Avertec Tools

HITAS
Tutorial

Software Release 3.4p5

June 7th, 2010

fa%

Avertec Copyright (c) 1998-2006 All Rights Reserved

HITAS Tutorial

About this Document

This document explains how to perform:
STA at Transistor Level with HITAS
Timing Characterization (.lib)

Clock Handling

Analog Blocks Handling

Documentation issued and compliant with Avertec Tools Release 3.4p5.

Please contact support@avertec.com for comments relating to this manual.

HITAS Tutorial

Table of Contents

@ Y= V1 PR PSRRRPPP 5
2. StatiC TIMING ANAIYSISoiiiiiiiie e e e e e e e eeeeaaaaas 6
2.1. TIMING ANAIYSIS TREOIY ...eiiiie e 6
2.1.1. TIMING ANAIYSIS GOAISuuuiiiiiiiiiiie e eaane 6
2.1.2. Timing Analysis in the Design FIOWccoiiiiiiiiiiiii e 6
2.2, DEIINILIONS .ottt e ettt e ettt r e e e e e e e e e e e eeeeeeserbbnnnas 6
2.2.1. Delay MOAEIING ..ouuiiiiiiiiiii e e e e e aaaaa 7
Signal Propagation through a Simple INVerter ... 7
Signal Propagation through an RC NetWorkcooviiiiiiiiiiiiiie e, 8
2.2.2. SIOPE MOUEIING .vvuniiiiiiiiii e e e e 8
2.2.3. Delay DEPENUANCIESuuiiiiiiiiiiii ettt e e e e e e e 9
2.3. Delay CalCulationccooiiiiiiiiii e 10
2.3.1. Electrical SIMUIALIONoooiiiiiiiiiie s 10
SIMPIE GALES ...t e e e e e e e e e e e a e aaaae 10
(70101 011 QB L=TS] o] 1S PSP 10
LIMITALIONS ..ttt e e e e e e e e et e ettt ettt bbb r e e e e e e eeeaeeeeeeennnnes 11
2.3.2. Static TIMING ANAIYSIS ...oeviiiii e e e e e eees 11
Y AN = - L [ST UP PR 11
Graph MOAEIING ...ovueiiiie e e e e e 12
2.3.3. Gate Characterization Methodologycooviiiiiiiiiiiiiiii e 15
2.4, TIMING ANAIYSIS .uiuiiiiiiiii e e e e e e e e e e e eaaaaas 16
2.4.1. What Needs to be Checked? ... 16
2.4.2. The Behavior of Sequential EIementscooviiiiiiiiiiiiiiii e 17
6= (o] o [OO P SRR PPPPPPPPPN 17
e 10 Tl [o PSPPI 18
0] = 1 o1 [l o To | oS 19
2.4.3. Sequential DesigN ANAIYSISccoiuiriiii i 20
Maximum Operating Frequency in Flip-Flop Based DesSignsccccceeeeveeveviniinneenen, 20
SKEW IMPACE ANAIYSIS . .civiiiiiiieiiiie e e e e e e e et e e e e e e e e 21
2.4.4. Global CharacCterizationoooiiiiiiiiiiiiii e 23
Global Setup and HOId TIMESiiiiiiiiiii e eeeaes 23
ACCESS TIME ittt e e e e e e e e et e e et et e te bbbt e e e e e e e e e eeeeeeeeeeeennnnnns 24
3. Introduction to Programming With TClcooiiiiiiiiiii e 26
3.1, INtrodUCHION O TCl e e e e e eeeeaeaaeees 26
3.2. Tcl Programming BaSICSccuuuuiiiiiiiiiiiiie et e et e e e e aaa s 26
3.2.1. Variables and Variable SUDSHLULIONccoooiiiiiiiiiiii e 27
3.2.2. EXPIESSIONS ...iiiiiiiiiiii et et e et s e e e e et e e e e e e e e e e e e e e a e aaaaae 28
3.2.3. Command SUDSHIULIONuuueiiiiiiee s 28
3.2.4. CONIOI FIOW ..oeieee e s 29
3.2.5. PrOCEUUIES ...ttt e e e e et ettt a bbbt s e e e e e e e e e e e eaeeeennnes 32

HITAS Tutorial

I G T I £ PP PPPPPPPPPP P 34
.27 ATTAYS ettt e e e et 35
3128, SHINGS ittt e et e e e e e e e e aaas 37
3.2.9. INPUYOULPUL ...ttt e e e e et e e e e e e e e e e e e e e e e e aanne 37
3.2.10. Other Miscellaneous Tcl ComMMANScooeiiiiiiiiiiiiiieeee e 39
A, EXAMPIES ..ottt aaaaaeeas 41
T 11V T 1T PP PTRRPPI 42
5.1. DESIgN DESCHPLION ...eeeiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e 42
5.2. Database GENEIAtIONcooiiiiiiiiiiiii ettt e e e 42
5.2.1. PIINCIPIES ..ottt e e e e e e e 42
5.2.2. Global ConfiQUuIrationcooiiiiiiiiiiiiii e 42
5.2.3. Technology INtEGrationoooiiiiiiiiiiiii e 43
5.2.4. Database GENEIAtiONccoiiiiiiiiiiiiiii e e e 43
5.3. Database ANAIYSISccoeeiiiiiiiiiiiii e 43
5.3.1. DAtADASE OVEIVIEWeeeeiiiiiiiiiiieee ettt et e e e e e e e e e e e e e e e 43
5.3.2. Database PrOPEITIESuuuuiiiiiiiiiiiiiiiiit et e e e e e e e e e e aaeeas 44
6. INVEITEr CRAIN ... e e e e e e e e e 44
6.1. DeSIgN DESCIIPLION ..coeeiiiiiieiiee ettt e e e e e e 44
6.2. DAtabaSE PrOPEITIESuuuiiiiiiiiiiiiiii e e e e e e e e e e e e e e 44
6.3. Path REPOITS ... e 44
A Y [0 = PP PPPPPPPPPPP 46
7.1. Database GENETALIONccoiiiiiiiiiiiiiie ettt e e e e e e e e e eeas 46
7.1.1. Global CoNfIQUIAtIONuiiiiiiiiiiiii e e e e e e 46
7.1.2. Database GENEIALIONcccuuiiiiiiiiiii e e e e e eaeeas 46
7.2. Path Searching with the Tcl Interface ... 46
7.3, EXBICISES ...ttt ettt e e e e e e e a7
A S 1o 1111 o] I PP PPPPPPPPP PP a7
8. Master-Slave Flip-FIOP ... 49
8.1, TIMING CRECKS ... 49
8.1.1. PIINCIPIES ..ottt e e e e e e e e e 49
8.1.2. STA With TCl INTEITACEeeieiiiiiiiiiii e 49
TIMING CONSITAINTS ..ottt e e e e e e e e e e e e e e e e e 49
Static TIMING ANAIYSIS ...eeeeiiiiiiiie it 50
8.2, TIMING CRECKS ... 50
8.2.1. INPUL 10 LALCH ..euiieiieeeeeeeeeeeee e 51
INPULS SPECITICALIONS ...ttt e e e e e 51
TimIiNg Checks DESCIIPLIONcooiiiiiiiiiiei et 51
SEIUP SIACK . 52
HOIA SIACK ...ttt e e e e e e e e e e 52
8.2.2. LAtCN 10 LALCN . 53
TimiNg Checks DESCIIPLIONcooiiiiiiiiiieii e 53
SEIUP SIACK . 53
HOIA SIACK ...ttt e e e e e e e e e e 54
8.2.3. LaAtCN 10 OULPUL ...ttt e e e e e e e e e e e e e e e 54
OULPUL CONSIIAINTS ..ottt e e e e e e e e e e e s r et e e e e e e e aaeeeeas 54
SEIUP SIACK . 55

HITAS Tutorial

HOIA SIACK ...t e e e e e e e e e e 56
SR Vo [0 = Yol o1 U TP TPPPPPPPPON 57
O.1. DeSigN DESCIIPLION ..ceiiiiiieieiiie ittt e e e e e e e e 57
9.2. Construction of the Timing Databasecccoooiiiiiiiiiiiieee e 58
9.3. Timing Paths IdentifiCation ... 58
9.4. Timing Paths Validation by SPICE simulationccccoiiiiiiiiiiiiieeeeeeen 60
9.5. Timing Characterization (.liD) ... 61
9.6. Timing Characterization (.lib) by SPICE simulationcccccvvviiiiiiiiiiiiinnnnnnnn. 61
L0, CPUZO0T ...t e e e e ettt e e e ettt e e e e e e e e e e e e e e e e e e aaana 62
10.1. DESIGN DESCIIPLION ...ttt e e e e e e e e e e e eeeeeeeas 62
10.2. Database GENEIALIONuuuiiiiiiiiiiiiiiii e e e e e e 63
10.2.1. Global CoNfIQUIAtIoNcooiiiiiiiiiiiiiii e 63
10.2.2. Database GENEIALIONueeiiiiiiiiiiiiiiaee e 63
10.3. Database ANAIYSISouiiiiiiiiiiiii e 63
10.3.1. Path Searching with the Tcl Interface ... 63
10.4. TiMING CRECKS ..ot e e e e e e aee s 64
10.4.1. TiMING CONSIIAINTScooeiiiiiiiiii it e e e e e e e e e e 64
10,4, 2. ST A o et aaaaaaaeas 64
10.4.3. OCV ittt e e e e e e e 65
10.4.4. Crosstalk ANAIYSISooiiiiiiiiiieaeei e 65
11. HierarChiCal ANAIYSISei i 66
11.1. DESIGN DESCIIPLION ...ttt e e r e e e e e e e e e e eeeeeas 66
11.2. Database GENEIALIONuuuuiiiiiiiiiiiiiiie e eeeaeeas 67
11.2.1. Global CoNfIQUIAtIoNcoiiiiiiiiiiiiiiii e 67
11.2.2. Database GENEIALIONeeeiiiiiiiiiiiiiaee e 67
11.3. Database ANAIYSISuuiiiiiiiiiiii e 67
11.3.1. Path Searching with the Tcl Interface ... 67
11.4. TiMING CRECKS ..ot e e e e aeeeas 68
11.4.2. TimMING CONSIIAINTS ...coooiiiiiiiiii it e e e e e e e e 68
L, 2. ST A o ettt a e e aaaeas 68
12. Analog BIOCKS HaNAIiNGcccuiiiiiiiiiiiieiieeee e 69
12.0. ODBJECHIVE .. e e e e e e e e e 69
12.2. Database GENEIALIONuuiiiiiiiiiiiiiiiie e e e e e e 69
12.3. 1gN0IE FUNCHION ...uuiiiiiiiiiiiiiiie et e e e e e e 69
12.4. Integration in a Hierarchical Netlist ... 70
L3, S S T A ettt e e e e e e e 71
R TR I o 1 0 T o] [TP PPPPPPUPPPN 71
13.2. Analysis 0N the ADDAGCGCUuuiiiiiiiiiiiiieeee s 71
13.2.1. Generating the data for the SSTA analysiseueeeiiiiiiiiiiiiiiie 71
13.2.2. Reporting the results for SSTA analysiscccccuvvimiiiiiiiiiiiiees 72
SIACK OCCUITENCE ...ttt e et e e e e e e e e e e e e e e e e e e aanns 72
Worst slack diStriDULIONSoooiiiiiiiiii e 72
13.2.3. Generating the data for the PATH analysiscccccoiiiiiiiiiiiiiiiiiiiiiieeee 73
13.2.4. Reporting the results for SSTA analysisccccouuvimiiiiiiiiiiiee 73
00 = TP TP PP PPPPPPPPP 74

HITAS Tutorial

Chapter 1. Overview

This tutorial describes the use of HITAS Static Timing Analysis and Signal Integrity Anaysis
platform. The main purpose of this tutorial is to show the ability of the HITAS platform to analyze
designs at transistor level.

