
Avertec Tools

Yagle
User Guide

Software Release 3.4p5

June 7th, 2010

Avertec Copyright (c) 1998-2006 All Rights Reserved

Yagle User Guide

1

About this Document

This document explains:

• Software installation

• The input formats supported

• How to perform the functional abstraction

• The VHDL/Verilog generated

• User constraints

• The Graphical User Interface

Documentation issued and compliant with Avertec Tools Release 3.4p5.

Please contact support@avertec.com for comments relating to this manual.

Yagle User Guide

2

Table of Contents

1. Software Installation .. 4
1.1. System Requirements .. 4
1.2. What the Distribution Provides ... 4
1.3. Scope of the Installation .. 4
1.4. Performing the Installation ... 4
1.5. Setting-up the Environment ... 6
1.6. The FLEXLM Licence Server ... 7
2. Overview ... 8
2.1. Functional Abstraction with Yagle .. 8
2.2. Applications .. 9
2.3. Description ... 10
2.3.1. Functional Abstraction ... 10
2.3.2. Automatic Gate Model .. 10
3. Using Tcl Interface .. 11
3.1. Script Launch ... 11
3.2. Tools Configuration .. 11
3.3. Functions .. 11
3.4. INF and SDC Configuration ... 12
4. Performing the Abstraction ... 13
4.1. File Loading ... 13
4.1.1. Transistor Technology Models .. 13
4.1.2. Input Netlist ... 14
4.1.3. Parasitics ... 15
4.1.4. Vectorization .. 16
4.1.5. Ignoring Elements ... 16
4.2. General Configuration .. 17
4.2.1. Defining Power Supplies ... 17
4.3. Invoking Functional Abstraction ... 17
4.4. Timing Back-Annotation ... 18
4.4.1. Defining Simulation Temperature .. 18
4.4.2. Back-Annotation Level .. 18
4.5. Output Files .. 18
4.5.1. CNS, CNV files ... 18
4.5.2. VHDL and Verilog files .. 18
4.6. Special Elements ... 19
4.6.1. Transmission Gate Multiplexers .. 19
4.6.2. Latches .. 20
4.6.3. Dynamic Latches ... 20
4.7. Case Analysis .. 20
5. Using The XYagle GUI ... 21

Yagle User Guide

3

5.1. Presentation of the XYagle Interface ... 21
5.1.1. The File Menu ... 21
Open... ... 21
Disassemble... ... 22
Quit .. 22
5.1.2. The Edit Menu .. 22
Extract ... 22
Highlight ... 22
Go thru hierarchy .. 22
Set Depth... ... 22
Back ... 23
Full Figure ... 23
Find... ... 23
5.1.3. The View Menu ... 23
5.1.4. The Windows Menu .. 24
5.1.5. the Options Menu .. 25
5.2. Loading the Schematic .. 25
5.2.1. transistor Level Schematic .. 25
5.2.2. Gate Netlist ... 26
5.2.3. Disassembled Gate Netlist .. 27
5.2.4. Hierarchical Gate Netlist ... 28
5.3. XYagle Basics .. 29
5.3.1. Viewing General Information ... 29
5.3.2. Configuring Visibility .. 30
5.3.3. Navigation in XYagle ... 31
5.4. Schematic Browsing with XYagle .. 31
5.4.1. XYagle Browsing Modes ... 31
5.4.2. Extracting Sub-Netlists .. 31
5.4.3. Highlighting Gate Dependences .. 32
5.4.4. Traversing Hierarchy ... 33
5.4.5. Searching Object by Name ... 34
5.5. Disassembled Netlist Information ... 34
5.5.1. Viewing the Gate Structure ... 34
5.5.2. Viewing the Gate Behavior ... 35
Index .. 37

Yagle User Guide

4

Chapter 1. Software Installation

1.1. System Requirements

The complete installation requires approximately 650Mb disk space. If you wish to execute all the
examples, you will need 700Mb of free disk space.

The following platforms are supported:

Solaris 8, 9, 10 (32bit and 64bit for each)

Linux RedHat Enterprise Linux 3.0 (32bit and 64bit)

1.2. What the Distribution Provides

The distribution provides all the relevant files required to install and operate the Avertec tools. This
includes:

• Installation script

• End-user license agreement

• Binary executables

• License server data

• Manual pages

• Documentation in PDF and HTML format

• Tutorials

• Environment configuration files

1.3. Scope of the Installation

The distribution can be installed onto any part of a file system so long as the person performing the
installation has write access privileges. You may, for example, choose to install all the tools in a user's
home directory. Alternatively, you may install the tools on an NFS file server for multi-user access.
In both cases, the installation process is the same, apart from the location on the file system. The
only requirements for the execution of the binaries are appropriate access privileges together with a
network connection to the machine chosen to act as the license server.

1.4. Performing the Installation

If starting from a CD-ROM, you must first perform the necessary commands to mount it.

