsVvdd

int gns_IsVdd(Signal *sig)

Returns 1 if the signal <sig> isavdd alimsignal, O otherwise.

7.4.91. gns_IsBlackBox

i nt gns_IsBl ackBox()

Returns 1 if the netlist corresponding with the current instance is a
blackbox, O otherwise.

7.4.92. gns_GetSignalVoltage
doubl e gns_GCet Si gnal Vol t age(char *nane)

Returns the value of the voltage source set on the signal nane. nane is by
delault a genius model signal name but if prefixed with 'ext:’ the signal is
considered to be in the original netlist. If no voltage has been set on the
signal, value -10000 is returned.

7.4.93. gns_GetSignalVoltageSwing
i nt gns_Get Si gnal Vol t ageSwi ng(char *nane, double *|ow, double *high)

Gives the voltage swing of the signal nane. | ow is the lowest voltage
possible on the signal and hi gh the highest. name is must genius model
signal name.

7.5. Utility

The MBK API provides a set of utility functions to allow creation and manipulation of chain list and
hash table objects.

61

GNS User Guide

7.5.1. fopen

FI LE *fopen(char *nanme, char *nobde)

Opens a file in the specified mode and returns a pointer

nane Name of the file to be opened
node Available modes arer for reading, wfor writing and a for appending
EXAMPLE set file [fopen "design.stat" w
7.5.2. fclose
int fclose(FILE *f)
closesafile
f Pointer on the file to be closed
EXAMPLE fclose $file

7.5.3. mbk_Sort

void nbk _Sort(int *index_array, void **value_array, int nbelem

Sorts the array of values 'value_array' according to the indexes stored in
the array 'index_array'. 'nbelem’ is number of elements of both the arrays
'index_array' and 'value_array'.

7.5.4. mbk_FreeList
void nbk FreeList(List *Ist)

Frees a List but not the items of the list.

7.5.5. mbk_GetListltem
void *mbk_GetListltemList *Ist)

Returns the current list item. The item is a pointer on void that must be
casted to the desired type.

62

GNS User Guide

7.5.6. mbk_AddListltem
Li st *nbk_AddListltem(List *Ist, void *item

Adds an item at the begining of a list. The new list head is returned.

7.5.7. mbk_AppendList
Li st *nbk_AppendLi st (List *Istl, List *Ist2)

Appends list <I2> at the end of list <I1>. The new list head is returned.
NB: <12> should not be used anymore.

7.5.8. mbk_GetListNext
Li st *nbk_GetListNext(List *Ist)

Returns the next node of the list.

7.5.9. mbk_EndofList

i nt nbk_Endof Li st (List *I|st)

Returns O if Ist is not the end of the list else a value different from 0. The
end of thelist can also be tested with (Ist == NULL).

7.5.10. mbk_NewHashTable
HashTabl e *nbk NewHashTabl e(i nt size)

Creates a hash table with the initial size 'size’. However, if the hash table
becomes too crowded, it is automatically resized.

7.5.11. mbk_FreeHashTable

voi d nbk FreeHashTabl e(HashTabl e *ht abl e)

Deletes the hash table 'htabl€e'.

63

GNS User Guide

7.5.12. mbk_AddHashltem
| ong nmbk_AddHashl t en(HashTabl e *htabl e, void *key, |ong val ue)

Sores the element 'value' in the hash table 'htable, according to the key
'key'.

7.5.13. mbk_GetHashltem
| ong nmbk_Get Hashlt emHashTabl e *htabl e, void *key)

Retrieves the element stored according to the key 'key' in the hash table
‘htable’

7.5.14. mbk_IsEmptyHashltem

i nt nbk_| sEnptyHashltem(l ong val ue)

Tests the returned value of the functions mbk AddHashitem and
mbk_GetHashltem.

7.6. Database

The database API provides a set of functions to create and manage internal databases. This can be
useful as a means of manipulating complex data structures within GNS actions.

7.6.1. dtb_Load

int dtb_Load(char *nane)

dtb_Load(<database>) createsa new data base named < database>. If the
database was already created, it will be cleaned.

7.6.2. dtb_Save

void dtb_Save(char *nane)

dtb_Save(<database>) saves the <database> to a file. The file name will
be .<database>.dtb and can be found in the current directory.

64

GNS User Guide

7.6.3. dtb_Clean

void dtb_C ean(char *nane)

dtb_Clean(<database>) removes of entries in the <database>.

7.6.4. dtb_SetChar

void dtb_Set Char (char *dbtnane, char *nane, char val ue)

dtb_SetChar (<database>, <varname>, <value>) creates or updates the
entry <varname> in the <database> with the value <value> expressed as
a character. In case of type mismatch, the old type will be overriden.

7.6.5. dtb_SetString

void dtb_Set String(char *dbtnane, char *nanme, char *val ue)

dtb_SetString(<database>, <varname>, <value>) creates or updates the
entry <varname> in the <database> with the value <value> expressed as
a string. In case of type mismatch, the old type will be overriden.

7.6.6. dtb_SetLong

void dtb_Set Long(char *dbtnane, char *nane, |ong val ue)

dtb_SetlLong(<database>, <varname>, <value>) creates or updates the
entry <varname> in the <database> with the value <value> expressed as
along integer. In case of type mismatch, the old type will be overriden.

7.6.7. dtb_SetInt

void dtb_Setlnt(char *dbtnanme, char *name, int val ue)

dtb_Setint(<database>, <varname>, <value>) creates or updates the
entry <varname> in the <database> with the value <value> expressed as
an integer. In case of type mismatch, the old type will be overriden.

7.6.8. dtb_SetDouble

voi d dtb_Set Doubl e(char *dt bnane, char *nane, doubl e val ue)

65

GNS User Guide

dtb_SetDouble(<database>, <varname>, <value>) creates or updates
the entry <varname> in the <database> with the value <value> expressed
as a double. In case of type mismatch, the old type will be overriden.

7.6.9. dtb_GetDouble
doubl e dtb_Get Doubl e(char *dtbnanme, char *nane)

dtb_GetDouble(<database>, <varname>) returns the double value of the
entry <varname> in the <database>. If the entry does not exist or the type
mismatchs, 0.0 is returned.

7.6.10. dtb_GetInt

int dtb_Getlnt(char *dtbnanme, char *nane)

dtb_GetInt(<database>, <varname>) returns the integer value of the
entry <varname> in the <database>. If the entry does not exist or the type
mismatchs, O is returned.

7.6.11. dtb_GetLong

| ong dtb_Get Long(char *dtbnanme, char *nane)

dtb_GetLong(<database>, <varname>) returns the long integer value of
the entry <varname> in the <database>. If the entry does not exist or the
type mismatchs, O is returned.

7.6.12. dtb_GetString

char *dtb_Get String(char *dtbname, char *nane)

dtb_GetString(<database>, <varname>) returns the string value of the
entry <varname> in the <database>. If the entry does not exist or the type
mismatchs, NULL isreturned.

7.6.13. dtb_GetChar

char dtb_Get Char(char *dtbnanme, char *nane)

66

GNS User Guide

dtb_Getchar (< database>, <varname>) returnsthe character value of the
entry <varname> in the <database>. If the entry does not exist or the type
mismatchs, ' ' isreturned.

7.6.14. dtb_RemoveEntry

void dtb_RenoveEntry(char *dtbnane, char *nane)

dib_RemoveEntry(<database>, <varname>) removes the entry
<varname> from the <database>. If the entry does not exist, nothing is
done.

7.6.15. dtb_Create

void dtb_Create(char *nane)

dtb_Create(<database>) creates a new database named <database>. If
the database already exits, the function call has no effects.

7.7. SPICE Simulation

The SIM API provides a set of functions to perform and take measures from SPICE simulations of
internally generated netlists using any external SPICE simulator. Functions are provided to position
input waveforms, set simulation parameters, and take measurements of complex properties such as
peak noise and setup/hold constraints.