This tutorial explains how to set-up a complete Timing and Sl verification flow for each component
of the design, and then for the top-level. The verification flow includes the following steps:

» Build ahomogeneous database for each component
o Perform afirst analysis of timing paths

» Integrate interface constraints

» Perform Timing Constraint checks (setup/hol d)

o Peforma$l analysis

The verification processis detailed in the following diagram:

Constraints
(re)definition

OK

—pp Sign-off

HITAS Tutorial

Chapter 2. Static Timing Analysis

2.1. Timing Analysis Theory

2.1.1. Timing Analysis Goals

The Timing analysis should answer the following questions:
» Doesthe chip work? With which external timing contraints?
e What are the hold margins?
» What are the sensible paths?
» What isthe sensitivity to process variations?
» What isthe sensitivity to operating variations (voltage, temperature)?
» What isthe chip operating frequency?
» How to improve the design in order to reach the specs

In a top-down approach, Timing Analysis is used for verification purposes. Timing Analysis must
say, given the direct environment of the chip (i.e. timing constraints on the interface), if the chip will
be able to work properly.

In a bottom-up approach, Timing Analysisis used for characterization purposes.

2.1.2. Timing Analysis in the Design Flow

As timing performance of a chip under design is one of the main concerns facing designers, it must
be controlled and refined at each stage of the design flow.

In a classical top-down methodology, timing constraints are set at system-level, and synthesis and
PR tools are timing-driven. A first Timing Analysis run is done after synthesis, and then after
floorplanning and placement. In those cases delays are only estimated, not taking into account the
parasistics induced by global routing.

Thefinal sign-off Timing Analysisand characterization is done after global routing, on a netlist back-
annotated with extracted parasitics (a post-layout netlist).

Since synthesis and PR tools are timing-driven, timing characterizations of the building blocks are
also now needed. Those building blocks are sometimes large third-party 1Ps, with fixed timing
characterizations. In such cases, timing constraints are al so set by those blocks, and the methodol ogy
aquires bottom-up aspects.

2.2. Definitions

HITAS Tutorial

2.2.1. Delay Modeling

Signal Propagation through a Simple Inverter

VN Vour

Signal Transition

Threshold

Delay

VA
VN
Vmax < oomsmm
/'/ i
VMAX/2 """""""" ‘ « Lo St
0 . Vour

e

delay

A transition is a change in the state of a signal. A rising
transition occurs when the signal's voltage swings from a
low level to a high level (from OV to VMAX). A falling
transistion occurs when the signal’s voltage goes from a
high level to alow level (from VMAX to OV). In Avertec
methodology, asignal transitionisalsoreferedto asatiming
event

The delay threshold is the voltage ratio where a signal is
considered as having changed state. Typically, thisratio is
50%. Thethreshold is also the measurement point for delay
calculation.

A delay isdefined between two signal'stransitions, having a
causality relation (the first transition implying the second).
The value of adelay isthe elapsed time between the instant
of the first signal's transition crossing the threshold and
the instant of the second signa's transition crossing the
threshold. Asaresult of thisdefinition, it ispossibleto have
negative delays (especially with along input slope)

HITAS Tutorial

negative t
delay

Signal Propagation through an RC Network

Delays can be measured either on the direct output of the gate, or on any node of the RC interconnect
network. Signal propagation through the RC interconnect network causes additionnal delay.

VA
Vm
Vmax S SossmTTTT
TDOTMM TV VMax/2 [=============- L
£ Vour _L 1 TVOUT’ /” \
/ Vour~_Vour’
0 — >
delay t
2.2.2. Slope Modeling
The transition of asignal is modeled by its slope:
VA
Pmax
VTH HIGH
VTH LOW
0
slope !
Slope A dopeisdefined between two thresholds: a high threshold

(VTH HIGH) and alow threshold (VTH LOW). The value
of the slope is the elapsed time between the instant of the

HITAS Tutorial

signal'stransition crossingVTH LOW (VTH HIGH) and the
instant of the signal'stransition crossing VTH HIGH (VTH
LOW).

Typicaly, VTH LOW variesfrom 5% to 40% of VMAX, and VTH HIGH variesfrom 60% to 95% of
VMAX. A single value defined between two thresholdsis a very reductive way to model slopes, asit
gives no information about the shape of the slope. The most basic approach isto assume that the slope
islinear. In Avertec methodology, the shape of the slope is assumed to be an hyperbolic tangent.

2.2.3. Delay Dependancies

The delays and slopes of a given gate depend on three different kinds of factors:

» Interna factors. the implementation of the gate itself. For example, an inverter can be
designed in many ways.

» Loca external factors. the immediate environment of the gate.
» Global external factors: the environment of the chip.
« Below 90nm: local internal factors: effective length, stress effect, proximity effects.
Internal Factors » Gatedesign, transistor sizes
* Transistor models (MOS9, BSIM3, BSIM4, ...)
* Foundry, technology size (0.13microns,
0.09microns ...)
Global External Factors * Process: best, worst, nominal
» Voltage: global chip power supply
» Temperature

L ocal External Factors e Input Slope
* Output Load (RC network and fanout)

F]N_/_ IC2
I: TGCo ICl :::: Cs

T

- J
h'd

Output load

HITAS Tutorial

2.3. Delay Calculation

2.3.1. Electrical Simulation

Simple Gates

When dealing with ssmple gates, delays are most often calculated by electrical ssmulation (SPICE
simulation). The operating mode for calculating delays characterizing agate is as follow:

» For eachinput of the gate: Identify (from the gate'struth table) the causality rel ations between
possible transitions on the input and possible transitions on the output.

» For each identified relation: Set the pattern (the states of other inputs) that condition this
relation.

o Simulate the design

» Measure the delay associated with the causality relation, i.e. the delay between the input
transition and the resulting output transition. The measurement is performed as explained in
the preceding section.

As an example, let's consider the following gate, and its associated truth table:

b I, | O

0 0 |1

o 0 110

I 1 010
1 110

Thefour identified causality relations and associated delays are reported below. The state of the other
input that conditions the causality relation is given between brackets.

delayO: 10 rising -> 0 falling (I1
delayl: 10 falling -> 0 rising (11
delay2: 11 rising -> 0 falling (10
delay3: 1 falling -> 0 rising (10 = 0)

o n
o
=

Four successive electrical simulations are then necessary to completely characterize the gate.
Complex Designs

The same kind of delay calculations can be done on more complex designs. For example, let consider

the following design.
5] »E—P>o G
B
C {>OF H
D

10

HITAS Tutorial

We can deduce from the connectivity of the gates, and from their truth tables, causality relations
between the transitions on inputs A, B, C, D and the transitions on the output 1. All the possible
causality relations, and the del ay associated with each, are given below. The pattern conditioning each
relation is given between brackets.

delay0: Arising ->1 rising (B=0, C=0, D=1)
delayl: A falling ->1 falling (B=0, C=0, D=1)
delay2: Brising ->1 rising (A=0, C=0, D=1)
delay3: B falling ->1 falling (A=0, C=0, D=1)
delay4: Crising ->1 rising (A=0, B=0, D=1)
delay5: C falling ->1 falling (A=0, B=0, D=1)
delay6: Drising ->1 falling (A=0, B=0, C=0)
delay7: D falling ->1 rising (A=0, B=0, C=0)

See below an illustration of the calculation of delayO between A rising and H rising. A rising implies
E falling if B = 0, which sets the value of input B. E faling implies G rising, which in turn implies
| falingif H=0.H=0if F=1and D = 1, which setsthe value of input D. F = 1 if C =0, which
sets the value of input C.

4L E "\
BIDO |
C0 >OF1
D-1

The pattern conditioning A rising -> | risingisthenB=0,C=0andD =1.

Limitations

Though being quite simple, the above circuit has necessited eight simulations of the full design to
completely characterizeit.

Actually, for a design of n inputs and m outputs, there may exist up to 2n x 2m causality relations
between input and output transistions. This can lead to a maximum of 2n x 2m electrical simulations
to calculate all the delays associated with those relations, i.e. to characterize the design.

Furthermore, a causality relation is not easy to identify, and the setting of the pattern conditioning
itisavery complex task.

Apart of very regular designs, such as memories, where causality relations are quite simple to
establish, and where simulation can be aggressively optimized, these severe drawbacks render
electrical smulation impossible to apply on designs exceeding athousand transistors.

2.3.2. Static Timing Analysis

STA Basics

Static Timing Analysis has arisen from two constatations.

11

HITAS Tutorial

The first constatation was that, causality being a transitive relation, a global causality relation (from
an input pin to an output pin) could be discomposed into elementary (gate) causality relations. If we
take the example above, the causality relation A rising -> | rising can be decomposed into A
rising -> E falling -> G rising -> | rising.A typical timing representation of such a
causality relation is given by atiming diagram, as illustrated below.

=

o i t 13 t
200ps 400ps 500ps 700ps

The second constatation wasthat, asafirst approximation, delays associated with elementary causality
relations could be added to get the delay of the global causality relation. From this statement we can
seethat it ispossibleto calculate (by electrical simulation) the delays associated with agate only once,
and thus achieve significant gains in calculation complexity: the delay of a global causality relation
can be calculated by just adding elementary delays.

This statement supposes that delays are independent of their local environment. We have already seen
that thisis not really the case, and so this leads to some inaccuracy in the delay calculation. We will
now see how to refine the delay modelization to attain a accuracy near the one obtained by electrical
simulation.

Graph Modeling

The previous constatations alow us to model designs using weighted graphs, where an edge is a
signal transition, and an arc isacausality relation. The arcs are weighted by the delay of the causality
relation. The graph of a simple gate (anor) has the following appearance:

12

HITAS Tutorial

Ipup

Iydn Oup
®

I up X Odn
F

I] dn

The graph of agate-level design such asthe one below is made by the connexion of the gates graphs.

4 E G
B
. I
C DO H
D

Thus, the graph of the design described above has the following appearance:

13

HITAS Tutorial

This graph is known as a causality graph. A global causality relation is represented here by what is
called a path in graph theory terminology.

A graph representation allows us to apply well-known efficient algorithms, such as path searching. In
a quite straightforward manner (compexity O(n)), by just following the arcs, we can identify al the
timing paths of the design (the eight global causality relations described above).