Yagle User Guide

5

You should then open a terminal and change directory to the place on the file system you want the
tools to be installed. Launch the installation script as follow.

> /cdrom/AvtTools/Install (Solaris)
> /mnt/cdrom/Install (Linux)

If starting from a TAR archive file, you must first untar it, and change directory to the place on you
want the tools to be installed

> cd /users/me/tar/
> tar -xvf AvtTools_2.8.tar
> cd /users/me/work/
> /users/me/tar/AvtTools_2.8/Install

The installation script present you with the installation choices detailed in the subsequent sections.
For each choice you will be given a default reply (in square brackets) which you can accept by simply
pressing the <RETURN> or <ENTER> key. Unless the choice requires a file or a directory path in response,
you will also be given the list of possible replies. An invalid response will result in an error message
and will take you straight back to the original question.

Enter the source directory [/users/me/tar/AvtTools_2.8]:

Root directory the distribution is installed from. If installation is done from a CD-ROM, default is the
root directory of the CD-ROM. If installation is done from an archive, default is the root directory
of the archive.

You must accept the following license agreement before installation

Press return to continue

Text of a license agreement. Press <SPACE> to advance one screen at a time, or <ENTER> to advance
one line at a time. Please read carefully all the terms of this agreement.

Do you accept the terms and conditions? [accept]:

You must accept the terms of this license agreement before being able to continue with the installation.

Enter the destination directory [/users/me/work/AvtTools]:

Full path of the directory you wish to install the software in. By default this is a subdirectory named
AvtTools of the current directory.

Directory /users/me/work/AvtTools does not exist...

Do you want to create it now y/n? [y]:

Yagle User Guide

6

Creating installation directory...

If specifying a destination directory that does not exist, you will be asked to confirm its creation. If
you type n then you will be asked to specify an alternative directory.

Enter the OS to install

 S2.6 : Solaris 2.6
 S2.8 : Solaris 2.8
 S2.8_64 : Solaris 2.8 64bits
 S2.9 : Solaris 2.9
 S2.9_64 : Solaris 2.9 64bits
 RHEL3.0 : Red Hat Enterprise Linux 3.0
 RHEL3.0_64 : Red Hat Enterprise Linux 3.0 64bits
 RHL8.0 : Red Hat Linux 8.0

OS [S2.6 S2.8 S2.8_64 S2.9 S2.9_64 RHEL3.0 RHL8.0]:

By default executables for all supported platforms are installed. However, you may wish to install
only those which you require.

Hit <ENTER> to accept the default, or type the name of the platform for you wish to install.

Enter the license server name [cardiff]:

Name of the machine you intend to run the license server on. By default, it is the name of the current
machine.

1.5. Setting-up the Environment

The installation process creates a CSH environment file setting environment variables for tool access:

source $AVT_TOOLS_DIR/etc/avt_env.csh

On 64bit systems, one can choose to use either 32bit or 64bit software version. To use 64bit-software
version, add the following argument:

source $AVT_TOOLS_DIR/etc/avt_env.csh 64

Where $AVT_TOOLS_DIR is the destination directory of the installation.

You can either source this file or set explicitly the appopriate environment variables in a startup script
such as the .cshrc.

The variables to set are:

AVT_TOOLS_DIR Full path of the Avertec tools root directory.

PATH Access paths for the appropriate binaries, e.g.
$AVT_TOOLS_DIR/tools/Solaris_2.8/bin

Yagle User Guide

7

LD_LIBRARY_PATH Access paths for the appropriate shared object (.so)
libraries. e.g. $AVT_TOOLS_DIR/tools/Solaris_2.8/

api_lib

MANPATH Access paths for the Avertec man pages, e.g.
$AVT_TOOLS_DIR/man

AVT_LICENSE_SERVER Name of the machine hosting the licence server.

AVT_LICENSE_FILE Full path of the licence file.

1.6. The FLEXLM Licence Server

Yagle license control is done through the standard FLEXLM license server. Avertec's license server
daemon is avtlicd.

The command:

> lmgrd -c <avertec_license_key_file>

sets AVTLICD_LICENSE_FILE to avertec_license_key_file

starts avtlicd (provided it is in $PATH)

creates ~/.flexlmrc

Yagle User Guide

8

Chapter 2. Overview

2.1. Functional Abstraction with Yagle

Yagle performs the automatic generation of HDL descriptions, in Verilog or VHDL, from transistor-
level netlists, by partitioning and analyzing the network of transistors. Tri-state nodes of the circuit
are expressed as VHDL Bus. Latches and registers are expressed as conditioned statements within
separate VHDL processes. The process is totally free of user intervention and does not require any pre-
defined library. Nevertheless, a user-defined gate library can be provided in order to handle complex
latches or analog circuitry.

The generated HDL descriptions can be used by common verification tools. Yagle allows functional
modeling and verification of full and semi-custom designs, by logical simulation or equivalence
checking.