7.7.1. sim_SetSimulatorType

voi d sim Set Si mul at or Type(Si nul ati onCont ext *sc, char *type)

sim_SetSmulator Type specifies the type of smulator towards whom the
simulation netlists are created. Supported simulatorstypesare 'NGSPICE'
and 'ELDO'.

7.7.2. sim_CreateContext
Si mul ati onCont ext *sim Creat eContext (Netlist *netlist)

sim_FreeContext deletes a previoudly created simulation context. The
netlist associated with the simulation context is not affected.

67

GNS User Guide

7.7.3. sim_CreateNetlistContext
Si mul ati onCont ext *si m Creat eNetli st Context()

sim_CreateNetlistContext creates a simulation context, relatively to the
current gns netlist which is flattened to transistor level.

7.7.4. sim_GetContextNetlist

Netlist *sim Get ContextNetlist(SinulationContext *sc)

sim_GetContextNetlist returns the netlist the ssimulation context sc is
associated to.

7.7.5. sim_SetDelayVTH

voi d sim Set Del ayVTH(Si mul ati onCont ext *sc, doubl e vth)

sim_SetDelayVTH sets the threshold voltage for delay calculations. Delay
is computed between the vth-crossing ins

7.7.6. sim_SetSimulationSlope
void sim Set SinulationSl ope(Sinul ati onContext *sc, doubl e slope)

sim _SetSmulationSope sets the default input slope for electrical
simulation. The unit is the second.

7.7.7. sim_SetSimulationTime
void sim SetSinulationTi ne(Sinmul ati onContext *sc, double tine)

sim_SetSmulationTime sets the duration of the electrical simulation. Unit
is SECOND.

7.7.8. sim_SetSimulationStep
void sim SetSinulationStep(Sinmul ati onContext *sc, double step)

sim_SetSmulationStep sets the step used during the electrical simulation.
The unit is the second.

68

GNS User Guide

7.7.9. sim_SetSimulationSupply
void sim Set Sinul ati onSuppl y(Si mul ati onCont ext *sc, double v_max)

sim_SetSmulationSupply sets the applied power supply during the
electrical simulation. The unit is the volt.

7.7.10. sim_SetInputSwing
voi d sim Setl nput Swi ng(Si nul ati onCont ext *sc, double v_vss, double v_nax)

sets the swing to use for input connector/signal. Those values are used for
instance when setting an input slope on a connector.

7.7.11. sim_SetOutputSwing

voi d sim Set Qut put Swi ng(Si nul ati onCont ext *sc, double v_vss, double
V_max)

setsthe swing to use for output signal when computing a delay to the output
signal or the slope on an output signal.

7.7.12. sim_GetSimulationSupply

doubl e si m Get Si nul ati onSuppl y()

sim_GetSmulationSupply returns the simulation voltage defined for the
alimentation connector. The unit isthe volt.

7.7.13. sim_AddSimulationTechnoFile

voi d sim AddSi nmul ati onTechnoFi | e(Si mul ati onContext *sc, char *tech _file)

sim_AddS mulationTechnoFile adds a technology file in list of technology
files used to parametrize the electrical simulation.

7.7.14. sim_SetSimulationCall

void sim SetSinmnulationCall(SimnmulationContext *sc, char *simcall)

69

GNS User Guide

sim_SetSmulationCall sets the string which will be called to run the
electrical simulator.

7.7.15. sim_NoiseSetAnalyseType
voi d si m Noi seSet Anal yseType(Si nmul ati onCont ext *sc, char noise_type)

sim_NoiseSetAnalyseType sets the type of noise analysis. Allowed values
are SM_MIN and SM_MAX.

7.7.16. sim_SetSimulationOutputFile

void sim SetSinulationQutputFile(SinulationContext *sc, char
*out put _file)

sim_SetSmulationOutputFile specifies the extension of the file generated
by the electrical simulator.

7.7.17. sim_AddStuckLevel

void sim AddSt uckLevel (Si mul ati onContext *sc, char *node, int |evel)

sim_AddStuckLevel stucksthenodeto VDD iflevel is1,to GND if level isO.

7.7.18. sim_AddStuckLevelVector

voi d si m AddSt uckLevel Vect or (Si mul ati onContext *sc, char *node, char
*| evel)

sim_AddStuckLevel Vector stucks the input bit vector to the hexadecimal
value (VDD if the bit valueis 1, GND if the bit value is 0).

7.7.19. sim_AddStuckVoltage

void si m AddSt uckVol t age(Si mul ati onContext *sc, char *node, double
vol t age)

sim_AddStuckVoltage stucks the input to the value.

70

GNS User Guide

7.7.20. sim_AddSlope

voi d si m AddSl ope(Si nul ati onCont ext *sc, char *node, double start _tine,
doubl e transition_tine, char sense)

sim_AddSope sets arising slope on the input (an internal signal) if sense
is'U’, afalling slopeif senseis'D'.

7.7.21. sim_SetExternalCapacitance

voi d si m Set Ext er nal Capaci t ance(Si mul ati onCont ext *sc, char *node, double
val ue)

sim_SetExternal Capacitance sets a capacitance val ue on the toplevel
connector node.

7.7.22. sim_AddWaveForm

void si m AddWaveFor m(Si mul ati onCont ext *sc, char *node, double trise,
doubl e tfall, double periode, char *pattern)

sim_AddWaveForm sets rising and falling transitions on the node,
according to the string "pattern’. Specifying 1 in 'pattern’ setsrising slope,
0 afalling slope.

7.7.23. sim_AddInitLevel

void simAddlnitLevel (Sinul ati onContext *sc, char *node, int |evel)

sim_AddInitLevel initialize a node voltage to VDD if level = 1, to GND if
level = 0.

7.7.24. sim_AddInitVoltage

voi d si m Addl ni t Vol t age(Si nul ati onCont ext *sc, char *node, doubl e
vol t age)

sim_AddInitVoltage initialize a node voltage to the value voltage.

7.7.25. sim_AddOutLoad

voi d si m AddQut Load(Si nul ati onCont ext *sc, char *node, doubl e | oad)

71

GNS User Guide

sim_AddOutLoad addsthe capacitance 'load' on the specified 'node’ output
connector.

7.7.26. sim_AddMeasure

voi d si m AddMeasur e(Si nul ati onCont ext *sc, char *node)

sim_AddMeasure printsthe signal voltage to the smulator output file. This
function is needed to compute timing.

7.7.27. sim_AddMeasureCurrent

voi d si m AddMeasureCurrent (Si mul ati onContext *sc, char *node)

sim_AddMeasureCurrent prints the node current to the simulator output
file.

7.7.28. sim_RunSimulation

void simRunSi nmul ati on(Si nmul ati onContext *sc, char *simcall)

sim_RunSmulation launches the electrical simulation.

7.7.29. sim_ExtractMinSlope

doubl e si m Extract M nSl ope(Si nul ati onCont ext *sc, char *node)

After a simulation run, sim_ExtractMinSope extracts the minimum slope
of a node.

7.7.30. sim_ExtractMaxSlope
doubl e si m Extract MaxSl ope(Si nul ati onCont ext *sc, char *node)

After a ssimulation run, sim_ExtractMaxS ope extracts the minimum slope
of a node.

7.7.31. sim_ExtractMinDelay

doubl e si m Extract M nDel ay(Si nul ati onCont ext *sc, char *node_a, char
*node_b)

72

GNS User Guide

After a simulation run, sm_ExtractMinDelay extracts the minimum delay
between two nodes.

7.7.32. sim_ExtractMaxDelay

doubl e si m Extract MaxDel ay(Si nul ati onCont ext *sc, char *node_a, char
*node_b)

After a simulation run, ssim_ExtractMaxDelay gets the maximum delay
between two nodes.