14

HITAS Tutorial

Ddn

2.3.3. Gate Characterization Methodology

As stated in chapter 1.2.3, gate delays depend on internal factors, global external factors and local
external factors. Until 90nm, internal factors don't change for agiven chip, and global external factors
don't change for a given timing analysis run. The only variable factors are the local external factors,
i.e. the input slope and the output load of the gate.

When calculating paths delays, we sum gate delays. As a first approximation, a gate delay can be
modeled by asimplevalue. Experience has showed that thisisvery unrealistic, sincethelocal external
factors can vary alot from one instance of a gate to another. This has led to a more wide-ranging
approach to gate characterization: gate delays are given for a set of input slopes and a set of output
loads.

The most common way to describe this set of delay is alookup table. A common lookup table is a
2D matrix, having for axes the input load and the output capacitance. The following figureillustrates
atypical lookup-table.

Lookup table characterizations are most often provided with the gate-library itself. Since they are
given for alimited range of PVT, it is often necessary to re-characterize them.

In 90nm and below, other factors may also change: local power supply due to IR-drop, instance
dependant parameters (stress effect, proximity effect). Thislimitsthe acccuracy alookup-table based
characterization.

15

HITAS Tutorial

-
ra ra
B - Y7 ' S
— 5 - e _—
T - 5 _— —
s
B0 7
00 - A _
400 P/ D
S0 & . _,"" .r
= A : - .
i s I ’}.-' T T = - ,
z -t -
MU - T et T e TS
o <= _ Tt e T e Tt
- _;;.-;_":_' = L ___'.“-j'r*i-r_ et T o
e e Tl T e e T s
/ N - e -r-...:'.._" - - - -_.__- :, - o __ - :._ } D 3
P BT T T T e e 05
o . . e T o Cotm e
[i TR T SR
ol - el L ST e L -)
e D e e
T ST
000 ——— =205
2500 -
angoV

2.4. Timing Analysis

2.4.1. What Needs to be Checked?

In terms of timing, designs are made of combinational elements, and of sequential (clocked) elements.

What we called combinational elements are elements (logic gates) that just propagate signals,
independantly to any clock.

Sequential elements are clocked elements. In most cases, they have amemorizing behavior controlled
by clock signals (latches, flip-flops). In order to operate correctly, these elements must respect timing
constraints (typically the setting of the datato memorize relative to the clock signals).

A kind of clocked element is the dynamic logic stage (precharged logic). It must also respect timing
constraints.

The main purpose of the timing analysis processiis:
» To verify that the design is implemented in such a way that timing constraints are met on
the inner sequential elements.

e To compute the maximum frequencies of the clock signals that still alow the design to
operate correctly.

» To compute constraints on the input pins, that if respected, allow the design to work in any
environment (CPU, SoC, Board).

16

HITAS Tutorial

Inthefollowing sections, wewill first study thetiming behavior of sequential elementssuch aslatches,
flip-flops and dynamic logic gates.

We will then discuss the constraints sequential elements set on the interface of the design (setup and
hold times, access times, frequency)

Thenwewill study how to integrate those elementsin such away that the design can operate correctly.
2.4.2. The Behavior of Sequential Elements
Latch

Below isthe schematic of asimple latch:

CK

M e e
o

The following timing diagram describes the timing behavior of the latch.

A
CK |

transparent memorizing

Dy PO v XXX

setup { hold

i
2o hold i
1
i

Dommooi 7 §>o<><

1]
PEN ~— 7

I
t tranisparent i 14 access

When CK is high, the latch is said to be in transparant mode, i.e. the value on the input DI N is
observable on the output DoUT, after the delay Tt r anspar ent , aso refered to ast r anspar ancy.

When CK goes from high to low (the latch closes), the value of DI Nis memorized in the latch. DI N
must be stable at the time CK falls. Actualy, to ensure the stabilization of the memory loop, DI N
must not only be stable at the time CK falls, but also for a certain amount of time before CK falls,
and for a certain amount of time after CK falls. These times are refered to asset up ti e and hol d
ti me respectively.

When CK is low, the latch is said to be in memorizing mode. The value observable on DOUT is the
value memorized when the latch is closed.

17

HITAS Tutorial

When CK goes from low to high, the latch comes back in transparent mode, and a new value on the
input DI N becomes observable on the output DoUT after the delay t access, also refered to asaccess
tine.

A latch is characterized by four intrinsic values: the transparency, setup, hold and access times.
Flip-Flop
A typical flip-flop is made of two latches in series, where the clocks are inverted.

CK {>O CK’

I LZJ DOM'_j LDC | >o——"Dour

The following timing diagram describes the timing behavior of the flip-flop.

A
! ! ! !
transp; ! memo, ! transp, i memo, i
| | ! |.
i i | |
| ! 1 }
D PO Vi XXXOORKKKK Vi
tsetupi thold | ' '
<—+—> : ! !
. H | [}
1 1 | '
M POXKKKXX Vi XXX Az XX
memo | transp | memo | transp |
CK’ l
It ! It !
Doyt Vo ! X vy ! X v,
I | I !
! e >
o > t
ta(:cess taccess

When CK ishigh (t ransp1):
 thefirst latch istransparent. The value on DI N propagates until M.
 the second latch is memorizing (closed)

When CK goesfrom highto low (t ranspl -> menol):
 thefirst latch closes, and the value on DI N is memorized.

» the second latch opens (becomes transparent). The value on M (the memorized value)
becomes observable on DOUT after the delay taccess (the time taken to traverse the second
latch).

18

HITAS Tutorial

When CK islow (meno1):

 thefirst latch is memorizing, and the value on M does not change
» the second is transparent, the value observable on DouT is still the value on M.

When CK goes from low to high (meno1 -> transp2):

» thefirst latch becomes transparent, and a new value becomes observable on M

» the second latch must close before the value on M changes, i.e. t CK- >CK' must be smaller
thant DI N->M ,otherwise the new value is memorized in the second latch.

Dynamic Logic

Below isatypical implementation of Dynamic CMOS logic (precharge-evaluate logic).

A

ckP ——q

Dour

-
i

During the precharge phase, the output node of the dynamic CMOS stageis precharged to ahigh logic
level. When the clock signal rises at the beginning of the evaluation phase, there are two possibilities:
the output node of the dynamic CMOS stage is either discharged to alow level through the NMOS
circuitry (falling transition), or it remainshigh. Regardless of the input voltages applied to the dynamic
CMOS stage, it is not possible for the output node to make a rising transition during the evaluation
phase. Consequently, the input configuration must have been set before the evaluation phase and
must remain stable during it, otherwise an unwanted conducting path may appear through the NMOS
circuitry, leading to an erroneous low-level state of the output node.

A
precharge : evaluation : : evaluation :
cx | | | -

~V

19

HITAS Tutorial

2.4.3. Sequential Design Analysis

Maximum Operating Frequency in Flip-Flop Based Designs

Let's consider the following design made up of two flip-flops:

CK

4 13@011)

FF, FF,

Thefollowing timing diagram illustrates the correct operating mode of the design: the value v2 stored
in FFO becomes accessible on B on the first falling edge of CK, then v2 propagates through the
combinational block, finally v2 is stored by FF1 on the second falling edge of CK.

A period

-
r
H

CK y | .
4 BT 0000000 I XOCOOONNXX

A

o

B Vi V2 X V3
i i
i i
C vop X i \Z] ! \Z)
! i
i i
D Vo X Vi i X A2
i !
i]
. ; >
M g - it , t
access; t com. b set; Zl]?

The design operates correctly because period - tsetup(FFl) > taccess(FF0) + tconb.
Otherwise, asillustrated in thetiming diagram below, if peri od - tset up(FF0) < taccess(FF1) +
t conb, the second falling edge of CK occurs before the value v2 stored in FFO has propagated through
the combinational block. Thevalue stored by FF1isv1, thevalue stored by FFO in the preceding phase.

20

HITAS Tutorial

A period

ck |y

4 OO Vi X000 5 XOOOXO0

5 i
B Vi V2 i X V3
i :
C Vo l X Vi1 i V2
: i
D Vg |) Vo PoX Vi
[} [}
i — >
™ w1 !

Zb(‘/llﬁ:

From these observations, we can deduce that there exists a minimum period (and a maximum
frequency) alowing the design to operate correctly.

Skew Impact Analysis

Synchronous designs are based upon the communication between memory elements, such as latches
or flip-flops, this communication being controlled by the clock signal. Therefore, asingle clock signal
Isconnected to animportant number of memory elementsinthedesign, anditisvery difficult to ensure
that the clock signal will propagate homogenously (with the same delay) towards every memory
element, even by inserting clock-tree bufferization. This phenomena is known as clock skew. The
following diagram presents asymmetric clock buffering, leading to skew between the two flip-flops.

The communication between the two flip-flops, taking into account the skew, is illustrated in the
following timing diagram.

if taccess + tcomb > skew, the design will operate correctly.

21

HITAS Tutorial

A
4 y I * it
g A :> V2 : X Vs
c Vo X i X ' v
adcess Lcomb > |
o . : 'X V1 X ¥
skew

Otherwise, if taccess + tcomb < skew, the design will not work. Note that this timing error is
independent of the period.

A

CK ¥ | ¥ —

OO T2 T XKHKHKKIIOOOOOX 35 XXOOOOONNK

A t | ¥ [

B Vi1), V2 X V3
C V1 X ! V2 X V3
t acce.;'s E COM; i
- q {
D Vi : E X \J) E X V3
A ' >
> t
skew

22

HITAS Tutorial

2.4.4. Global Characterization

Global Setup and Hold Times

When aflip-flop input is directly connected to an input pin, or is connected through a combinational
path to an input pin, the respect of setup/hold constraints depends on the stability window of the input
signal itself, and on the propagation delays of the input and clock signals towards the flip-flop.

The input signal's stability window may occur too soon or too late, relative to the clock signal, to
ensure the respect of the setup/hold constraints of the flip-flop.

Thefinal purpose of any design being itsintegrationinto ahigher-level design, itistherefore necessary
to provide information on the constraintsthat apply on theinput pins of thedesign, i.e. inwhich timing
windows input signals must be stable to ensure the respect of internal sequential elements. It is then
possible to make the higher-level design in such away that the stability windows are correctly set on
the inputs of the design it integrates.

The constraints are obtained by calculating global setup and hold times.
Let's consider the following design, where | and CK are input pins.

CK
C’I<F'F
1 I B
FF,

The diagram below illustrates the calculation of global setup/hold times.

23

HITAS Tutorial

A ! tcomb_CK !
!
CK ¥ | EEEE
s |
1 1
CKrr ! Y
i i
i i
! !
Irr - POGOOOOKO i OOOOOXKXX
; -setup : hold
1
] 1
1 XXX T OOXOOOIXHNKXX
i
: tcomb_] _ 7
Leomb I i v
1
B -setup i hold
gl obal _setup = setup + tconb_| - tconmb_CK

gl obal _hold = hold + tconb_CK - tconb_lI

Access Time

Another useful information isthe access time, which tells the designer when the data on an output pin
isavailable, relative to aclock edge. In the following design, O is an output pin.

CK
CKrr
o 0
FF,

The global accesstimeisillustrated in the timing diagram below.