Yagle's HDL descriptions are also compliant with synthesis tools requirements, and allow easy
technology migration.

Yagle's unique ability to provide timing back-annotated HDL descriptions, close to physical
implementation, enables the setup of solutions based on signal activity, such as power consumption
or IR-drop analysis.

A hierarchical pattern-matching engine allows genuine treatment of analog cells. Its memory-array
recognition capability enables Yagle to abstract Mbytes SRAMs in a matter of minutes.

The following diagram illustrates Yagle's integration in the design flow.

Yagle User Guide

9

The most important features of Yagle are:

• Handles complex CMOS and NMOS circuitry including pass-transistors, precharge logic,
and domino logic.

• Works on complex blocks such as microprocessor cores, PCI components, routing
components and multimedia systems.

• Automatically detects and models latches and registers

• Mixed Analog/Digital components handled by an optional user-defined device library.

• Pattern-matching engine for memory array recognition, built-in analog library

• Flat or hierarchical SPICE/CDL input transistor netlist.

• DSPF, SPEF parasitics support

• Industry-standard VHDL or Verilog behavioral output, compatible with commercial
simulation and synthesis tools.

• Structural VHDL or Verilog output suitable for automatic test pattern generators.

• SPICE accurate timing annotation, with BSIM3 and BSIM4 transistor models support

• GUI and Tcl interface

Yagle is able two generate HDL behavioral descriptions at different levels of abstraction.

Closest to physical implementation is a low-level HDL. Associated with this description, Yagle
generates a correspondence table, that link electrical and logical names.

A high-level HDL is obtained by expression simplification and intermediary signals suppression.

A compact HDL can also be obtained by vectorization. The pattern-matching engine identifies the
repetitive structures, such SRAM arrays, and vectorizes the HDL descriptions according to them.

2.2. Applications

The main applications of Yagle are:

• Functional verification of digital custom designs through simulation or equivalence checking

• ROM content verification

• RAM / CAM formal verification

• IP-reuse and technology migration

• Accurate signal activity obtaining, thanks to timing-annotated low-level HDL descriptions,
enabling power consumption computation or IR-drop analysis

• BIST routines validation. The correspondence table between logical and electrical names
enables easy identification of the physical nodes activated by the BIST routines.

Yagle User Guide

10

2.3. Description

2.3.1. Functional Abstraction

The Yagle tool offers designers a revolutionary new strategy for the functional verification of
their digital custom circuits, known as Functional Abstraction. Previous strategies for functional
verification at the lowest level relied upon SPICE-like electrical simulations and were therefore
limited to small circuit blocks. Functional Abstraction takes the task of behavioral verification to
a higher level by directly extracting a simulatable RTL description from the transistor netlist by
disassembly of the circuit.

2.3.2. Automatic Gate Model

The Yagle approach to circuit disassembly for functional abstraction can be defined as a partitioning
of the transistor net-list, according to a limited number of generic rules. Each partition represents
an extracted gate for which a behavioral description can be deduced. The result is a totally generic
approach with a minimum of user intervention.

In the first phase, Yagle extracts the dual CMOS circuitry. In the second phase, Yagle builds the gate
net-list for the remaining circuitry whilst performing functional analysis in parallel, in order to prevent
the fabrication of false branches within a gate and to verify the behavior of the gate. This procedure
allows Yagle to take into account the functional correlation in the surrounding circuitry. The depth
of surrounding circuitry taken into account is adapted automatically within a maximum bound which
can be specified by the user.

Yagle User Guide

11

Chapter 3. Using Tcl Interface

3.1. Script Launch

All functionalities of the Yagle platform can be accessed with the avt_shell Tcl scripting interface.
avt_shell can be used the same way as any .tcl script.

avt_shell can be used in interactive mode or in script mode. In interactive mode, it is invoked as
follow:

> avt_shell

In script mode, the first line of the script file should look like:

#!/usr/bin/env avt_shell

3.2. Tools Configuration

The configuration of all the timing tools of the Yagle platform is done in the same way, by the mean
of configuration variables. The value given to the variable determines the specific behavior of the
tool. When using the Tcl interface, the setting of the values for the configuration variables can be
done in two ways:

• In the special file avttools.conf in the working directory, with the syntax variable =
value. Old way, not recommended. Only kept for backward compatibilty.

• In the avt_shell script, through the avt_config function, taking the variable for first
parameter and its affected value for second parameter (avt_config variable value).

There is a precedence of the values set in the avttools.conf file on the values set in the avt_shell
script.

3.3. Functions

Here is a list of the families of Tcl functions that can be found within the avt_shell interface. For
more information, see Yagle Reference Guide.

General Global configuration, file loading, netlist manipulation,
statistics

INF Configuration Configuration though the INF functions

HDL Construction Automatic or manual generation of the VHDL/Verilog

Yagle User Guide

12

3.4. INF and SDC Configuration

For tool configuration needing more than the specification of a simple value (as it is done through the
avt_config function), Yagle uses the INF mechanism, which is a set of Tcl configuration functions.