7.7.33. sim_ExtractMinTransitionDelay

doubl e sim Extract M nTransi ti onDel ay(Si mul ati onCont ext *sc, char *node_a,
char *node_b, char *transition)

After a simulation run, sim ExtractMinTransitionDelay extracts the
mininum delay between two nodes, see sim_ExtractMinDelay. Parameter
‘transition’ can be for example "U1D2". In this configuration, delay will
be extracted between the second rise transition of 'node_a' and the third
falling transition of 'node _b'.

7.7.34. sim_ExtractMaxTransitionDelay

doubl e si m Extract MaxTransiti onDel ay(Si mul ati onCont ext *sc, char *node_a,
char *node_b, char *transition)

After a simulation run, sim_ExtractMaxTransitionDelay extracts the
maximum del ay between two nodes, seesim_ExtractMaxDelay. Parameter
‘transition’ can be for example "U1D2". In this configuration, delay will
be extracted between the second rise transition of 'node_a' and the third
falling transition of 'node _b'.

7.7.35. sim_ExtractMinTransitionSlope

doubl e sim Extract M nTransi ti onSl ope(Si mul ati onContext *sc, char *node,
char *transition)

After a simulation run, sim _ExtractMinTransitionSdope extracts the
minimum slope of a node. Parameter ‘transition’ can be for example
"U1". Inthis configuration, slope will be extracted from the second rising
transition of the node.

73

GNS User Guide

7.7.36. sim_ExtractMaxTransitionSlope

doubl e si m Extract MaxTransiti onSl ope(Si mul ati onContext *sc, char *node,
char *transition)

After a simulation run, sim ExtractMaxTransitionSope extracts the
maximum slope of a node. Parameter 'transition’ can be for example
"D2". In this configuration, slope will be extracted from the third falling
transition of the node.

7.7.37. sim_ComputeSetup

doubl e si m Conmput eSet up(Si mul ati onCont ext *sc, char *data, double

tstart _d, double tslope_d, char sense_d, char *cnd, double t_start _mn_c,
double t _start_max_c, double tslope c, char sense c, char *nmem int
data_val)

sim_ComputeSetup computes the setup time of 'data’ relatively to
‘command'. Setup timeis computed by observing thelatest 'data’ transition,
relatively to ‘command’, that generates a transition on the memory point.
data : name of the data tstart_d : start time of the pulse on data tslope d:
slope of the pulse on data sens d : transition of the data : 'U’ for rising,
'D' for falling cmd : name of the command tstart_min : minimum starting
time of the pulse on cmd tstart_max : maximum starting time of the pulse
on cmd tslope_c : slope of the pulse on cmd sens_c: transition of thecmd :
‘U’ for rising, 'D' for falling mem : name of the memory point data_val :
expected value on mem: 1 for VDD, O for VSS

7.7.38. sim_ComputeHold

doubl e si m Conmput eHol d(Si mul ati onCont ext *sc, char *data, double

tstart _d, double tslope_d, char sense_d, char *cnd, double t_start _mn_c,
double t _start_max_c, double tslope c, char sense c, char *nmem int
data_val)

sim_ComputeHold computes the hold time of 'data’ relatively to
‘command'. Hold timeis computed by observing the latest 'data’ transition,
relatively to command, that doesn't generate any transition on the memory
point. data : name of the data tstart_d : start time of the pulse on data
tslope_d: slope of the pulse on data sens_d : transition of thedata : "U’ for
rising, 'D' for falling cmd : name of the command tstart_min : minimum
starting time of the pulse on cmd tstart_max : maximum starting time of
the pulse on cmd tslope_c : slope of the pulse on cmd sens_c : transition

74

GNS User Guide

of thecmd : 'U' for rising, 'D' for falling mem : name of the memory point
data val : expected value on mem: 1 for VDD, 0O for VSS

7.7.39. sim_ComputeAccess

doubl e si m Conmput eAccess(Si mul ati onContext *sc, char *dout, int dout val
char *cnd, double tstart_c, double tslope c, char sens_c, char *nmem int
mem val , doubl e *out sl ope)

sim_ComputeAccess givesthe accesstime of "'dout’ relatively to'command'.
Access time is computed by observing the delay between the transition on
‘command’ and the transition on ‘dout’.

7.7.40. elp_GetCapaFromConnector
doubl e el p_Get CapaFr onConnect or (Si mul ati onCont ext *sc, Connector *|ocon)

elp_GetCapaFromConnector gives the capacitance of a transistor's
connector.

7.7.41. sim_ComputeDelay

Li st *si m Comput eDel ay(Si mul ati onCont ext *sc, char *input, char sens,
Li st *list_output)

sim_ComputeDelay gives a list of delays between a constant input and a
list of outputs.

7.7.42. sim_ComputeMaxDelayTransition

doubl e si m Conput eMaxDel ayTransi ti on(Si mul ati onContext *sc, char *input,
doubl e input _start, double input_slope, char *output, char *transition)

sim _ComputeMaxDelayTransition gives the maximum delay
corresponding to a transition between the input and the output.

7.7.43. sim_ComputeMinDelayTransition

doubl e si m Conput eM nDel ayTransi ti on(Si mul ati onContext *sc, char *input,
doubl e input _start, double input_slope, char *output, char *transition)

sim_ComputeMinDelayTransition givesthe minimumdelay corresponding
to a transition between the input and the output.

75

GNS User Guide

7.7.44. sim_GetTimingFromList
Timng *sim GetTimngFronList(List *list)

sim_GetTimingFromList gives a timing object corresponding to a list.

7.7.45. sim_GetTimingNext
Timng *simGetTimngNext(Tinmng *timng)

sim_GetTimingNext gives the next timing object.

7.7.46. sim_GetTiming

Timng *simGetTimng(char *root, char *node)

sim_GetTiming retrievesthetiming between the root node name 'rootname’
and the destination node name 'nodename'.

7.7.47. sim_GetTimingByEvent

Tim ng *sim GetTi mngByEvent (char *root, char *node, char *event)

sim_GetTimingByEvent retrieves the timing between the root node name
‘rootname’ and the destination node name 'nodename'’. This timing must
respect the good event on 'rootname’ and 'nodename’. Event isthe expected
event from root to node, it can be ‘U’ (rising) or 'D' (falling) and can be
followed by an integer.

7.7.48. sim_GetTimingDelay
doubl e sim Get Ti mi ngDel ay(Ti mi ng *timng)

sim_GetTimingDelay gets the delay corresponding to the timing.

7.7.49. sim_GetTimingMinDelay

doubl e sim Get Ti ni ngM nDel ay(Tining *timng)

76

GNS User Guide

sim_GetTimingMinDelay gets the minimun delay corresponding to the
timing.

7.7.50. sim_GetTimingMaxDelay
doubl e sim Get Ti nmi ngMaxDel ay(Ti nming *tim ng)

sim_GetTimingMaxDelay gets the maximun delay corresponding to the
timing.

7.7.51. sim_GetTimingSlope
doubl e sim Get Ti mi ngSl ope(Timng *timng)

sim_GetTimingS ope gets the slope corresponding to the timing.

7.7.52. sim_GetTimingMinSlope
doubl e sim Get Ti ni ngM nSl ope(Tining *timng)

sim_GetTimingMinSope gets the minimum slope corresponding to the
timing.

7.7.53. sim_GetTimingMaxSlope
doubl e sim Get Ti ni ngMaxSl ope(Tining *tim ng)

sim_GetTimingMax3ope gets the maximum slope corresponding to the
timing.

7.7.54. sim_GetTimingRoot
char *sim Get Ti mi ngRoot (Ti m ng *tim ng)

sim_GetTimingRoot gets the name of the root node corresponding to the
timing.

7.7.55. sim_GetTimingNode

char *sim Get Ti mi ngNode(Ti m ng *timng)

77

GNS User Guide

sim_GetTimingNode getsthe name of the node (destination) corresponding
to the timing.