24

HITAS Tutorial

A ! tcombeK !
!
CK ! 5 —
i i
i i
CKpr | Y
i i
i i
i i
Orr | |
: !access
|
i ;
0]
|
|
: ‘tcomb_O -~ >
: t
1 access
T
gl obal _access = tconb_CK + access + tconb_O

25

HITAS Tutorial

Chapter 3. Introduction to
Programming with Tcl

By Shyam Pather
Information and Telecommunication Technology Center, University of Kansas

3.1. Introduction to Tcl

Tcl was originally intended to be a reusable command language. Its developers had been creating
a number of interactive tools, each requiring its own command language. Since they were more
interested in the tools themselves than the command languages they would employ, these command
languages were constructed quickly, without regard to proper design.

After implementing several such "quick-and-dirty” command languages and experiencing problems
with each one, they decided to concentrate on implementing a general-purpose, robust command
language that could easily be integrated into new applications. Thus Tcl (Tool Command Language)
was born. Since that time, Tcl has been widely used as a scripting language. In most cases, Tcl is
used in combination with the Tk ("Tool Kit") library, a set of commands and procedures that make it
relatively easy to program graphical user interfacesin Tcl.

One of Tcl's most useful featuresisits extensibility. If an application requires some functionality not
offered by standard Tcl, new Tcl commands can be implemented using the C language, and integrated
fairly easily. Since Tcl is so easy to extend, many people have written extension packages for some
common tasks, and made these freely available on the internet. (For more information, see the Tcl/
Tk Information page).

3.2. Tcl Programming Basics

The main difference between Tcl and languages such as C, isthat Tcl is an interpreted rather than a
compiled language. Tcl programs are simply scripts consisting of Tcl commands that are processed
by a Tcl interpreter at run time. One advantage that this offersis that Tcl programs can themselves
generate Tcl scriptsthat can be evaluated at alater time. Thiscan beuseful, for example, when creating
agraphical user interface with a command button that needs to perform different actions at different
times.

The next several sections descibethe essential elementsof Tcl programs. Each sectionisaccompanied
by a series of examples, and a sample Tcl interpreter that you can be use to try out the examples
yourself.

26

HITAS Tutorial

3.2.1. Variables and Variable Substitution

Variablesin Tcl, as in most other languages, can be thought of as boxes in which various kinds of
data can be stored. These boxes, or variables, are given names, which are then used to access the
values stored in them.

Unlike C, Tcl doesnot require that variables be declared before they are used. Tcl variablesare simply
created when they are first assigned values, using the set command. Although they do not have to be
deleted, Tcl variables can be deleted using the unset command.

Thevalue stored in avariable can be accessed by prefacing the name of the variable with adollar sign
("$"). Thisisknown as variable substitution, and isillustrated in the examples below.

Tcl isan example of a"weakly typed" language. This simply means that almost any type of data can
be stored in any variable. For example, the same variable can be used to store a number, a date, a
string, or even another Tcl script.

Example 1.0:

set foo "john"
puts "H ny nane is $foo"
Qutput: H nmnmy nane is john

This example illustrates the use of variable substitution. The value "john" is assigned to the variable
"foo", whose value is then substituted for "$foo". Note that variable substitution can occur within a
string. The puts command (described in alater section) is used to display the string.

Example 1.1:

set nonth 2

set day 3

set year 97

set date "$nonth: $day: $year"
puts $date

Qut put: 2:3:97

Here variable substitution is used in severa places. The values of the variables "month”, "day", and
"year" are substituted in the set command that assigns the value of the "date" variable, and the value
of the "date" variableis then substituted in the line that displays the output.

Example 1.2:

set foo "puts hi"
eval $foo
Qut put: hi

In this example, the variable "foo" holds another (small) Tcl script that simply prints the word "hi".
The value of the variable "foo" is subsituted into an eval command, which causes it to be evaluated
by the Tcl interpreter (the eval command will be described in greater detail in alater section).

27

HITAS Tutorial

3.2.2. Expressions

Tcl alows several types of expressions, including mathematical expressions, and relational
expressions. Tcl expressions are usually evaluated using the expr command, as illustrated in the
examples below.

Example 2.1:

expr 0 == 1
Qutput: O

Example 2.2:

expr 1 ==1
Qutput: 1

Examples 2.1 and 2.2 illustrate the use of relational expressions with the expr command. The first
expression evaluatesto O (false) since 0 does not equal 1, whereas the second expression eval utatesto
1 (true), since, obvioudly, 1 does equal 1. Therelational operator "==" is used to do the comparison.

Example 2.3:

expr 4 + 5
Qutput: 9

Example 2.3 shows how to use the expr statement to eval uate an arithmetic expression. Herethe result
issimply the sum of 4 and 5. Tcl offersarich set of arithmetic and relational operators, each of which
is described in the expr manual page.

Example 2.4:

expr sin(2)
Qut put: 0.909297

This example shows that the expr statement can be used to evaluate the result of a mathematical
function, inthis case, thesine of anangle. Tcl offersmany such mathematical functions, al so described
on the expr manual page.

3.2.3. Command Substitution

Just as variable substitution is used to substitute the value of a variable into a Tcl script, command
substitution can be used to replace a Tcl command with the result it returns. Consider the following
example:

Example 3.1:

puts "I am[expr 10 * 2] years old, and ny 1.Q is [expr 100 - 25]"
Qutput: | am 20 years old, and ny I.Q is 75

28

HITAS Tutorial

Asthis example shows, square brackets are used to achieve command substitution: The text between
the square brackets is evaluated as a Tcl script, and its result is then substituted in its place. In this
case, command substitution is used to place the results of two mathematical expressionsinto a string.
Command substitution is often used in conjunction with variable substitution, as shown in Example
3.2

Example 3.2:

set ny_height 6.0
puts "If | was 2 inches taller, I would be [expr $ny_height+(2.0/12.0)] feet tall"
Qutput: If I was 2 inches taller, | would be 6.16667 feet tall

In this example, the value of the variable "my_height" is substituted inside the angle brackets before
the command is evaluated. Thisisagood illustration of Tcl's one-pass recursive parsing mechanism.
When evaluating a statement, the Tcl interpreter, makes one pass over it, and in doing so makes all
the necessary substitutions. Once this is done, the interpreter then evaluates the resulting expression.
If, during its pass over the expression, the interpreter encounters square brackets (indicating that
command substitution is to be performed), it recursively parses the script inside the square brackets
in the same manner. For more information on one-pass parsing, refer to Matt Peters document on
the topic.

3.2.4. Control Flow

In al but the ssimplest scripts, some mechanism is needed to control the flow of execution. Tcl offers
decision-making constructs (if-else and switch statements) as well as looping constructs (while, for,
and foreach statements), both of which can ater the flow of execution in response to some condition.
The following examples serve to illustrate these constructs.

Example 4.1:
set ny_planet "earth"
if {$ny_planet == "earth"} {
puts "I feel right at hone."
} elseif {$nmy_planet == "venus"} {
puts "This is not nmy home."
} else {
puts "I amneither from Earth, nor from Venus."
}
set tenp 95

if {$tenp < 80} {

puts "It's a little chilly."
} else {

puts "Warm enough for ne."

}

CQut put :

| feel right at hone.
War m enough for ne.

Example 4.1 makes two uses of the if-statement. It sets the value of the variable "my_planet” to
"earth”, and then uses an if-statement to choose which statement to print. The general syntax of the
if-statementis as follows:

if testl bodyl ?elseif test2 body2 elseif ...? ?else bodyn?

29

HITAS Tutorial

If the testl expression evaluates to atrue value, then body1l is executed. If not, then if there are any
elsalf clauses present, their test expressions are evalutated and, if true, their bodies are executed. If
any one of the tests is made successfully, after its corresponding body is executed, the if-statement
terminates, and does not make any further comparisons. If there is an else clause present, its body is
executed if no other test succeeds.

Another decision-making construct is the switch-statement. It is a ssimplification of the if-statement
that isuseful when one needsto take one of several actions depending on the value of avariable whose
possible values are known. Thisisillustrated in Example 4.2, which uses a switch statement to print
a sentence, depending on the value of avariable "num_legs".

Example 4.2:

set numlegs 4
switch $num| egs {
2 {puts "It could be a human."}
4 {puts "It could be a cow "}
6 {puts "It could be an ant."}
8 {puts "It could be a spider."}
default {puts "It could be anything."}

}
Cut put :
It could be a cow.

The switch-statement has two general forms (both of which are described in detail in the manual
page), but the form used hereis asfollows:

switch ?options? string {pattern body ?pattern body ...?}

Basically, the string argument is compared to each of the patterns and if a comparison succeeds, the
corresponding body is executed, after which the switch statement returns. The pattern "default”, if
present, is always matched, and thus its body always executed if none of the earlier comparisons
succeed.

It is often useful to execute parts of a program repeatedly, until some condition is met. In order to
facilitatethis, Tcl offersthreelooping constructs: the while, for, and foreach statements, each of which
Is shown in the examples below.

Example 4.3:
for {set i 0} {$i < 10} {incr i 1} {
puts "In the for loop, and i == &i "
}
Cut put :

In the for |oop, and
In the for |oop, and
In the for |oop, and
In the for |oop, and
In the for |oop, and
In the for |oop, and
In the for |oop, and
In the for |oop, and
In the for |oop, and

i
i
i
i
i
i
i
i
i
In the for loop, and i

I
I
Coo~NOoOOU~WNEO

The general syntax for the for-loop is as follows:

30

HITAS Tutorial

for init test reinit body

The init argument is a Tcl script that initializes alooping variable. In the for-loop used in Example
4.3, the looping variable was called "i", and the init argument simply set it to 0. The test argument is
a Tcl script which will be evaluated to decide whether or not to enter the body of the for-loop. Each
time this script evaluates to a true value, the body of the loop is executed. The first time this script
evaluates to false, the loop terminates. The reinit argument specifies a script that will be called after
each time the body is executed. In Example 4.3, the reinit script increments the value of the looping
variable, "i". Thus, for-loop in this example executesits body 10 times, before itstest script evaluates
to false, causing the loop to terminate.

Example 4.4:
set i O
while {$i < 10} {
puts "In the while loop, and i == $i "
incr i 1
}
CQut put :

In the while | oop, and
In the while | oop, and
In the while | oop, and
In the while | oop, and
In the while | oop, and
In the while | oop, and
In the while | oop, and
In the while | oop, and
In the while | oop, and

i
i
i
i
i
i
i
i
i
In the while | oop, and i

|
|
©Coo~NOoOOU~WNEO

Example 4.4 illustrates the use of awhile-loop, the general syntax of which follows the form:
whil e test body

The basic concept behind the while-loop is that while the script specified by the test argument
evaluates to a true value, the script specified by the body argument is executed. The while loop in
Example 4.4 accomplishes the same effect as the for-loop in Example 4.3. A looping variable, "i", is
again initialized to 0 and incremented each time the loop is executed. The loop terminates when the
value of "i" reaches 10. Note, that in the case of the while-loop, the initialization and re-initialization
of the looping variable are not part of the while-statement itself. Therefore, the initiaization of the
variable is done before the while-loop, and the reinitialization is incorporated into its body. If these
statements were left out, the code would probably still run, but with unexpected results.