SDC commands are grouped together with the INF functions and share the same mechanisms.

All INF functions begin with the inf_ prefix, except of the SDC commands, which respect their
standard naming.

Within a Tcl script, the target sub-circuit must be defined before using INF or SDC commands.
Following example is given for a sub-circuit named my_design.

inf_SetFigureName my_design

set_case_analysis 1 reset
inf_DefineMutex muxup {i0 i1 i2}

It is possible to check the INF and SDC functions by driving a .inf file. Adding the line:

inf_Drive my_design

at the end of the previous Tcl script generates the my_design.inf file. Each INF and SDC function
has a corresponding section in this file (see Yagle Reference Guide).

Yagle User Guide

13

Chapter 4. Performing the Abstraction

4.1. File Loading

The purpose of this section is to show how to load files containing:

• Transistor technology models

• Design netlist

• Parasitic back-annotation

File loading is done with the Tcl command avt_LoadFile. Depending on the file format being
read, and on the netlist specificities (such as vectors, connector order,...), additional configuration is
sometimes required. Additional configuration should be set with avt_config Tcl commands, before
invoking avt_LoadFile.

4.1.1. Transistor Technology Models

Transistor technology models are necessary to compute timings. If those transistor models appear
in a separate file, they should be loaded in the Tcl script with the avt_LoadFile function. The
avt_LoadFile function takes as first argument the name of the file to load, and as second argument
its format. A typical loading of a technology file will be such as:

avt_LoadFile ../models/bsim3.tech spice

If the technology file makes inclusions of other files then inclusion paths should be absolute. If paths
are relative, further configuration will be needed to specify the location of those files:

avt_config avtLibraryDirs .:../models

Technology file can also appear as an inclusion (.INCLUDE or .LIB) in a Spice netlist. In such a case,
it will be loaded at the time the Spice netlist is loaded.

Different industry-standard electrical simulators have different interpretations of the parameters of
.MODEL statement, which also deviate from the Berkeley model (see Berkeley's BSIM3v3.2.4 or
BSIM4.3.0 MOSFET Model User's Manual). This can lead to significant differences in the results
given by different simulators.

Besides, the LEVEL parameter which appears in the model files is not discriminant enough. Different
simulators may interpret differently a same LEVEL value (as it is the case for LEVEL 49, differently
interpreted by HSPICE and ELDO). Therefore, it is necessary to specify the targetted simulator of the
transistor model. It should be done with the following variable:

avt_Config simToolModel ELDO

If the simToolModel variable is not specified, Yagle will interpret the transistor model as HSPICE
does (default value), and check the LEVEL against the following list:

Yagle User Guide

14

TOOL hspice
BSIM3V3 param level 49
BSIM3V3 param level 53
BSIM4 param level 54
PSP param level 1020
PSPB param level 1021

TOOL eldo
BSIM3V3 param level 49
BSIM3V3 param level 53
BSIM4 param level 60
PSP param level 1020
PSPB param level 1021

TOOL ngspice
BSIM3V3 param level 8
BSIM4 param level 14

TOOL titan
BSIM3V3 model BSM3 setdefault version 3.0
BSIM3V3 model BS32 setdefault version 3.24
BSIM4 model BS4 setdefault version 4.2
BSIM4 model BS41 setdefault version 4.1
BSIM4 model BS42 setdefault version 4.21

If there is a conflict, for example if LEVEL=60 is given and simToolModel is not specified (defaulted
to HSPICE), the tool will exit. User needs to properly set the simToolModel value.

4.1.2. Input Netlist

In a way or another, one must always provide a transistor-level description of the design. If impossible
to give a transistor description for some parts of the netlist, Yagle can also take .lib files as input,
but it should be understood that Yagle is primarily designed for digital transistor-level analysis, and
that providing .lib files should only apply to parts of the netlist where Yagle does not apply, e.g.
analog parts. Integration of .lib files will be discussed later.

A transistor level description can be provided within the following formats:

• Flat-transistor extracted Spice netlist

• Hierarchical Spice netlist, with Spice transistor-level leaf cells

• Hierarchical Verilog netlist, with Spice transistor-level leaf cells

• Hierarchical VHDL netlist, with Spice transistor-level leaf cells

Flat-transistor Spice netlist

A flat-transistor extracted Spice netlist is simply loaded with the following command:

avt_LoadFile my_design.spi spice

The file can contain parasitics, and preferably contains a .SUBCKT statement. If not, an implicit
top-level is created, with all the nodes in the netlist reported on the interface. This can lead to
computational explosion in further steps of the analysis.