7.7.56. sim_GetTimingRootInNetlist
char *sim Get Ti mi ngRoot I nNetlist(Timng *timng)

sim_GetTimingRootInNetlist gets the name of the root node in the netlist
corresponding to the timing.

7.7.57. sim_GetTimingNodelnNetlist
char *sim Get Ti mi ngNodel nNetlist(Timng *timng)

sim_GetTimingNodelnNetlist gets the name of node (destination) in the
netlist corresponding to the timing.

7.7.58. sim_GetTimingRootEvent
char sim Get Ti ni ngRoot Event (Ti ming *ti m ng)

sim_GetTimingRootEvent gets the event of the root node corresponding to
thetiming. EventisSSM_FALL or SM_RISE.

7.7.59. sim_GetTimingNodeEvent

char sim Get Ti ni ngNodeEvent (Ti mi ng *tim ng)

sim_GetTimingNodeEvent gets the event of the node (destination)
corresponding to the timing. EventisSM_FALL or SM_RISE.

7.7.60. sim_NoiseExtract

voi d sim Noi seExtract (Si nul ati onCont ext *sc, char *node, double vthnoi se,
doubl e tinit, double tfinal)

After a simulation run, sim_NoiseExtract extracts the maximum noise
on a node between two moments. The initial time (tinit) and the tfinal
time (tfinal) represent the timing bounds to extract noise. vthnoise is the
threshold voltage to extract noise (percentage of vdd).

78

GNS User Guide

7.7.61. sim_NoiseGetVth

doubl e si m Noi seGet Vt h(Si nul ati onCont ext *sc, char *nane)

sim_NoiseGetVth gets the noise threshold voltage on the node 'name'.

7.7.62. sim_NoiseGetPeakList

Li st *si m Noi seGet PeakLi st (Si mul ati onContext *sc, char *nane)

sim_NoiseGetPeakList gets a list of peaks relatively to node ‘'name'.

7.7.63. sim_NoiseGetMomentList

Li st *si m Noi seGet Monent Li st (Si mul ati onCont ext *sc, char *nane)

sim_NoiseGetMomentList gets a list of moment of passage on noise
threshold voltage relatively to node 'name'.

7.7.64. sim_NoiseGetMoment

doubl e si m Noi seGet Monent (Si mul ati onCont ext *sc, List *noise tclist)

sim_NoiseGetMoment gets a the moment of passage on noise
threshold voltage from a pointer on a pointer list returned by
sim_NoiseGetMomentList.

7.7.65. sim_NoiseGetPeakValue

doubl e si m Noi seGet PeakVal ue(Si nul ati onCont ext *sc, char *nane, List
*noi se_peakl i st)

sim_NoiseGetPeakValue gets the peak value (voltage) relatively to the
node 'name’ and a pointer on a List returned by sim_NoiseGetPeakL.ist.

7.7.66. sim_NoiseGetPeakMoment

doubl e si m Noi seGet PeakMonent (Si mul ati onCont ext *sc, List
*noi se_peakl i st)

sim_NoiseGetPeakMoment gets the peak moment relatively to a pointer on
a List returned by sim_NoiseGetPeakList.

79

GNS User Guide

7.7.67. sim_NoiseExtractMaxPeakValue

doubl e si m Noi seExt ract MaxPeakVal ue(Si mul ati onCont ext *sc, char *nane)

sim_NoiseExtractMaxPeakVal ue gets the maximum peak value relatively
to the node 'name'.

7.7.68. sim_NoiseExtractMinPeakValue

doubl e si m Noi seExtract M nPeakVal ue(Si mul ati onCont ext *sc, char *nane)

sim_NoiseExtractMinPeakValue gets the minimum peak value relatively
to the node 'name'.

7.7.69. sim_NoiseExtractMaxPeakMoment
doubl e si m Noi seExt ract MaxPeakMonent (Si mul ati onCont ext *sc, char *nane)

sim_NoiseExtractMaxPeakMoment gets the moment of the maximum peak
relatively to the node 'name'.

7.7.70. sim_NoiseExtractMinPeakMoment
doubl e si m Noi seExt ract M nPeakMonent (Si mul ati onCont ext *sc, char *nane)

sim_NoiseExtractMinPeakMoment gets the moment of the minimum peak
relatively to the node 'name'.

7.7.71. sim_NoiseGetMomentBeforePeak

doubl e si m Noi seGet Monent Bef or ePeak(Si mul ati onCont ext *sc, char *nane,
Li st *peak)

sim_NoiseGetMomentBeforePeak gets the moment of passage on noise
threshold voltage relatively to node 'name’ and before a peak which is a
pointer on a List returned by sim_NoiseGetPeakList.

80

GNS User Guide

7.7.72. sim_NoiseGetMomentAfterPeak

doubl e si m Noi seGet Monent Aft er Peak(Si nul ati onCont ext *sc, char *nane,
Li st *peak)

sim_NoiseGetMomentAfter Peak gets the moment of passage on noise
threshold voltage relatively to node 'name’ and after a peak which is a
pointer on a List returned by sim_NoiseGetPeakList.

7.7.73. sim_DriveNodeState

void simDriveNodeSt at e(Si nul ati onContext *sc, char *filenane, char
*node_ref, char *node_state2drive, char type)

sim_DriveNodeState drives successives states of the 'node_state2drive' in
the file 'filename’ (which also contains file's extension). 'node_ref' is the
node reference, 'type' can be SM_RISE or SM_FALL and represents the
event on 'node_ref' which will sample 'node_state2drive'.

7.7.74. sim_ExtractCommutinstant

doubl e si m Extract Conmut | nst ant (Si mul ati onCont ext *sc, char *node, doubl e
vol t age)

sim_ExtractCommutlnstant extract the first instant when the node reach
the voltage value 'voltage'.

7.7.75. sim_DriveTransistorAsInstance

void simDriveTransi storAslnstance(Si nul ati onCont ext *sc, char node)

sim_DriveTransistor Aslnstance(< context>, <mode>) indicates is the
transistor should be driven as instances. eg. M124 src grid drain bulk ...
=> XM124 src grid drain bulk ... the value for mode is'y' to enable the
transformation else 'n’

7.7.76. sim_AddSpiceMeasure

voi d si m AddSpi ceMeasur e(Si mul ati onContext *sc, char *del ay, char *sl ope,
char *sigl, char *sig2, char *transition, char delay_ type)

81

GNS User Guide

7.7.77. sim_AddSpiceMeasureSlope

voi d si m AddSpi ceMeasur eS|l ope(Si mul ati onCont ext *sc, char *slope, char
*sig, char *transition, char delay_type)

Add a slope measure of sig that can be extracted by the label (slope).
Transition is a string containing the transition of sig. Tolerated transition
are'U'and'D'. The<delay type> canbeSM_MINor SM_MAX meaning
the node choosen to compute the delay or the slope is the closer or the
farther one.

7.7.78. sim_AddSpiceMeasureDelay

voi d si m AddSpi ceMeasur eDel ay(Si mul ati onCont ext *sc, char *del ay, char
*sigl, char *sig2, char *transition, char delay type)

Add a measure of delay between sigl and sig2 that can be extracted by the
label (delay). Transition is a string containing the transition of sigl and
sig2. The<delay_type> can be SM_MIN or SM_MAX meaning the node
choosen to compute the delay or the slope is the closer or the farther one.
Tolerated transition are'U" and 'D'.

7.7.79. sim_ReadMeasure
doubl e si m ReadMeasure(char *filenane, char *|abel)

Reads the simulation results from fil enamre and return the value
corresponding to the measure | abel . On failure, returns- 1.

7.7.80. sim_ResetMeasures

voi d si m Reset Measur es(Si nul ati onCont ext *nodel)

Resets all the measures set in the simulation context.

7.7.81. sim_GetSpiceMeasureSlope
doubl e si m Get Spi ceMeasur eS| ope(Si mul ati onContext *nodel, char *I abel)

Returns the slope computed for the label, 0.0 if slope has not been
computed.