Example 4.5:

foreach vowel {a e i o u} {
puts "$vowel is a vowel"

}

Cut put :

ais a vowel

eis vowel

i is vowel

ois vowel

a
a
a
uis a vowel

31

HITAS Tutorial

Theforeach-loop, illustrated in Example 4.5, operatesin adightly different manner to the other types
of Tcl loops described in this section. Whereas for-loops and while-loops execute while a particular
condition is true, the foreach-loop executes once for each element of afixed list. The general syntax
for the foreachloop is:

foreach varName |ist body

The variable specified by varName takes on each of the valuesin the list in turn, and the body script
Is executed each time. In Example 4.5, the variable "vowel" takes on each of the valuesinthelist "{a
eiou}" (Tcl list structure will be discussed in more detail in alater section), and for each value, the
body of the loop is executed, resulting in one printed statement each time.

3.2.5. Procedures

Proceduresin Tcl serve much the same purpose asfunctionsin C. They may take arguments, and may
return values. The basic syntax for defining a procedureis:

proc nane argLi st body

Once a procedure is created, it is considered to be a command, just like any other built-in Tcl
command. Assuch, it may be called using itsname, followed by avaluefor each of itsarguments. The
return value from a procedure is equivalent to the result of a built-in Tcl command. Thus, command
substitution can be used to substitute the return value of a procedure into another expression.

By default, the return value from a procedure isthe result of the last command initsbody. However, to
return another value, the return command may be used. If an argument isgiven to the return command,
then the value of this argument becomes the result of the procedure. The return command may be
used anywhere in the body of the procedure, causing the procedure to exit immediately.

Example 5.1:

proc sumproc {a b} {

return [expr $a + $b]
}
proc magni tude {nun} {

if {$num > 0} {

return $num

}

set num [expr $num* (-1)]

return $num
}
set nunl 12
set nun 14
set sum [sum proc $nunl $nunt]
puts "The sumis $sunf
puts "The magnitude of 3 is [nagnitude 3]"
puts "The magnitude of -2 is [nmagnitude -2]"
CQut put :
The sumis 26
The magnitude of 3 is 3
The magnitude of -2 is 2

32

HITAS Tutorial

This example first creates two procedures, "sum_proc" and "magnitude”. "sum_proc" takes two
arguments, and simply returns the value of their sum. "magnitude” returns the absolute value of a
number. After the procedure definitions, three global variables are created. The last of these, "sum"
Is assigned the return value of the procedure "sum_proc”, called with the values of the variables
"numl1" and "num2" as arguments. The "magnitude” procedure is then called twice, first with "3" as
an argument, then with "-2".

The"sum_proc" procedure usesthe expr command to cal culate the sum of itsarguments. The result of
the expr command is substituted into the return statement, making it the return value for the procedure.
The "magnitude” procedure makes use of an if-statement to take different actions, depending on
the sign of its argument. If the number is postive, its value is returned, and the procedure exits
immediately, skipping al the rest of its code. Otherwise, the number is multiplied by -1 to obtain its
magnitude, and this value is returned. The same effect could be achieved by moving the statement
that multipliesthe value by -1 into an el se-clause, but the purpose of this example wasto illustrate the
use of the return statement at several locations within a procedure.

Inside the body of a procedure, new variables may be created with the set command as normal.
However, these variables will be local to the procedure, and will no longer be accessible once the
procedure returns. If access to global variables is needed inside a procedure, these may be accessed
by means of the global keyword, as described in Example 5.2.

Example 5.2:

proc dunb_proc {} {
set nyvar 4
puts "The value of the local variable is $nyvar"
gl obal mygl obal var
puts "The value of the global variable is $nygl obal var"

}

set nygl obal var 79

dunb_proc

Cut put :

The value of the local variable is 4
The value of the global variable is 79

The procedure "dumb_proc" achieves no special purpose, and is simply designed to illustrate the use
of the global keyword to access global variables. It takes no arguments, and as such its argument
list is empty. Note that even though the procedure takes no arguments, the empty list structure must
still be included. The procedure first creates alocal variable, "myvar”, setsits value to "4", and then
displaysit. Then it usesthe global keyword to gain accessto aglobal variable named "myglobalvar".
The value of this global variableis then printed.

After the procedure definition, a global variable "myglobalvar” is created, and assigned a value of
"79". The procedure "dumb_proc" isthen called, resulting in the output shown above.

33

HITAS Tutorial

3.2.6. Lists

Listsin Tcl provide asimple means by whichto group collections of items, and deal with the collection
as asingle entity. When needed, the single items in the group can be accessed individually. Lists are
represented in Tcl as strings with a specified format. As such, they can be used in any place where
strings are normally allowed. The elements of a list are also strings, and therefore any form of data
that can be represented by a string can be included in a list (allowing lists to be nested within one
another). The following examples will illustrates many important list commands:

Example 6.1:

set sinple_list "John Joe Mary Susan”
puts [lindex $sinple_list O]

puts [lindex $sinple_list 2]

Cut put :

John

Mary

Example 6.1 creates a simple list of four elements, each of which consists of one word. The lindex
command is then used to extract two of the elementsin thelist: the Oth element and the 2nd element.
Note that list indexing is zero-based. It is also important to see that the lindex command, along
with most other list commands, takes an actual list asits first argument, not the name of a variable
containing alist. Thus the value of the variable "simple_list" is substitued into the lindex command.

Example 6.2:

set sinple_list2 "M ke Sam Heat her Jennifer"

set conpound_list [list $sinple_list $sinple_list2]
puts $conpound_li st

puts [Ilength $compound_list]

Cut put :

{John Joe Mary Susan} {M ke Sam Heat her Jennifer}
2

Example 6.2 is a continuation of Example 6.1, and assumes the variable "simple list" (created in
Example6.1) still exists. Inthisexample, anew variable called "simple_list2" iscreated, and assigned
the value of another simple four-element list. A compound list is then formed by using the list
command, which simply forms a list from its arguments. The list command ensures that proper list
structure is observed, even when its arguments themselves are lists, or other complex structures.
Displaying the value of "compound_list" showsthat itisalist of two elements, each of whichisitself
alist of four elements. The llength command is used to obtain the length of the list, "compund_list",
whichis2in this case.

This example highlights two ways in which to create lists in Tcl: by explicitly listing the elements
within quotes, and by using the list command. Explicity listing the el ements works well when each of
the elementsisasingle word. However, if the elements contain whitespaces, then maintaining proper
list structure becomes alittle more tricky. For these cases, the list command proves very useful.

Example 6.3:

set nylist "Mercury Venus Mars"
puts $nyli st
set nylist [linsert $nylist 2 Earth]

34

HITAS Tutorial

puts $nyli st

| append mnylist Jupiter

puts $nyli st

Cut put :

Mercury Venus Mars

Mercury Venus Earth Mars
Mercury Venus Earth Mars Jupiter

In example 6.3, asimple list of 3 items is created, and assigned to the variable "mylist". The linsert
command is then used to insert a new item into this list. Note that, as with the llength command, the
linsert command takes an actual list asits first argument, not the name of a variable containing alist.
The linsert command returns a list that is the same as the list it was passed, except that the specified
itemisinserted in the appropriate position. Thisreturn value needs to be assigned back to the variable
"mylist" in order for the list stored in that variable to change.

One list command that does not behave in this way is the lappend command. It takes the name of a
variableasitsfirst argument, and appendsits subsequent argumentsonto thelist stored in that variable.
Thusthe value of the variable is modified directly. Understanding the difference between the way the
lappend command works, and the way that commands such as linsert work is fundamental to using
lists correctly.

The list commands presented here are only a small subset of those available. Refer to the manual
pages, or one of the other Tcl/Tk references for a complete description of all list commands.

3.2.7. Arrays

Another way of grouping datain Tcl isto use arrays. Arrays are ssmply collections of itemsin which
each itemisgiven aunigque index by which it may be accessed. Aswith all other Tcl variables, arrays
need not be declared before they are used, and, unlike arrays in C, their size need not be specified
either. An individual element of an array may be referred to by using the array name, followed
immediately by the index of the element, enclosed in parentheses. Array elements are treated much
like any other Tcl variables.

They are created by means of the set command, and their values can be substituted using the dollar
sign ("$"), asisthe case with other variables.

Example 7.1:

set nyarray(0) "Zero"

set nyarray(l) "One"

set nyarray(2) "Two"

for {set i 0} {$i < 3} {incr i 1} {
puts $nyarray($i)

}

CQut put :

Zero

One

Two

In Example 7.1, an array called "myarray"” is created and initialized. Note that no specia code is
required to create the array because it is created by the set statement that assigns a value to its first
element. The forloop simply prints out the value stored in each element of the array. Note the use of
variable substitution in the array index and the array name.

35

HITAS Tutorial

Example 7.2:

set person_info(nane) "Fred Smith"

set person_i nfo(age) "25"

set person_i nfo(occupation) "Plunmber”

foreach thing {name age occupation} {
puts "$thing == $person_i nfo($thing)"

}

Cut put :

name == Fred Snith
age == 25

occupati on == Pl unber

Example 7.2 illustrates one of the unique features of Tcl arrays. array indices need not be integers.
In fact, array indices can take on any string value. In this case, the array "person_info" is created
with three elements. The indices for the elements are "name", "age", and "occupation”. The foreach-
loop simply displays each of the elements in the array. Using arrays with named indices is one of
the ways to abstract objectsin Tcl. In Example 7.2, the "person_info" array can be thought of as an
"object" describing a person. Each of the elementsin the array then describes afundamental attribute
of the object.

One problem with using named indices with arraysisthat one needs to remember the names of all the
elementsin order to traversethe array. In Example 7.2, for example, the names of all the elements had
to be listed explicitly. In a case such as this one, in which there are only three elements, this does not
present much of a problem. However, if the array contained many more elements, explicitly listing
them each time the array had to be traversed would lead to very messy code. The array Tcl command,
illustrated in Example 7.3, provides a means to get around this problem.

Example 7.3:

set person_info(nane) "Fred Smith"

set person_i nfo(age) "25"

set person_i nfo(occupation) "Plunber”

foreach thing [array nanes person_info] {
puts "$thing == $person_i nfo($thing)"

}

Cut put :

occupati on == Pl unber
age == 25

name == Fred Snith

Example 7.3 produces essentially the same result as Example 7.2, but it makes use of the array
command to obtain the names of the elements in the array, instead of listing them explicitly. The
array elements are displayed in a different order than they were in Example 7.2, ssmply because the
array command returns the names of the elementsin adifferent order than the one in which they were
explicitly listed previously. The genera purpose of the array command isto retrieve various pieces of
information about an array (such asitssize or the names of its elements), and perform other operations
(such as searching) on it. The general syntax of the array command is:

array option arrayNanme ?arg arg ...?

36

HITAS Tutorial

The option argument specifieswhich array operation to perform. In the case of Example 7.3, theoption
argument is given the value "names", which causes the array command to return alist of the names of
the elementsin the array given by the arrayName argument. For a complete list of the allowed values
of the option argument, and well as a description of the corresponding operations, refer to the manual
page for the array command.