Hierarchical Spice netlist

Yagle User Guide

15

A hierarchical Spice netlist can be represented by several files. Those files can be loaded either through
possibly recursive .INCLUDE statements, or through several avt_LoadFile commands. However, at
least one avt_LoadFile command must appear in the Tcl script. The netlist is automatically flattened
to the transistor-level, when all the dependancies have been resolved, e.g. when all instanciated sub-
circuits correspond to a sub-circuit definition.

In a separate avt_LoadFile command, sub-circuit definition can appear after its instanciation, the
order is not relevant. For example, the following file can be loaded by avt_LoadFile my_design.spi
spice:

.SUBCKT my_design ...

...

.ENDS my_design

.INCLUDE ../leaf_cells/n1_y.spi
.INCLUDE ../leaf_cells/o3_y.spi
.INCLUDE ../leaf_cells/mx2_y.spi

Order is relevant if sub-circuit definitions appear in files read by separate avt_LoadFile commands.
In that case reading the files containing sub-circuit definitions must be done before reading the files
containing their instanciation, as shown in the follwing example:

avt_LoadFile leaf_cells/n1_y.spi spice
avt_LoadFile leaf_cells/o3_y.spi spice
avt_LoadFile leaf_cells/mx2_y.spi spice
avt_LoadFile my_design.spi spice

Hierarchical Verilog/VHDL netlist

The same example applies to a Verilog netlist and Spice transistor-level leaf-cells:

avt_LoadFile leaf_cells/n1_y.spi spice
avt_LoadFile leaf_cells/o3_y.spi spice
avt_LoadFile leaf_cells/mx2_y.spi spice
avt_LoadFile my_design.v verilog

or

avt_LoadFile my_design.vhd vhdl

4.1.3. Parasitics

Yagle treats parasitics files of two kinds:

• Parasitics used as a back-annotation of schematic netlists. In such as case, the connectivity
of the schematic netlist is ensured without the parasitics file, which just brings additionnal
information. The formats supported for back-annotation are DSPF and SPEF.

• Parasitics used to complete the description of the netlist. In such a case, the netlist is
not connected without the parasitic information. Typically, the RC networks make the
connectivity. The formats supported for connectivity description are Spice and DSPF (in this
case the DSPF is used as a Spice file).

Back-annotation

Yagle User Guide

16

When a parasitic file is used to back-annotate a schematic netlist, the schematic netlist must be
loaded first, through a separate avt_LoadFile command. Just invoking the load of the parasitic file
afterwards is enough to perform the back-annotation:

avt_loadfile my_design.spi spice
avt_loadfile parasitics.spef spef

or

avt_loadfile my_design.spi spice
avt_loadfile parasitics.spf dspf

When using back-annotation, special attention should be paid to name consistency between netlist
and parasitics, especially regarding vectors (see next chapter).

Connectivity

If the parasitics file is necessary to ensure the connectivity of the netlist, the parasitics and netlist
files should be loaded through a single avt_LoadFile command. Parasitic files should be included
at appropriate levels of hierarchy with .INCLUDE statements.

4.1.4. Vectorization

Yagle has two operating modes regarding vectors. One can choose between a mode where vectors are
represented internally as they appear in the source file, and a mode where they are identified as special
signals and represented internally accordingly. When a vector is identified as a special signal, the
internal representation is a string containing the radical and the index separated by a space character.
For example the vector dummy[0] is represented as dummy 0.

Different delimiters can be used to represent vectors. Configuration of legal delimiters, as well as the
choice to treat vectors as special, should be done with the avtVectorize configuration variable:

avt_config avtVectorize "[],<>"

Treating vectors as special signals is usefull when the same vectors can appear with different
delimiters in different files. For example if a vector is referred to as dummy[0] in a Verilog file, and as
dummy<0> in a SPEF file, the previous configuration is necessary to make the correspondance between
the two names.

4.1.5. Ignoring Elements

For a reason or another, some elements in the source files may be unsupported by Yagle or may not
respect standard format syntax. To work around those elements, Yagle provides the means to ignore
them during the parse of the source netlist. The elements that can be ignored are instances, transistors,
resistances and capacitances. For further information please refer to the inf_DefineIgnore command
documentation.

Yagle User Guide

17

4.2. General Configuration

4.2.1. Defining Power Supplies

Special attention should be paid to the definition of power supply and ground nodes (avtVddName,
avtVssName and simPowerSupply variables). Indeed, the disassembly process is heavily dependant
on the naming of those nodes, as the algorithm is looking for current paths towards power supply and
ground. Bad specification of these nodes can lead to the construction of an exponential number of
wrong current paths. Power supply and ground definition is the first thing to check if the disassembly
process seems to loop infinitely.