82

GNS User Guide

7.7.82. sim_GetSpiceMeasureDelay
doubl e si m Get Spi ceMeasur eDel ay(Si mul ati onContext *nodel, char *I| abel)

Returns the delay computed for the label, 0.0 if delay has not been
computed.

7.7.83. sim_SpiceMeasure

voi d sim Spi ceMeasur e(Si nul ati onCont ext *nodel, char *del ay, doubl e
*val ued, char *sl ope, double *values, char *sigl, char *sig2, char
*transition, char delay_type)

Add a delay measure between sigl and sig2 that can be extracted by the
label (delay). Add a slope measure of sig that can be extracted by the |abel
(slope). Transition is a string containing the transition of sigl and sig2.
Tolerated transition are 'U" and 'D'. The <delay_type> can be SM_MIN
or SM_MAX meaning the node choosen to compute the delay or the slope
isthe closer or the farther one. After simulation completed get the delay
and the slope computed for each label and store it into the adress pointed
by valued(delay) and values(siope).

7.7.84. sim_SpiceMeasureDelay

voi d sim Spi ceMeasur eDel ay(Si mul ati onCont ext *nodel, char *del ay, double
*val ue, char *sigl, char *sig2, char *transition, char delay_ type)

Add a measure of delay between sigl and sig2 that can be extracted by
the label (delay). Transition is a string containing the transition of sigl
and sig2. Tolerated transition are 'U' and 'D'. The <delay_type> can be
SM_MIN or SM_MAX meaning the node choosen to compute the delay or
theslopeisthecloser or thefarther one. After simulation completed get the
delay computed for the label and store it into the adress pointed by value.

7.7.85. sim_SpiceMeasureSlope

voi d sim Spi ceMeasur eS| ope(Si mul ati onCont ext *nodel, char *sl ope, double
*val ue, char *sig, char *transition, char delay type)

Add a slope measure of sig that can be extracted by the label (slope).
Transition is a string containing the transition of sig. Tolerated transition
are'U'and'D'. The<delay type> canbeSM_MINor SM_MAX meaning
the node choosen to compute the delay or the slope is the closer or the

83

GNS User Guide

farther one. After simulation completed get the slope computed for thelabel
and store it into the adress pointed by value.

7.7.86. sim_Definelnclude

voi d sim Definel nclude(Si mul ati onContext *sc, char *fil enane)

Sets the filename containing the netlist to apply the pattern to. When this
option is used, the gns rule netlist won't be used for the simulation. It will
be replaced by the external file givenin <filename> at the simulation time.

7.8. Behavior Generation

The BEG API provides a set of functions to allow easy generation of behaviora models. These
internally compiled models can be automatically compressed using loops and vectors and then used
to generate either VHDL or Verilog descriptions.

7.8.1. begCreateModel

voi d begCreat eModel (char *nane)

Initializes a behavioral model with the given name making it the current
model.

7.8.2. begCreatePort

voi d begCreat ePort(char *name, char direction)

Adds an I/O port to the current model.

7.8.3. begCreateModelFromConnectors

voi d begCreat eModel FronConnect or s(char *nane, List *connectors)

Initializes a behavioral model with the given name and interface, making
it the current model.

7.8.4. begCreateModellnterface

voi d begCreat eModel | nterface(char *nane)

84

GNS User Guide

Initializes a behavioral model with the given name and the physical model
interface, making it the current model.

7.8.5. begCreatelnterface
voi d begCreatelnterface()

Initializes a behavioral model and the physical model interface, making it
the current model. The model name will be handled by the API.

7.8.6. begRenameSignalsFromModel
voi d begRenaneSi gnal sFronivbdel ()

Rename the behavioral model interface with the name of physical
connectors. If the corresponding signal is not a connector the behavioral
name is prefixed by the behavioral model name.

7.8.7. begAssign

begAssi gn [-weak]|-strong] <name> <val ue> [del ay [del ayvar]]

Creates a simple concurrent assignment in the current model.

7.8.8. begAddBusDriver

in C

begAddBusDri ver (char *nanme, char *condition, char *value, int delay, char
*del ayvar)

in TCL:

begAddBusDriver [-normal] [-weak]|-strong] [-delays <risedel ay>
<fal | del ay>] <nane> <condition> <val ue> [del ay [del ayvar]]

Adds a driver to a given bussed signal of the current model, creating the
signal if necessary.

- nor mal In verilog, will force the signal to be assigned in a sequential block.
-weak or -strong In verilog, defines the strength of the driver.

-del ays <ri sedel ay>Specifies different values for rising and falling. No effect if field <delay>
<f al | del ay> isused.

85

GNS User Guide

name Affected signal name.

val ue Affected expression.

condi tion Condition for the value to be affected.

del ay Delay of the operation. Default is Ops.

del ayvar Delay variable name for defining the delay later.

7.8.9. begAddBusElse

begAddBusEl se [-normal] [-weak]|-strong] [-delays <risedel ay> <fall del ay>]
<nanme> <condition> <val ue> [del ay [del ayvar]]

Adds an else alternative to the previous driver of a given bussed signal of
the curent model, creating the signal if necessary.

- nor nal In verilog, will force the signal to be assigned in a sequential block.
-weak or -strong In verilog, defines the strength of the driver.

-del ays <ri sedel ay>Specifies different values for rising and falling. No effect if field <delay>
<f al | del ay> isused.

name Affected signal name.

val ue Affected expression.

condi tion Condition for the value to be affected.

del ay Delay of the operation. Default is Ops.

del ayvar Delay variable name for defining the delay later.

7.8.10. begAddBusDriverLoop

voi d begAddBusDri verLoop(char *name, char *condition, char *val ue, char
*| oopvar, int delay, char *del ayvar)

Adds a loop driver to a given bussed signal of the current model, creating
the signal if necessary.

86

GNS User Guide

7.8.11. begAddBusDriverDoubleLoop

voi d begAddBusDri ver Doubl eLoop(char *nane, char *condition, char *val ue,
char *l oopvarl, char *loopvar2, int delay, char *del ayvar)

Adds a loop driver to a given bussed signal of the current model, creating
the signal if necessary.

7.8.12. begAddMemDriver

in C

begAddMenDri ver (char *name, char *condition, char *value, int delay, char
*del ayvar)

in TCL:

begAddMenDri ver [-normal] [-weak]|-strong] [-delays <risedel ay>

<fal | del ay>] <nane> <condition> <val ue> [del ay [del ayvar]]

Adds a driver to a given register signal of the curent model, creating the
signal if necessary.

- nor nal In verilog, will force the signal to be assigned in a sequential block.
-weak or -strong In verilog, defines the strength of the driver.

-del ays <ri sedel ay>Specifies different values for rising and falling. No effect if field <delay>
<f al | del ay> isused.

name Affected signal name.

val ue Affected expression.

condi tion Condition for the value to be affected.

del ay Delay of the operation. Default is Ops.

del ayvar Delay variable name for defining the delay later.

7.8.13. begAddMemDriverLoop

voi d begAddMenDri ver Loop(char *name, char *condition, char *val ue, char
*| oopvar, int delay, char *del ayvar)

Adds a loop driver to a given register signal of the curent model, creating
the signal if necessary.

87

GNS User Guide

7.8.14. begAddMemDriverDoubleLoop

voi d begAddMenDri ver Doubl eLoop(char *nane, char *condition, char *val ue,
char *l oopvarl, char *loopvar2, int delay, char *del ayvar)

Adds a loop driver to a given register signal of the curent model, creating
the signal if necessary.

7.8.15. begAddMemElse

begAddMentl se [-normal] [-weak|-strong] [-del ays <risedel ay> <falldel ay>]
<nanme> <condition> <val ue> [del ay [del ayvar]]

Adds an else alternative to the previous driver of a given register signal of
the curent model, creating the signal if necessary.