3.2.8. Strings

Since strings are the most prevalent data type in Tcl, it makes sense that Tcl provides a rich set of
functions for manipulating them. Most string operations are done by means of the string command,
which takes the following general form:

string option arg ?arg ...?

The string command actually performs several different functions, and the option argument is used
to differentiate between them. Example 8.1 creates a string and then uses the string command to
manipulate it, and obtain information about it.

Example 8.1:

set str "This is a string"

puts "The string is: $str"

puts "The length of the string is: [string length $str]"

puts "The character at index 3 is: [string index $str 3]"

puts "The characters fromindex 4 through 8 are: [string range $str 4 8]"
puts "The index of the first occurrence of letter \"i\" is: [string first i $str]”
Cut put :

The string is: This is a string

The length of the string is: 16

The character at index 3 is: s

The characters fromindex 4 through 8 are: is a

The index of the first occurrence of letter "i" is: 2

In Example 8.1, avariable called "str" is created, and initialized to the value, "Thisisastring". The
string commmand is then used with various options to obtain various pieces of information about the
string. Refer to the manual page for the string command for a complete listing and explanation of
the various options. Also, there are several other string-related commands worth exploring, such as
format, regexp, regsub, and scan.

3.2.9. Input/Output

Most input and output operations in Tcl are done by means of the puts and gets commands. Most of
the examples in this document have made use of the puts command to display output on the console.
In asimilar manner, the gets command can be used to wait for input from the console, and optionally
storeit an avariable. Its general syntax has the following form:

gets channel I d ?var Nane?

Thefirst argument to getsisthe name of an open channel from which to read data, and can be thought
of asafile descriptor in the C sense. If the varName argument is specified, gets stores the dataiit reads
in that variable, and returns the number of bytes read. If varName is not specified, then gets simply
returns the data it read.

37

HITAS Tutorial

Example 9.1:

puts -nonewline "Enter your nane: "

set bytesread [gets stdin nane]

puts "Your nane is $nane, and it is $bytesread bytes |ong"
Qutput: (note that user input is shown in italics)

Enter your nane: Shyam

Your nanme is Shyam and it is 5 bytes |ong

Example 9.1 makes use of both the puts and gets commands. The puts command is used with the
- nonewline flag to suppress the trailing newline that it normally appends to its output. A variable,
"bytesread"”, is then assigned the result of a gets command that reads from the channel "stdin" (the
standard input), and stores the data it readsin the variable, "name". Thus "bytesread" ends up storing
the number of bytes of user input read from the console.

In Example 9.1, gets was used to read from the channel "stdin" (created automatically when the Tcl
interpreter is started) which corresponds to the standard input. The puts command can also be used
with achannel identifier to write to a specific channel. However, if no channel identifier is passed to
puts, it writes to the standard output (this is the way puts has been used throughout this document).
In addition to the standard input and output, channels can aso be created to read from other types of
files. Asillustrated by Example 9.2, the open command can be used to open a channel to afile, and
obtain an appropriate identifier for the channel. Thisidentifier can then be passed to getsto read from
thefile, or putsto write to thefile.

Example 9.2:

set f [open "/tnp/nyfile" "w']

puts $f "We live in Texas. It's already 110 degrees out here."
puts $f "456"

cl ose $f

CQut put: (none)

This exampl e uses the open command to open a channel to afile called "/tmp/myfile". The syntax of
the open command can take on three forms, one of which is:

open name ?access?

The accessargument specifieswhat type of access (for example, read-only access or read-write access)
to the file given by name is desired. See the manual page for the open command for a complete
description of the access modes. In this case, write-only access is desired, so the value "w" is given
for the access argument.

The open command returns a channel identifier that can be used with gets and puts to read and write
from the file. In Example 9.2, thisidentifier is stored in the variable, "f". The puts command is then
used to write two stringsto the file, and then the close command is used to close thefile.

Example 9.3 reads the file created in Example 9.2, and displays its contents.
Example 9.3:

set f [open "/tnp/nyfile" "r"]
set linel [gets $f]

set len_line2 [gets $f |ine2]
cl ose $f

puts “line 1. $linel"

38

HITAS Tutorial

puts “line 2: $line2"

puts "Length of line 2: $len_line2"

Cut put :

line 1: We live in Texas. It's already 110 degrees out here
line 2: 456

Length of line 2: 3

Thefile, "/tmp/myfile", is opened in read-only mode with the open command. The gets command is
then used with the channel identifier returned by open to read from the file. The first call to gets does
not give it the name of a variable in which to store the data it reads, so this data is returned instead.
Command substitution is used to store it in the variable, "linel". The second call to gets tells it to
storethe datait readsin thevariable, "line2". Therefore, gets would return the number of bytesit read,
which, by means of command substitution, is stored in the variable "len_line2". Since all the datahas
been read, the file is then closed.

Inthiscase, it was known that the file contained only two lines of data. If the length of the file was not
known, the eof command could be used with awhileloop to read until the end of the file was reached.

3.2.10. Other Miscellaneous Tcl Commands

eval

Asdescribed earlier, Tcl uses aone-pass parsing mechanism when evaluating scripts. It is sometimes
useful, however, to have the interpreter make more than one pass over a script before evaluating it.
Being able to force the interpreter to parse a script more than once allows one to store Tcl scriptsin
variables, and have them be evaluated at alater time. Thisis shown in Example 10.1:

Example 10.1:

set foo "set a 22"
eval $foo

puts $a

Cut put :

22

The variable "foo" is set to the value "set a 22", which is itself a Tcl script. Next, the value of the
variable "foo" is substituted into the eval command. The eval command simply passes its arguments
through the Tcl interpreter for another round of parsing. When theinterpreter encountersthe statement
"eval $foo", the first round of parsing simply substitutes the value of the variable "foo" in the place
of "$foo", resulting in the expression "eval set a 22". The eval command then sends its arguments,
"set a 22", through the interpreter again, resulting in the variable "a" being created and assigned the
value"22".

One might be tempted to think that the use of the eval command could be avoided and simply replaced
with the statement,

$f oo

This does not work because, on encountering the statement "$foo", the interpreter smply replaces it
with the value stored in the variable "foo", and then considers its parsing work done. So, "$foo" gets
replaced by "set a 22", but the interpreter never parses "set a 22", which it needs to do to make sense
of the components of the statement (it needs to realize that "set" corresponds to a built in command,
and that it is being passed two arguments, "a" and "22") and evaluate it correctly .

39

HITAS Tutorial

catch

When an error occursin a Tcl command, the entire script of which it isapart is halted, and an error
message is displayed. However, instead of halting the whole Tcl script, it may be useful to simply
display afriendly error message and continue execution of the Tcl script.

The catch command prevents Tcl's error handling mechanisms from executing (and thus halting
execution) and simply returns a meaningful value when an error occurs. This allows the program to
define its own behaviour in the case of an error.

Example 10.2:

set retval [catch {set f [open "nosuchfile" "r"]}]
if {$retval == 1} {

puts "An error occured"”
}

Qutput: (if there is no file "nosuchfile" in the current directory).
An error occured

The catch command isgiven aTcl script asan argument. It evaluatesthis script, and if an error occurs,
it returns 1, otherwiseit returns 0. In Example 10.2, the script passed to catch triesto open afile named
"nosuchfile". Assuming that no file with this name exists in the current directory, the open command
should return an error. Sinceit occurs within a catch statement, the normal Tcl error handling routines
do not get invoked, and the catch command simply returns 1. This return value is assigned to the
variable "retval", which is checked to determine whether or not to print the error message. The catch
command can be used in many different ways, only one of which is shown here. Refer to the manual
page for a more compl ete description.

40

HITAS Tutorial

Chapter 4. Examples

This document contains a collection of examples, each one illustrating a feature or set of features.
Those examples appear in the following directories:

i nv/ : guidelines for database construction and analysis, based upon a single inverter and a
chain of inverters. Introduction to the Tcl interface.

adder / : guidelines for database construction and analysis, based upon a full-adder design.
Path reporting and simulation

ms/ : guidelines for database construction and analysis of a master-slave flip-flop.
Introduction to timing checks and slack reports.

addaccu/ : guidelines for .lib characterization of a simple adder-accumulator design. Link
with 3rd-party simulator

cpu2901/ : guidelines for database construction of a small microprocessor. Introduction to
advanced configuration. Path reporting, timing checks and slack reports.

h_macr o/ : guidelines for hierarchical database construction and timing analysis of a
hierachical design made up of custom macros and pre-characterized blocks.

bl ackbox/ : guidelines for handling of analog blocks. Introduction to the two most ssimple
techniques.

41

HITAS Tutorial

Chapter 5. Inverter

5.1. Design Description

This example presents HITAS elementary concepts, based upon a simple inverter design and later
an inverter chain.

The first example takes place in thei nv/ directory.

5.2. Database Generation

5.2.1.

Principles

The database generation follows the steps below:

5.2.2.

Design partitioning: the algorithm creates a net-list of pseudo-gates from the flat transistor
net-list. Partitions are called "cones' and have the property to be electrically independent
from one to the other.

Automatic memory components recognition: amemory-identification engine analyzes cones
and loop between cones, and flags latches and pre-charged elements.

Graph modeling: aconeis modeled as agraph, where edges are events on signals, and where
arcsare possible causality relations between events. Causality relationsare al so called timing
arcs.

Creation of delay models. a delay model, derived from the BSIM MOS equations, is
associated with each timing arc.

Creation of all the timing paths: the successive timing arcs between connectors and memory
elements are merged to create timing paths. All the possible timing paths in the design are
saved into the database.

Global Configuration

The complete configuration required for the database generation takes placeinthedb. t ¢l . The script
also launches the commands that effectively generate that database.

Configuration variables are set in the Tcl script by the mean of the avt _confi g function.

avt _config tasGenerat eConeFil e yes

tells the tool to dump on disk the .cns file, which contains the partitions (the cones)
created by the partitioning algorithm.

avt _config avtVerboseConeFil e yes

tells the tool to dump on disk the .cnv file, which is a more readable version.

42

HITAS Tutorial

avt _config sinmvthHi gh 0.8
High threshold of the slope.

avt _config sinvthLow 0. 2
Low threshold of the slope.

avt _config sinSl ope 20e-12
Transient time of the slope in second.

avt _config sinrool Model ngspi ce
tells the tool the technology file type (which simulator it is designed for)
The temperature and supplies specifications take place in thei nv. spi file:
. TEMP 125

Vsupply vdd 0 DC 1.62
Vground vss 0 DC O

5.2.3. Technology Integration

The technology file isincluded with a SPICE . | NCLUDE directive in thei nv. spi file (in the case of
recursive inclusions, paths must be absolute).

In the present example, the . | NCLUDE directiveis used.

. INCLUDE . ./techno/ bsi m4_dunmy. ng

5.2.4. Database Generation

The generation launch is done through the command hi t as:

avt _LoadFile inv.spi spice
set fig [hitas inv]

The hi t as function takes as argument the name of the figure (the subckt for a SPICE netlist) to
analyze. The tas function returns a pointer on the timing database newly created. This pointer can be
used as an input to further steps of verification, thus avoiding costly re-reading of the timing database
from the disk.