Yagle also supports V cards for the definition of power supply and ground nodes. One can distinguish
between two cases:

The power supply and ground node appear on the interface of the .SUBCKT, and the subcircuit is
instanciated. The V cards should refer to the names used in the instanciation:

Vsupply vdd gnd DC 1.2V
Vground gnd 0 DC 0V

.SUBCKT my_design a b c vdd_int gnd_int
...
.ENDS my_design

X0 a b c vdd gnd my_design

The power supply and ground node does not appear on the interface of the .SUBCKT, or the subcircuit
is not instanciated. The V cards should refer to the names used within the subcircuit, or appearing on
the interface of the .SUBCKT, together with .GLOBAL statements:

.GLOBAL vdd gnd

Vsupply vdd gnd DC 1.2V
Vground gnd 0 DC 0V

.SUBCKT my_design a b c vdd gnd
...
.ENDS my_design

4.3. Invoking Functional Abstraction

The functional abstraction routine is invoked by the yagle command, which takes as argument the
name of a sub-circuit. The sub-circuit must be among the previously loaded netlists. If the sub-circuit
contains instances it will be flattened to the transistor-level. In such a case, signal naming respects the
hierarchical paths. The name of a signal is the concatenation of the names of the successive instances
that appear in the hierarchical path leading to the physical node the signal is associated with. The
typical Tcl command for invoking functional abstraction is:

yagle my_design

Yagle User Guide

18

where my_design is the name of the .SUBCKT to treat. If flatten is impossible (i.e. transistor level sub-
circuits are missing for leaf cells), with no further configuration, the tool will issue an error and exit.

The default configuration creates a VHDL description.

4.4. Timing Back-Annotation

4.4.1. Defining Simulation Temperature

Temperature can be deined either with the simTemperature configuration variable or through a .TEMP
statement in the Spice file.

4.4.2. Back-Annotation Level

The level of accuracy used for the back-annotation is yagleTasTiming

4.5. Output Files

4.5.1. CNS, CNV files

The .cns file describes the partitions (cones), and their interconnections, resulting from the
disassembly process. This file is very useful for debugging purposes, and necessary for the spice deck
generation of timing paths. The file can be generated with the following configuration:

avt_config yagleGenerateConeFile yes

The .cns file is intented to be re-read by Yagle and therefore is not very human-readable. A more
friendly version can be generated by setting:

avt_config avtVerboseConeFile yes

4.5.2. VHDL and Verilog files

VHDL file is generated in default mode. a Verilog file can be generated instead by using the following
configuration:

avt_config avtOutputBehaviorFormat vlg

Yagle User Guide

19

4.6. Special Elements

4.6.1. Transmission Gate Multiplexers

The detection of multiplexors is done purely algorithmically. The cone partitioning strategy
implemented in Yagle perfectly fits with the detection and modeling of transmission-gate based
multiplexers, provided that the correlations between the commands can be resolved within the design.
The only reason why detection may fail, is because the schematic of the design itself prevents to
identify those correlations, for example when commands are input pins. In such a case, correlations
(mutual exclusion) should be set externally with INF commands.

The following diagram shows two situations. In the left-hand design, the mutual exclusion between
sel and nsel is not ensured by the design. There is no way for the tool to identify inputs and outputs,
and it constructs false current paths. In the right-hand design, the mutual exclusion between sel and
nsel is ensured by the invertor, and therefore the tool correctly models the multiplexer.

sel

I0

I1

out

sel

I0

I1

nsel out

no corre lat ion ⇒ fa lse current pat hs int ernal corre lat ions ⇒ OK

To avoid the construction of false current paths in the left-hand design, the following mutual exclusion
configuration should be set:

inf_DefineMutex cmpUP {sel nsel}

If the transmission gate toppology is more complex, and setting of mutual exclusion constraints
become too much difficult, another orientation mechanism is available. Let's consider the next design:

sel

I0

I1

nsel
out

3

3

2 1
s

sel

I0

I1

nsel
out

3

3

2 1
s

Yagle User Guide

20

Here orientation can be done by setting levels on signals i0, i1, s and out. The transistors are oriented
by assuming the current is going from the signals with the higher level to the signals with the lower
level. Levels should be set as follow:

inf_DefineDirout i0 3
inf_DefineDirout i1 3
inf_DefineDirout s 2
inf_DefineDirout out 1

The default orientation value of signals is -1.

4.6.2. Latches

Two algorithms exist in Yagle to detect latches. The first one is based on pattern-matching.
The tool tries to match in the design built-in latch patterns. This algorithm is enabled with the
yagleStandardLatchDetection (default behavior is enabled). The second algorithm is based upon
the Boolean analysis of gate loops and an electrical analysis of conflicts. This algorithm is enabled with
the yagleAutomaticLatchDetection variable (default behavior is not enabled). The two algorithms
can be enabled together, in such a case the standard latch detection is performed before the automatic
latch detection.

4.6.3. Dynamic Latches

Dynamic latches are typically tristate nodes followed by a capacitance. In default mode, tristate
nodes are not marked as latches. This behavior can be changed with the yagleMarkTristateMemory
configuration variable.