- nor mal In verilog, will force the signal to be assigned in a sequential block.
-weak or -strong In verilog, defines the strength of the driver.

-del ays <ri sedel ay>Specifies different values for rising and falling. No effect if field <delay>
<f al | del ay> isused.

name Affected signal name.

val ue Affected expression.

condi tion Condition for the value to be affected.

del ay Delay of the operation. Default is Ops.

del ayvar Delay variable name for defining the delay later.

7.8.16. begSaveModel
voi d begSaveModel ()

Saves the current model to disk.

7.8.17. begKeepModel
voi d begKeepModel ()

Finalize the current custom-built model.

88

GNS User Guide

7.8.18. begDestroyModel
voi d begDestroyModel ()

Destroy the current model.

7.8.19. begVectorize

char *begVectorize(char *radical, int index)

Generate a name of type toto(n).

7.8.20. begVarVectorize

char *begVar Vectorize(char *radical, char *var)

Generate a name of type toto(n).

7.8.21. begVectorRange
char *begVect or Range(char *radical, int left, int right)

Generate a name of type toto(l:r).

7.8.22. begAddWarningCheck

voi d begAddwar ni ngCheck(char *testexpr, char *nessage)

Add a assertion statement which generates a warning on activation.

7.8.23. begAddErrorCheck

voi d begAddError Check(char *testexpr, char *nessage)

Add a assertion statement which generates an error on activation.

7.8.24. begSort

voi d begSort ()

89

GNS User Guide

Sort the driversin the current behavioural mode!.

7.8.25. begCompact

voi d begConpact ()

Compact the current behavioural model by vectorization and loop
detection.

7.8.26. begSetDelay

voi d begSet Del ay(char *varnane, int val ue)

Set the timing delay value associated with a particular delay variable
declared by any of the expression creation functions.

7.8.27. begBuildModel
voi d begBui | dvbdel ()

Automatically create a standard (nom-compacted) behavioral model for a
recognized structural model.

7.8.28. begBuildCompactModel
voi d begBui | dConpact Model ()

Automatically create a compact behavioral model for a recognized
structural model.

7.8.29. begBiterize

void begBiterize()

Unvectorise current behavioral model.

7.8.30. begAddSelectDriver

voi d begAddSel ect Driver (char *nane, char *sel ect, char *when, char
*val ue, int delay, char *del ayvar)

90

GNS User Guide

Add a with select description. 'select’ is the name of the signal selected,
'value' is affected to 'name’ when 'when' match to 'select’. When othersis
represented by 'when' set to string 'default’.

7.8.31. begExport

voi d begExport (char *nane)

begExport(<name>) creates a copy of the current behavioural figure. The
new figure getsthe name <name>. Thisfunction isuseful whenit is needed
to associate a known user nameto a behaviour to easily retreiveit knowing
it's new name.

7.8.32. beglmport

voi d begl nport (char *nane)

beglmport(<name>) retreive the behaviour named <name> and merge it
into the current behavioural figure.

91

GNS User Guide

Chapter 8. Creating a User-Defined
Dynamic Library API

8.1. Description

It isan extremely ssmple task for the user to generate his own APIswhich can be dynamically linked
into an Avertec verification flow. In order to do this, we provide the genapi tool which, from a set
of C source files, together with header files declaring the visible functions, creates a shared library
which can be used in exactly the same way as the supplied APIs.

8.2. Executing the Genapi Tool

To generate your own dynamic library for linking with the Avertec tools, you should use the Genapi
tool asfollows:

genapi <f.c g.c ...> -i <interface.h> [-0 <lib.so>] [--keep_files] [-kf]

This takes the specified set of C source code files, together with a header file declaring the visible
functions and generates directly a shared library compatible with GNS actions. The header file
must contain full ANSI prototype declarations, since thisis used to create wrapper functions for the
functions to be made visible. By default the shared library generated (file with ".s0" suffix) has the
same base name as the header file but this can be modified using the "-0" option. The "-kf" (or "--
keep files") option prevents the removal of the intermediate files generated, such as the source code
for the wrapper functions and the Makefile.

92

GNS User Guide

Chapter 9. Error Messages

9.1. Warning Messages

Warning: Spicefile <name> already loaded
This means that the corresponding transistor-level model has already been loaded, the
model retained for recognition isthe original model.

Warning: circuit signal <name> matched but at least one external connector in the model
iIsmissing in thecircuit
This means that the signal matching the connector is connected to no other connector
in the circuit. In certain cases, this may be perfectly normal, however, it can mean that
something is disconnected in the circuit.

9.2. Fatal Errors

Fatal error while executing program
While excuting the actions, the interpreter can be given instructions causing general
protection faults either by manipulating pointers or calling functions. When this

happens, this message appears.

variable <name> isnot defined in the model
A variable <name> declared in the action function header does not correspond to any
generic variable in the model.

forbidden operators'mod’, ‘'rem', "**'
Thismeansthere'saloop statement to compute ageneric variable but one of the bounds
of the loop contains operator that are not handled by Genius in this case.

put this FOR in another model
This means there is more than one loop in the model that contains a generic variable
of unknown value. This is forbidden. The user must use a separate hierarchical level
for each loop.

transistor in center of loop forbidden
Transistors can not be handled in a loop. This message is given if arule flouts this
restriction.

instance <insname> already exist in figure <model>
This means that an instance of the model <model> with the name <insname> has
already been instantiated. Instance names must be unique within a given model.

93

GNS User Guide

discrepancy between figure %sand instance %sin figure %s
This means that amodel isinstantiated with anumber of connectors different from the
definition of the model.

no model <name> found
The model <name> is used by arule but its description cannot be found.

unknown connector (<name>) declared in symmetric connector list
The connector <name> is used in a symmetric connector list but is not defined in the
entity of the model.

unknown connector (<name>) declared in coupled connector list
The connector <name> is used in a coupled connector list but is not defined in the
entity of the model.

Spice file <name> contain mor e than one description
A SPICE format transistor-level model file can only contain one SUBCKT
corresponding to the model to identify.

Spicefile <name> should be a flat transistor netlist
The SPICE format model file <name> must be aflat transistor netlist, this error means
that the netlist contains instances.

<num> Out of boundsfor signal <signame>
The signal <signame> is declared as a vector but during the recognition, genius tried
to access <signal>(<num>) where <num> is not within the signal vector range. Check
the model declaration.

connector s<connamel> and <conname2> mismatch in loins<insnamel> and <insname2>
When using the instance <insnamel> previously recognized, there is a discrepancy
between the connector <connamel> and the connector <conname2> of the instance
<insname2> instantiated in the model.

No search done on connector ‘<namel>' signal ‘<namel>', model '<namel>" must be a
connexe graph
Thismessage meansthat not all of the connectorsin the model have been traversed. Al
the instances must be connected together so that the recognition algorithm can traverse
all theinstances in the model by jumping between connectors.

connector <model>.<name> isin coupled list but has no symmetry
The connector <name> of the model <model> is used in a coupled connector list but
IS not a symmetric connector.

no symmetry found for connector <name> in coupled list
The connector <name> of the model <model> is used in a coupled connector list but
has no corresponding symmetric connector. A coupled pragmais missing or does not
have all the coupled connectors declared.

94

GNS User Guide

while swapping <connamel> and <conname2>, one of the connector did not have coupled
connector list whilethe other has

In the model, a coupled pragma is missing for either connector <connamel> or
connector <conname2>.

same signal in different symmetry list
The same connector was encountered in two different symmetric connector lists. All
the symmetric connectors must be put in the same symmetric connector list.

same signal in different coupled list
The same connector was encountered in two different coupled connector list. All the
coupled connectors must be put in the same coupled connector list.

Only onevariable authorized in a'for' expression. Use Hierar chy!
This means there is aloop in the model that contains more than one generic variable
of unknown value. This is forbidden. The user must use a separate hierarchical level
for each of the variables.