To perform the database generation, just launch the script db. t cl

5.3. Database Analysis

5.3.1. Database overview

At this step of the analysis process, the timing database of the adder sub-circuit consists of four files:

DTX file All the timing arcs of the sub-circuit, based upon
the characterization of the "cones' created during the
partitioning phase.

43

HITAS Tutorial

STM file The models that alow to computing the delay values for
timing arcs and timing paths.

RCX file The interconnect elements (RC) at the physical boundary
of the sub-circuit. Thisfile is used for hierarchy purposes,
allowing the partial flatten of interconnections at upper
levels of hierarchy.

5.3.2. Database properties

The script db. t ¢l presents also Tcl access to the properties of the database:

e Temperature
» Power supply
Other properties are available. See HITAS Reference Guide.

Chapter 6. Inverter Chain

6.1. Design Description

This second example (also in directory i nv/) presents HITAS database construction and database
browsing concepts, based upon ainverter-chain design (filei nv_chai n. spi).

6.2. Database properties

The script db_chai n. t cl performs the database construction in the same way than the previous
example. It also presents Tcl acces to the properties of the database:

» Temperature
» Power supply
» Input slope

e Output load

» Generation date

Other properties are available. See HITAS Reference Guide.

6.3. Path Reports

The scriptreport .t cl showsatypica path report. The commands in the script are the following:

set fig [ttv_LoadSpecifi edTi m ngFi gure inv_chain]

44

HITAS Tutorial

This command loads the timing database (. dt x, . st mand . cns files) into the program's memory.
set clist [ttv_GetPaths $fig * * rf 5 critic path max]

This command looks for the 5 longest paths (5 critic path max) inthecircuit starting and ending
on any terminal node (* *), with arising transition on start node and a falling transition on the end
node (rf). A terminal nodeisapin or alatch.

set f [fopen inv_chain.paths "wt"]
This commands opens afilei nv_chai n. pat hs for further writing.
ttv_DisplayPat hLi st Detail $f $cli st

This command prints in file i nv_chai n. pat hs the result ($clist) of the previous command
tt v_Get Pat hs. For results on standard output, replace $f by st dout . The output looks like:

Vol t age : 1.62V
Tenperature : 125 degree C

*** Path list (unit:[ns]) ***

Pat h Start Start Pat h Tot al Dat a Endi ng Start
tinme sl ope del ay del ay | ag sl ope From node To_node
1 0. 000 0. 200 0. 397 0. 397 0. 000 0.031 (R in (F) out
Node type | ndex:
(© : Cdock node (L) : Latch node (F) : Flip-flop node
(B) : Breakpoint node (K) : Latch command node (S) : Qutput connector node

(SzZ): Qutput HZ connector (N) : Precharge node

*** Path details (unit:[ns]) ***

Path (1) :
Del ay

Acc Delta R F Cap[pf] Type Node_Nane Net _Nane Li ne
0.000 0.000 0.200 R 0. 020 in in
0.070 0.070 0.094 F 0. 027 1 1 inv
0. 186 0.116 0.111 R 0. 027 2 2 inv
0. 258 0.072 0.074 F 0. 027 3 3 inv
0. 372 0.114 0.106 R 0. 027 4 4 inv
0.397 0.025 0.031 F 0. 007 (9 out out inv
0.397 0.397 (total)

Thereis actually only one path in thisinverter chain.

45

HITAS Tutorial

Chapter 7. Adder

This example tackles similar concepts as the ones described in the previous example. It just illustrates
them on amore dlightly complex design, a combinational full adder.

This example takes place in the adder / directory.
7.1. Database Generation

7.1.1. Global Configuration

The complete configuration required for the database generation takes place in the db. tcl . It isthe
same as in the previous example (inverters). The script also launches the commands that effectively
generate that database.

The temperature and supplies specifications take place in the adder . spi file:

. TEMP 125

. GLOBAL vdd vss
Vsupply vdd 0 DC 1.62
Vground vss 0 DC O

As the adder . spi subcircuit is not instantiated, the vdd and vss signals appear in the . GLOBAL
statement.

The technology fileisincluded with a SPICE . | NCLUDE directive in the adder . spi file.

. I'NCLUDE . ./techno/ bsi m4_dunmy. ng

7.1.2. Database Generation

The generation launch is done through the command hi t as:

avt _LoadFil e adder. spi spice
set fig [hitas adder]

The hi t as function takes as argument the name of the figure (the subckt for a SPICE netlist) to
analyze. The tas function returns a pointer on the timing database newly created. This pointer can be
used as an input to further steps of verification, thus avoiding costly re-reading of the timing database
from the disk.

To perform the database generation, just launch the script db. t cl

7.2. Path Searching with the Tcl Interface

The complete configuration required for the database browsing takes placein ther eport. tcl .

The command:

46

HITAS Tutorial

set fig [ttv_LoadSpecifiedTi mi ngFi gure adder]

reads the timing database from disk (as said before, the re-reading of the database can be avoided
by directly taking as an input the return value of the hit as function. For the sake of clarity, and
because we are dealing with small timing databases, we preferred to split different verification steps
into different scripts).

The command:
set clist [ttv_GetPaths $fig * * rr 5 critic path max]

gives the 5 most critical paths (cri ti ¢ and pat h arguments) of the design, that begin and end on a
rising transition (r r argument), with no specification of signal name (* * arguments), in the database
pointed out by $f i g. The function returns a pointer on the newly created list.

The command:
ttv_DisplayPat hLi st Detai|l stdout $cli st

displays on the standard output the detail of all the paths of the path list given by thett v_Get Pat hs
function.

To get these paths, launch the script report . tcl .

7.3. Exercises

o Ex 1.1. Get thelist of connectors with the Tcl interface and with the GUI.

» Ex 1.2. Get the critical paths between selected connectors, with any transition, with the Tcl
interface and with the GUI

 Ex 1.3. Get dl the parallel paths of the most critical path with the Tcl interface and with
the GUI

* Ex 1.4 Get the detail of aparalel path and identify divergence
e Ex 1.5 Hidethe columnLi ne Type inthereport and observe the results
» Ex 1.6 Change the unit of the report from ns ps (t t v_Set upReport)

7.4. Solutions

#!/usr/bin/env avt_shell

Ex adder.1
set fig [ttv_LoadSpecifiedTi m ngFi gure adder]
set clist [ttv_GetTimngSignalList $fig connector interface]
foreach ¢ $clist {
puts "[ttv_GetTi m ngSignal Property $c NAME] [ttv_GCet Ti mi ngSi gnal Property $c DIR "
}

Ex adder. 2

set fig [ttv_LoadSpecifiedTi m ngFi gure adder]

set clist [ttv_GetPaths $fig a_0 cout ?? 5 critic path nax]
ttv_Displ ayPat hLi st Detai|l stdout $cli st

47

HITAS Tutorial

Ex adder.3 and adder. 4

set fig [ttv_LoadSpecifiedTi mi ngFi gure adder]

set clist [ttv_GetPaths $fig * * rr 5 critic path max]
set plist [ttv_GCetParallel Paths [lindex $clist 1] 10]
ttv_DisplayPat hLi st Detail stdout $pli st

Ex adder.5 and adder.6

ttv_Di spl ayPat hDet ai | H deCol um dt . | i net ype
ttv_SetupReport ps

ttv_DisplayPat hLi st Detail stdout $pli st

48

HITAS Tutorial

Chapter 8. Master-Slave Flip-Flop

This example presents how HITAS performs timing checks upon a sequential design. The example
given hereisasimple master-dave flip-flop (msdp2_y diagram below). It takes place in the directory

ns/
ckn ckp ::::>() 0t
s b
nh T | dffm {>C T |aff s >O

ckp ckn
p—— p——
p-ckp P—ckn
|— ckn [|— ckp B
|_ |_

ckn ckp
ok D—Do—|>o—

8.1. Timing Checks

8.1.1. Principles

Static Timing Analysis is performed by propagating interface constraints towards latch's inputs and
commands, and towards output connectors. Once interface constraints have been propagated, the tool
computes the setup and hold slacks.

The complete configuration required for database construction takes place in thedb. t ¢l . It does not
differ from previous examples

The complete configuration required for STA takes placeinthesta. tcl .

8.1.2. STA with Tcl Interface

Timing Constraints

Timing constraints are set in SDC format (Synopsys Design Constraints). Let's review the constraints
commands applied to the flip-flop:

49

HITAS Tutorial

i nf _Set Fi gureNane nsdp2_y
tells the tool to apply the SDC constraints to the design msdp2_y.

create_cl ock -period 1000 -waveform {500 0} ck
Defines the clock waveform.

set _input_delay -clock -ck -clock fall -mn 200 d

set _input_delay -clock -ck -clock fall -max 300 d
Tellsthetool that inputs signalson di may switch between times 200 and 300.

set _output_delay -clock ck -clock _fall -mn 200 t

set _output_delay -clock ck -clock fall -max 400 t
Tells the tool that the delay from output connector t to the next memory element
(hypothetical).

Static Timing Analysis
Launch of the STA is done by invoking the following commands (filest a. t cl):
The command:
set fig [ttv_LoadSpecifiedTiningFi gure msdp2_y]
reads the timing database from disk.
The command:
set stbfig [stb $fig]

launches the static timing analysis. The st b function returns a pointer on the newly created figure,
which back-annotates the timing database with timing propagation information.

The function:
stb_Di spl aySl ackReport [fopen slack.rep w $fig * * ?? 10 all 10000

displays aglobal slack report in thefilesl ack. r ep.

8.2. Timing Checks

The next sections explain how timing checks are performed. They describe the more common
situations one can be faced to, i.e.:

* Input to latch
» Latchtolatch
» Latch to output

For each situation, an example of dack report is shown, and we explain the details of the timing
checks calculation.

50

HITAS Tutorial

8.2.1. Input to Latch

Inputs Specifications

Regarding input specifications, the STA engine of HITAS makes the assumption that input data is
coming from a latch clocked on the opposite phase of the one the data arrives on. In our flip-flop
example, df f _mis opened on the high state of ck, so di is supposed to come from a latch opened
on the low state of ck.

% >o_|

1L IL

11—

L
1

1t

src dff m dff s

As aresult, di should be specified as coming from ck falling, i.e. when the latch src opens. The
corresponding SDC commands should look like:

create_cl ock -period 1000 -waveform {500 0} ck
set _input_delay -clock -ck -clock_fall -min 200 di
set _input_delay -clock -ck -clock_fall -max 300 di

Timing Checks Description

Diagram below illustratestheway set _i nput _del ay directivesare propagated throughout the design,
and where timing checks are performed.