Dynamic latches can also be identified with the INF commands inf_DefineDLatch and
inf_DefineNotDLatch

4.7. Case Analysis

Case analysis, such as Scan Mode analysis or Functional mode analysis, is available in the Yagle
platform. It is performed by sticking input connectors or internal signals to logical low or logical high
values. It is done by adding in the Tcl script the SDC command set_case_analysis.

The logical value stuck on the input connector or logical signal is propagated through the design, with
regard to the behavior of the gates it crosses. A report of the stuck signals is available in the .rep file:

[WRN 30] Signal 'ram_na3' is stuck at Zero
[WRN 31] Signal 'ram_a43r_net6' is stuck at One

Yagle User Guide

21

Chapter 5. Using The XYagle GUI

5.1. Presentation of the XYagle Interface

XYagle contains five pull down menus:

• File

• Edit

• View

• Windows

• Options

These menus grant accesss to the XYagle functionality.

Each menu can be tear of from the main XYagle window in order to allow the user to accesss it directly.

5.1.1. The File Menu

The File menu provides accesss to the "Open" and "Quit" functionalities of the XYagle interface.
The functionalities of the File menu are detailed in the following sections.

Open...

By selecting the Open... item of the File menu you will be presented with the XYagle File Select
dialog. Choose which schematic to load by selecting it in this dialog.

Yagle User Guide

22

Disassemble...

The circuit disassembling can be launched from within XYagle. You will need to read the Yagle User
Guide before using this option.

More information about performing the disassembling can be found in the Disassembling with
XYagle Chapter of the current documentation.

Quit

Selecting this item in the File menu will exit XYagle.

5.1.2. The Edit Menu

The Edit menu provides accesss to the most current functionnalities of XYagle.

Most of these options will be detailled in following chapters. A quick presentation are given in the
following sections:

Extract

Select the Extract option in order to switch the extract sub-netlist mode on. More information on
modes can be found in the Schematic Browsing with XYagle chapter

Highlight

Select the Highlight option in order to switch the hiliting gate dependences mode on. More
information on modes can be found in the Schematic Browsing with XYagle chapter

Go thru hierarchy

Select the Go thru hierarchy option in order to switch the traversing hierarchy mode on. More
information on modes can be found in the Schematic Browsing with XYagle chapter

Set Depth...

By selecting the Set Depth... item of the Edit menu you will be presented with the XYagle: Prompt
dialog.

Yagle User Guide

23

Set the depth value before using the Extract or Highlight modes.

Back

By selecting the Back item of the Edit menu, you will return to the previous display configuration.

Full Figure

By selecting the Full Figure item of the Edit menu, you will return to the main figure. This option
is used to return to the figure after using options that display sub-netlist of the full figure.

Find...

By selecting the Find... item of the Edit menu you will be presented with the XYagle: Prompt
dialog.

This option allows you to search object by name in the current schematic.

5.1.3. The View Menu

The View menu provides accesss to a number of options affecting the display of the selected schematic.

Yagle User Guide

24

The items of this menu have explicit names:

Refresh Allows the user to refresh the display.

Fit window Allows the user to display all the schematic in the XYagle
main window at the more effective scale.

Zoom In Allows the user to zoom in and to take a closer look to the
schematic elements.

Zoom Out Allows the user to zoom out and to see the surrounding
elements of the schematics.

Zoom Select Allows the user to

Zoom Set Allows the user to set the zoom factor. the value is a
percentage between 5 and 95%.

Previous Allows the user to

Applications of these options will be used in the following chapters.

5.1.4. The Windows Menu

The Windows menu provides access to more specific XYagle functionalities.

These options grant access to information about the schematic and the elements of a disassembled
netlist. This section provide an overview of these options. complete information can be found in the
XYagle Basics and Disassembled Netlist Information chapters.

Show Structure Allows the user to see the structure of the next selected gate.

Yagle User Guide

25

Show Behavior Allows the user to see the behavior of the next selected gate.

Show Message Allows the user to view XYagle messages.

Show Info Allows the user to display general information about the
schematic such as the figure name.

5.1.5. the Options Menu

The Options menu provides accesss to some basic configuration of the visibility of elements
displayed in the XYagle interface.

By selecting the Layer item of the Options menu, you will then be presented with the Layer dialog:

The Layer dialog allows the user to configure the visibility of the schematic.

5.2. Loading the Schematic

The XYagle graphical interface allows the user to displays different type of circuit, from transistor
level schematic to hierarchical gate netlist.

To load a schematic use the Open item in the File menu.

5.2.1. transistor Level Schematic

XYagle displays transistor Level Schematic as a network of symbols representing transistors.

Yagle User Guide

26

5.2.2. Gate Netlist

XYagle displays gate netlist as network of logical gates.

Yagle User Guide

27

5.2.3. Disassembled Gate Netlist

XYagle display disassembled gate netlist as

Yagle User Guide

28

5.2.4. Hierarchical Gate Netlist

XYagle displays hierarchical gate netlist as a network of gates and blocs.