95

GNS User Guide

| ndex
APIFIAGS ooiiiiii i 16
AVIBIACKDOXFIIE ... 12
AVECASESENSITIVE .o e e 13
AVECAtAIOGUENAIME ...oviiiiicie e e 12
avtFlattenKeepsAIISIgNaINaAMEScoiiiiiiiiie i 13
avtGlobalVAdNamMe ... 13
aVEGIODAIVSSINAME ... 13
AVEIINSTANCESEPAIALON .uuiiieiiieeie e e e e e e 13
AVELIDIArYDITS oot 12
AVELICENSEPIOJECT oiiiii i e 12
AVEILICENSESEIVEL ..ttt e e e e s 12
AVEVAANGIME et e e e e e e e e e e e e 12
AVEVECIONIZE et a e 13
AVEVSSINAIME ... 12
FCIAITOWSINAITNG oo e e 15
fCICUtMAatChedTranSIStOrS ..o 15
Lo L= o 10 To 11, o o 1= PPPUSPPRR 15
FCIGENENICNIMOS ...t e e e e e e e 14
fCIGENENICPMOS ... 15
L0 o1 = Y2 L S ERPPRPPRRN 14
FCILTDraryNAME ... e e as 14
fCIMAtCNSIZETOICIANCE ..o 15
FCITIrACELEVEL ..o 15
FCIMVTITEREPOIT e e e e 15

96

GNS User Guide

ON S AGS i a e 16
ONSKEEPAIICEIIS . 16
[0 T TSY I o >V 4 51 16
ONSLIDIaryNAME ..o 15
ONSTEMPIALEDIT ooviii e e e e e e e e e e e e eenaes 16
[0 LS = (o=] = PP 16
ONSTIACELEVEI L. a e 16
ONSTIACEMOUE! ... e e 16

97

	1. Hierarchical recognition with GNS
	1.1. Overview
	1.2. Description
	1.3. Hierarchical Generic Recognition
	1.4. Integration with Yagle

	2. Configuration Variables
	2.1. License Server
	2.2. Environment
	2.3. Names
	2.4. Pattern Matching
	2.5. Hierarchical Pattern Matching
	2.6. API Specific

	3. Performing the Hierarchical Recognition
	3.1. Description
	3.2. Execution Modes
	3.3. Options Available
	3.4. Output Files

	4. Defining Recognition Rules and Actions
	4.1. Description
	4.2. The Recognition Models
	4.2.1. The Transistor Level Models
	4.2.2. The Hierarchical Models
	4.2.3. Generic Hierarchical Models
	4.2.4. Exploiting Generic Variables

	4.3. VHDL Recognition Rules Reference
	4.4. The Actions
	4.4.1. Types
	4.4.2. Supported Operators
	4.4.3. Functions
	4.4.4. Loops and conditional statements
	4.4.5. Dynamic Libraries

	4.5. The Library File
	4.6. Symmetry and Coupling
	4.7. Other PRAGMAs

	5. Extending GNS with Dynamic Libraries
	5.1. Overview
	5.2. Description
	5.3. Integrating the APIs in an Avertec Tool Flow

	6. Creating a User-Defined Dynamic Library API
	6.1. Description
	6.2. Executing the Genapi Tool

	7. API Functions Available
	7.1. GNS Built-in
	7.1.1. char_to_string
	7.1.2. onehot_to_bit
	7.1.3. onehot_to_hexa
	7.1.4. onehot_to_octa
	7.1.5. onecold_to_bit
	7.1.6. onecold_to_hexa
	7.1.7. onecold_to_octa
	7.1.8. genius_date
	7.1.9. gns_ModelVisited
	7.1.10. gns_MarkModelVisited

	7.2. Transistor Netlist Recognition
	7.3.1. fclMarkCorrespondingSignal
	7.3.2. fclMarkCorrespondingTransistor
	7.3.3. fclOrientCorrespondingSignal
	7.3.4. fclCmpUpConstraint
	7.3.5. fclCmpDnConstraint
	7.3.6. fclMuxUpConstraint
	7.3.7. fclMuxDnConstraint
	7.3.8. fclAllowShare

	7.3. Available Markings
	7.4. GNS Recognition
	7.4.1. gns_StripNetlist
	7.4.2. gns_StripNetlistFurther
	7.4.3. gns_SetLoad
	7.4.4. gns_FlattenNetlist
	7.4.5. gns_FreeNetlist
	7.4.6. gns_AddRC
	7.4.7. gns_SetModelAsLeaf
	7.4.8. gns_ReduceInstance
	7.4.9. gns_KeepInstance
	7.4.10. gns_AddExternalTransistors
	7.4.11. gns_ViewLo
	7.4.12. gns_DriveNetlist
	7.4.13. gns_GetNetlist
	7.4.14. gns_DuplicateNetlist
	7.4.15. gns_GetInstanceNetlist
	7.4.16. gns_GetCorrespondingSignal
	7.4.17. gns_GetSignalName
	7.4.18. gns_GetInstanceName
	7.4.19. gns_GetInstanceModelName
	7.4.20. gns_GetModelSignalRange
	7.4.21. gns_GetModelConnectorList
	7.4.22. gns_GetInstanceConnector
	7.4.23. gns_GetInstance
	7.4.24. gns_GetConnectorCapa
	7.4.25. gns_GetConnectorList
	7.4.26. gns_GetConnectorDirection
	7.4.27. gns_GetConnectorName
	7.4.28. gns_GetConnectorSignal
	7.4.29. gns_GetModelSignalList
	7.4.30. gns_IsSignalExternal
	7.4.31. gns_Vectorize
	7.4.32. gns_Vectorize2D
	7.4.33. gns_GetInstanceConnectorList
	7.4.34. gns_GetAllCorrespondingInstances
	7.4.35. gns_GetAllCorrespondingInstanceModels
	7.4.36. gns_GetCorrespondingTransistor
	7.4.37. gns_GetAllCorrespondingTransistors
	7.4.38. gns_GetTransistorGrid
	7.4.39. gns_GetTransistorDrain
	7.4.40. gns_GetTransistorSource
	7.4.41. gns_GetTransistorType
	7.4.42. gns_GetTransistorTypeName
	7.4.43. gns_GetTransistorParameter
	7.4.44. gns_GetTransistorName
	7.4.45. gns_GetAllTransistorsConnectedtoSignal
	7.4.46. gns_VectorIndex
	7.4.47. gns_VectorRadical
	7.4.48. gns_CreateVhdlName
	7.4.49. gns_ChangeInstanceModelName
	7.4.50. gns_GetSignal
	7.4.51. gns_GetConnector
	7.4.52. gns_GetTransistor
	7.4.53. gns_AWE_GetWorstInstance
	7.4.54. gns_AWE_GetBestInstance
	7.4.55. gns_AWE_KeepBestInstance
	7.4.56. gns_AWE_KeepWorstInstance
	7.4.57. gns_AWE_GetOrderedInstanceIndex
	7.4.58. gns_GetInstanceLoopIndex
	7.4.59. gns_GetInstanceLoopRange
	7.4.60. gns_GetCorrespondingInstance
	7.4.61. gns_GetCorrespondingInstanceConnectorSignal
	7.4.62. gns_GetCorrespondingInstanceName
	7.4.63. gns_GetGeneric
	7.4.64. gns_GetCurrentArchi
	7.4.65. gns_GetCurrentModel
	7.4.66. gns_GetCurrentInstance
	7.4.67. callfunc
	7.4.68. gns_DriveSpiceNetlistGroup
	7.4.69. gns_AddCapa
	7.4.70. gns_AddResi
	7.4.71. gns_AddLineRC
	7.4.72. gns_RunGNS
	7.4.73. gns_DestroyGNSRun
	7.4.74. gns_EnterGNSContext
	7.4.75. gns_ExitGNSContext
	7.4.76. gns_GetBlackboxNetlist
	7.4.77. gns_IsTopLevel
	7.4.78. gns_RenameInstanceFigure
	7.4.79. gns_FillBlackBoxes
	7.4.80. gns_ChangeNetlistName
	7.4.81. gns_GetGNSTopLevels
	7.4.82. gns_CutNetlist
	7.4.83. gns_ShowOutsideInfo
	7.4.84. gns_REJECT_INSTANCE
	7.4.85. gns_KEEP_INSTANCE
	7.4.86. gns_REJECT_MODEL
	7.4.87. gns_KEEP_MODEL
	7.4.88. gns_GetWorkingFigureName
	7.4.89. gns_IsVss
	7.4.90. gns_IsVdd
	7.4.91. gns_IsBlackBox
	7.4.92. gns_GetSignalVoltage
	7.4.93. gns_GetSignalVoltageSwing