Yagle User Guide

29

5.3. XYagle Basics

This section explains how to obtain information about the figure loaded in XYagle and how to use
the schematic in good conditions of visibility.

5.3.1. Viewing General Information

To view the general information use the Show Info item in the Windows menu.

This opens a window that display the name of the loaded figure and the dimensions of the schematic.

Yagle User Guide

30

5.3.2. Configuring Visibility

To configure the visibility use the Layer item in the Options menu.

XYagle display objects on layers, select on the left column the layers you want to be visible, and
select on the right column the layers you want to be invisible. Then valid your choice with Apply.

Yagle User Guide

31

5.3.3. Navigation in XYagle

To navigate in XYagle, use the View menu.

Use he Zoom In item of this menu to have a good visibility of the schematic.

Use he Zoom Out item of this menu to have a larger visibility of the schematic or to Fit Window
display the full schematic on the display.

5.4. Schematic Browsing with XYagle

5.4.1. XYagle Browsing Modes

To unselect a XYagle browsing mode use the Select item in the Edit menu.

5.4.2. Extracting Sub-Netlists

To extract sub-netlists use the Extract item in the Edit menu.

Yagle User Guide

32

5.4.3. Highlighting Gate Dependences

To highlight gate dependences use the Highlight item in the Edit menu.

Yagle User Guide

33

5.4.4. Traversing Hierarchy

To traverse hierarchy use the Go thru hierarchy item in the Edit menu

.
traversing hierarchy allows the user to display the bloc sub-netlist. for example going thru the
hierarchy of the muxout bloc from the previously loaded hierarchical gate netlist display the gates
of the bloc.

It is possible to go thru the hierarchy of a gate to display the transistor level of the gate. For exemple,
going thru the hierarchy of a OR gate from the previous muxout display the following network of
transistor:

Yagle User Guide

34

5.4.5. Searching Object by Name

To search object by name use the Find... item in the Edit menu.

5.5. Disassembled Netlist Information

5.5.1. Viewing the Gate Structure

To view the gate structure use the Show Structure in the Windows menu

Yagle User Guide

35

The information provided by Show Structure on a selected gate structure contains the name of the
gate, the inputs and output signals.

5.5.2. Viewing the Gate Behavior

To view the gate behavior use the Show Behavior in the Windows menu

Yagle User Guide

36

Show Behavior provides the logical dependence between input and output signals of the selected gate.

Yagle User Guide

37

Index

No index for this document.

	1. Software Installation
	1.1. System Requirements
	1.2. What the Distribution Provides
	1.3. Scope of the Installation
	1.4. Performing the Installation
	1.5. Setting-up the Environment
	1.6. The FLEXLM Licence Server

	2. Overview
	2.1. Functional Abstraction with Yagle
	2.2. Applications
	2.3. Description
	2.3.1. Functional Abstraction
	2.3.2. Automatic Gate Model

	3. Using Tcl Interface
	3.1. Script Launch
	3.2. Tools Configuration
	3.3. Functions
	3.4. INF and SDC Configuration

	4. Performing the Abstraction
	4.1. File Loading
	4.1.1. Transistor Technology Models
	4.1.2. Input Netlist
	4.1.3. Parasitics

	4.2. General Configuration
	4.2.1. Defining Power Supplies

	4.3. Invoking Functional Abstraction
	4.4. Timing Back-Annotation
	4.4.1. Defining Simulation Temperature
	4.4.2. Back-Annotation Level

	4.5. Output Files
	4.5.1. CNS, CNV files
	4.5.2. VHDL and Verilog files

	4.6. Special Elements
	4.6.1. Transmission Gate Multiplexers
	4.6.2. Latches
	4.6.3. Dynamic Latches

	4.7. Case Analysis

	5. Using The XYagle GUI
	5.1. Presentation of the XYagle Interface
	5.1.1. The File Menu
	Open...
	Disassemble...
	Quit

	5.1.2. The Edit Menu
	Extract
	Highlight
	Go thru hierarchy
	Set Depth...
	Back
	Full Figure
	Find...

	5.1.3. The View Menu
	5.1.4. The Windows Menu
	5.1.5. the Options Menu

	5.2. Loading the Schematic
	5.2.1. transistor Level Schematic
	5.2.2. Gate Netlist
	5.2.3. Disassembled Gate Netlist
	5.2.4. Hierarchical Gate Netlist

	5.3. XYagle Basics
	5.3.1. Viewing General Information
	5.3.2. Configuring Visibility
	5.3.3. Navigation in XYagle

	5.4. Schematic Browsing with XYagle
	5.4.1. XYagle Browsing Modes
	5.4.2. Extracting Sub-Netlists
	5.4.3. Highlighting Gate Dependences
	5.4.4. Traversing Hierarchy
	5.4.5. Searching Object by Name

	5.5. Disassembled Netlist Information
	5.5.1. Viewing the Gate Structure
	5.5.2. Viewing the Gate Behavior