	7.5. Utility
	7.5.1. fopen
	7.5.2. fclose
	7.5.3. mbk_Sort
	7.5.4. mbk_FreeList
	7.5.5. mbk_GetListItem
	7.5.6. mbk_AddListItem
	7.5.7. mbk_AppendList
	7.5.8. mbk_GetListNext
	7.5.9. mbk_EndofList
	7.5.10. mbk_NewHashTable
	7.5.11. mbk_FreeHashTable
	7.5.12. mbk_AddHashItem
	7.5.13. mbk_GetHashItem
	7.5.14. mbk_IsEmptyHashItem

	7.6. Database
	7.6.1. dtb_Load
	7.6.2. dtb_Save
	7.6.3. dtb_Clean
	7.6.4. dtb_SetChar
	7.6.5. dtb_SetString
	7.6.6. dtb_SetLong
	7.6.7. dtb_SetInt
	7.6.8. dtb_SetDouble
	7.6.9. dtb_GetDouble
	7.6.10. dtb_GetInt
	7.6.11. dtb_GetLong
	7.6.12. dtb_GetString
	7.6.13. dtb_GetChar
	7.6.14. dtb_RemoveEntry
	7.6.15. dtb_Create

	7.7. SPICE Simulation
	7.7.1. sim_SetSimulatorType
	7.7.2. sim_CreateContext
	7.7.3. sim_CreateNetlistContext
	7.7.4. sim_GetContextNetlist
	7.7.5. sim_SetDelayVTH
	7.7.6. sim_SetSimulationSlope
	7.7.7. sim_SetSimulationTime
	7.7.8. sim_SetSimulationStep
	7.7.9. sim_SetSimulationSupply
	7.7.10. sim_SetInputSwing
	7.7.11. sim_SetOutputSwing
	7.7.12. sim_GetSimulationSupply
	7.7.13. sim_AddSimulationTechnoFile
	7.7.14. sim_SetSimulationCall
	7.7.15. sim_NoiseSetAnalyseType
	7.7.16. sim_SetSimulationOutputFile
	7.7.17. sim_AddStuckLevel
	7.7.18. sim_AddStuckLevelVector
	7.7.19. sim_AddStuckVoltage
	7.7.20. sim_AddSlope
	7.7.21. sim_SetExternalCapacitance
	7.7.22. sim_AddWaveForm
	7.7.23. sim_AddInitLevel
	7.7.24. sim_AddInitVoltage
	7.7.25. sim_AddOutLoad
	7.7.26. sim_AddMeasure
	7.7.27. sim_AddMeasureCurrent
	7.7.28. sim_RunSimulation
	7.7.29. sim_ExtractMinSlope
	7.7.30. sim_ExtractMaxSlope
	7.7.31. sim_ExtractMinDelay
	7.7.32. sim_ExtractMaxDelay
	7.7.33. sim_ExtractMinTransitionDelay
	7.7.34. sim_ExtractMaxTransitionDelay
	7.7.35. sim_ExtractMinTransitionSlope
	7.7.36. sim_ExtractMaxTransitionSlope
	7.7.37. sim_ComputeSetup
	7.7.38. sim_ComputeHold
	7.7.39. sim_ComputeAccess
	7.7.40. elp_GetCapaFromConnector
	7.7.41. sim_ComputeDelay
	7.7.42. sim_ComputeMaxDelayTransition
	7.7.43. sim_ComputeMinDelayTransition
	7.7.44. sim_GetTimingFromList
	7.7.45. sim_GetTimingNext
	7.7.46. sim_GetTiming
	7.7.47. sim_GetTimingByEvent
	7.7.48. sim_GetTimingDelay
	7.7.49. sim_GetTimingMinDelay
	7.7.50. sim_GetTimingMaxDelay
	7.7.51. sim_GetTimingSlope
	7.7.52. sim_GetTimingMinSlope
	7.7.53. sim_GetTimingMaxSlope
	7.7.54. sim_GetTimingRoot
	7.7.55. sim_GetTimingNode
	7.7.56. sim_GetTimingRootInNetlist
	7.7.57. sim_GetTimingNodeInNetlist
	7.7.58. sim_GetTimingRootEvent
	7.7.59. sim_GetTimingNodeEvent
	7.7.60. sim_NoiseExtract
	7.7.61. sim_NoiseGetVth
	7.7.62. sim_NoiseGetPeakList
	7.7.63. sim_NoiseGetMomentList
	7.7.64. sim_NoiseGetMoment
	7.7.65. sim_NoiseGetPeakValue
	7.7.66. sim_NoiseGetPeakMoment
	7.7.67. sim_NoiseExtractMaxPeakValue
	7.7.68. sim_NoiseExtractMinPeakValue
	7.7.69. sim_NoiseExtractMaxPeakMoment
	7.7.70. sim_NoiseExtractMinPeakMoment
	7.7.71. sim_NoiseGetMomentBeforePeak
	7.7.72. sim_NoiseGetMomentAfterPeak
	7.7.73. sim_DriveNodeState
	7.7.74. sim_ExtractCommutInstant
	7.7.75. sim_DriveTransistorAsInstance
	7.7.76. sim_AddSpiceMeasure
	7.7.77. sim_AddSpiceMeasureSlope
	7.7.78. sim_AddSpiceMeasureDelay
	7.7.79. sim_ReadMeasure
	7.7.80. sim_ResetMeasures
	7.7.81. sim_GetSpiceMeasureSlope
	7.7.82. sim_GetSpiceMeasureDelay
	7.7.83. sim_SpiceMeasure
	7.7.84. sim_SpiceMeasureDelay
	7.7.85. sim_SpiceMeasureSlope
	7.7.86. sim_DefineInclude

	7.8. Behavior Generation
	7.8.1. begCreateModel
	7.8.2. begCreatePort
	7.8.3. begCreateModelFromConnectors
	7.8.4. begCreateModelInterface
	7.8.5. begCreateInterface
	7.8.6. begRenameSignalsFromModel
	7.8.7. begAssign
	7.8.8. begAddBusDriver
	7.8.9. begAddBusElse
	7.8.10. begAddBusDriverLoop
	7.8.11. begAddBusDriverDoubleLoop
	7.8.12. begAddMemDriver
	7.8.13. begAddMemDriverLoop
	7.8.14. begAddMemDriverDoubleLoop
	7.8.15. begAddMemElse
	7.8.16. begSaveModel
	7.8.17. begKeepModel
	7.8.18. begDestroyModel
	7.8.19. begVectorize
	7.8.20. begVarVectorize
	7.8.21. begVectorRange
	7.8.22. begAddWarningCheck
	7.8.23. begAddErrorCheck
	7.8.24. begSort
	7.8.25. begCompact
	7.8.26. begSetDelay
	7.8.27. begBuildModel
	7.8.28. begBuildCompactModel
	7.8.29. begBiterize
	7.8.30. begAddSelectDriver
	7.8.31. begExport
	7.8.32. begImport

	8. Creating a User-Defined Dynamic Library API
	8.1. Description
	8.2. Executing the Genapi Tool

	9. Error Messages
	9.1. Warning Messages
	9.2. Fatal Errors