0 0.5 1 1.5

ck x| | [

Opening edge

di

ckp/] [] | T

& -

A X
Intrinsic setup Intrinsic hold
> Nig
Setup slack Hold slack

51

HITAS Tutorial

Setup Slack
Input to latch setup slack report is described in the sl ack. rep file

Path (4) : Slack of 0.762

DATA VALI D
Del ay
Acc Delta R F Capl pf] Type Node_Nane Net _Nane Li ne
0.300 0.000 0.200 R 0.034 di di
0.498 0.198 0.310 F 0. 028 (L) dff _m dff _m mast er
0.498 0.198 (total)
DATA REQUI RED:
Del ay
Acc Delta R F Capl pf] Type Node_Nane Net _Nane Li ne
0.000 0.000 0.200 F 0.016 (O ck ck
0.239 0.239 0.258 R 0. 046 (CK) ckn ckn inv
0.340 0.101 0.140 F 0. 036 (CK) ckp ckp inv
0.260 -0.081 [I NTRI NSI C SETUP]
1.260 +1.000 [NEXT PERI 0D
1.260 0.260 (total)

The value of the setup slack is given by clock_path - data path = 1260ps - 498ps = 762ps. The
intrinsic setup correspondsto an additional delay which modelsthe amount of timerequired for secure

memorization of the data.
Hold Slack
Input to latch hold slack report is described in the sl ack. rep file

Path (2) : Slack of 0.005

DATA VALI D:
Del ay
Acc Delta R F Cap[pf] Type Node_Nane Net _Nane Li ne
0.200 0.000 0.200 F 0.034 di di
0.542 0.342 0.508 R 0. 028 (L) df f _m dff _m mast er
0.542 0.342 (total)
DATA REQUI RED:
Del ay
Acc Delta R F Cap[pf] Type Node_Nane Net _Nane Li ne
0.000 0.000 0.200 F 0.016 (O ck ck
0.239 0.239 0.258 R 0.046 (CK) ckn ckn inv
0.537 +0.298 [I NTRI NSI C HOLD|
0.537 0.537 (total)

The value of the hold slack is given by data path - clock_path = 542ps - 537ps = 5ps. The intrinsic
hold corresponds to an additional delay which models the amount of time required for ensuring that

the next cycle's data is not memorized in the current cycle.

52

HITAS Tutorial

8.2.2. Latch to Latch

Timing Checks Description

Latch to latch timing checks require no additional configuration, as they are based upon the signals
already propagated from inputs, and upon the clock specification. The propagation of the s.w., and
corresponding timing checks are described in the following timing diagram:

0.5 1 15 2
ok | I | L
Opening edge
ckp ﬂ | | ” |
\
dff_m / .< >.<
. Closing edge
Intrinsic access Y
ckn [I [l 1
@ -
A X
Intrinsic setup Intrinsic hold
Nl
Setup slack Hold slack
Setup Slack
Latch to latch setup slack report is described in the sl ack. rep file
Path (3) : Slack of 0.284
DATA VALI D:
Del ay
Acc Delta R F Cap[pf] Type Node_Nane Net _Nane Li ne
-0.500 0.000 0.200 R 0.016 (O ck ck
-0.399 0.101 0.128 F 0.046 (CK) ckn ckn inv
-0.236 0.164 0.169 R 0.036 (CK) ckp ckp inv
-0.152 0.083 0.139 F 0.028 (L) dff _m df f _m mast er
0. 090 0.242 0.189 R 0. 040 nll nll inv
0.321 0.231 0.305 F 0. 089 (L) dff _s dff _s sl ave
0.321 0.821 (total)
DATA REQUI RED:
Del ay
Acc Delta R F Cap[pf] Type Node_Nane Net _Nane Li ne
0.500 0.000 0.200 R 0.016 (O ck ck
0.601 0.101 0.128 F 0.046 (CK) ckn ckn inv
0.605 +0.005 [NTRI NSI C SETUP]

53

HITAS Tutorial

0.605 0.105 (total)
Hold Slack
Latch to latch hold slack report is described in the sl ack. rep file

Path (3) : Slack of 0.146

DATA VALI Dt
Del ay
Acc Delta R F Capl pf] Type Node_Nane Net _Nane Li ne
-0.500 0.000 0.200 R 0.016 (O ck ck
-0.399 0.101 0.128 F 0. 046 (CK) ckn ckn inv
-0.281 0.119 0.177 R 0. 028 (L) dff _m dff _m mast er
-0.223 0.057 0.088 F 0. 040 nli nli inv
0.106 0.329 0.447 R 0. 089 (L) dff _s dff _s sl ave
0.106 0.606 (total)
DATA REQUI RED:
Del ay
Acc Delta R F Capl pf] Type Node_Nane Net _Nane Li ne
0.500 0.000 0.200 R 0.016 (O ck ck
0.601 0.101 0.128 F 0. 046 (CK) ckn ckn inv
0.764 0.164 0.169 R 0. 036 (CK) ckp ckp inv
0.960 +0.196 [I NTRI NSI C HOLD]
-0.040 -1.000 [PREVI QUS PERI OD]
-0.040 0.460 (total)

8.2.3. Latch to Output

Output Constraints

Still based on the flip-flop design described above, the timing propagation on output t is done as
follow:

54

HITAS Tutorial

0.5 1.0 1.5 2.0

ck | | | |—

Opening edge

ckp ﬂ || ” |_

Intrinsic access

t &)

(dﬁ_S_t)min

d »
|

(Aff_s_t)max

In order to get setup and hold slacks on the output, one must define timing constraints on t . These
timing constraints are defined with the set _out put _del ay SDC function. The set _out put _del ay
specifies propagation delays from output connector to the next memory element latching the data. As
aresult, min and max delays are defined as shown in the diagram below.

c {>O_|
di
I J
dff_m dff_s dest

One must also define the edge the datawill be latched by. Here, df f _s is closed on the high state of
ck. The data launched by t is supposed to be latched by a memory element clocked on the opposite
phase, i.e. closed on low state of ck. Therefore, constraintsont should be specified relative to faling
edge of ck (when dst latch closes). The set _out put _del ay functions should be used as follow:

set _out put _delay -clock ck -clock_fall -min 200 t
set _out put _delay -clock ck -clock_fall -max 400 t
Setup Slack

Latch to output setup slack report is described in the sl ack. rep file

Path (1) : Slack of 0.030
DATA VALI D
Del ay

55

HITAS Tutorial

Acc Delta R F Cap[pf] Type Node_Nane Net _Nane Li ne
0.000 0.000 0.200 F 0.016 (O ck ck
0.239 0.239 0.258 R 0.046 (CK) ckn ckn inv
0.340 0.101 0.140 F 0.036 (CK) ckp ckp inv
0.568 0.227 0.327 R 0. 089 (L) dff _s dff _s sl ave
0.570 0.003 0.118 F 0.011 (9 t t inv
0.570 0.570 (total)

-> Specification: Mist be stable after 0.600

The setup timeis cal culated with the maximum set_output_delay value - maximum data path - which
IS 400ps. As the period is 1000ps, data must arrive before time 1000 - 400 = 600ps. The setup slack
isgiven by 600 - 570 = 30ps.

Hold Slack
Latch to output hold slack report is described in the sl ack. rep file

Path (5) : Slack of 0.635

DATA VALI D
Del ay

Acc Del ta R F Cap[pf] Type Node_Nane Net _Nane Li ne
0.000 0.000 0.200 F 0.016 (O ck ck
0.239 0.239 0.258 R 0.046 (CK) ckn ckn inv
0.385 0.146 0.235 F 0. 089 (L) dff _s dff _s sl ave
0.435 0.050 0.082 R 0.011 (9 t t inv
0.435 0.435 (total)

-> Specification: Mist be stable before -0.200

The hold time is calculated with the minimum set_output_delay value - minimum data path - which
is 200ps. The hold slack is given by data path - clock path = 435 + 200 - O (the clock isideal in the
set_output_delay definition) = 635ps.

56

HITAS Tutorial

Chapter 9. Addaccu

This example describes a global timing characterization methodology. It is based upon a simple 4-
bit adder-accumulator.

This example takes place in the directory addaccu/ .

Timing characterization provides the timing properties (or constraints) of a macroblock, generally in
the Liberty format. The purpose of the timing characterization is to provide other tools in the design
flow - physical design, chip-level STA - with sufficient timing information about the macroblock, so
that thosetools can perform their task correcly. Typically, theinformation giveninthe Liberty fileare:

Setup and Hold Constraints (Sequential): the maximum and minimum arrival times of data
signals on input pinsrelative to clock signals (on clock pins)

Access Times (Sequential): the maximum and minimum departure times of data signals on
output pinsrelative to clock signals (on clock pins)

Propagation Times (Combinational): the maximum and minimum path delays between inout
and output pins

We describe here a methodology for secure timing characterization of macroblocks and cells. The
following steps are involved:

Construction of the macroblock timing database

| dentification of the pathsinvolved in the timing constraints

Validation of the paths and accuracy check by SPICE simulation

Timing characterization for different slopes and loads

Timing characterization by SPICE simulation for different slopes and loads

9.1. Design Description

The addaccu chip consists of afour-bit adder, afour-bit register, and a 2 to 1 four-bit multiplexer.

cout
b[3:0] \H
sel —> + s[3:0]
a[3:0]] /
i 1
ck |

57

HITAS Tutorial

The circuit performs an addition between either the b[3: 0] and a[3: 0] inputswhen sel isset to 0, or
between b[3: 0] and the content of the four-bit register when sel is set to 1. The content of the register
Is overwritten by the values of the outputs s 3: 0] on each falling edge of the clock, ck..

9.2. Construction of the Timing Database

The temperature and supplies specifications take place in the addaccu_schem spi file:

. TEMP 125

. GLOBAL vdd vss
Vsupply vdd vss DC 2.0
Vground vss 0 DC O

As the addaccu_schem spi subcircuit is not instantiated, the vdd and vss signals appear in the
. GLOBAL statement.

In the present example, the . | NCLUDE statement is used for technology file integration:

. I NCLUDE . ./techno/ bsi mi_dunmy. ng

The additional configuration required for the database construction takes place in the db. t ¢l script.
The script also launches the commands that effectively generate that database.

Configuration variables are set in the Tcl script by the mean of the avt _confi g function.

avt _config tasCenerat eConeFil e yes
tells the tool to dump on disk the .cns file, which contains the partitions (the cones)
created by the partitioning algorithm.

avt _config avtVerboseConeFil e yes
tells the tool to dump on disk the .cnv file, which is a more readable version.

avt _config sinWvthLow 0.2
Low threshold of slope definition

avt _config sinvthH gh 0.8
High threshold of slope definition

avt _config sinrool Model ngspice
tells the tool the technology file type (which simulator it is designed for)

The construction itself is done through the command hi t as:

avt _LoadFi |l e addaccu_schem spi
set fig [hitas addaccu]

9.3. Timing Paths Identification

The pat hs. t cl script reports the timing paths involved in the constraints described above (setup,
hold, access and combinational paths).

58

HITAS Tutorial

Let's have alook at the following code sequence in the script:

Setup / Hol d paths

set file [fopen $fignane. setuphol d w

ttv_Di spl ayConnect or ToLatchMargin $file $fig * "split all"
fclose $file

The function ttv_Di spl ayConnect or ToLat chMar gi n displays the setup and hold constraints
associated with the input pins, related to the clock signal created with the create_cl ock
statement (note that the frequency information is irrelevant here, as setup and hold constraints
do not depend upon frequency - the syntax just requires it). Precisely, for each input pin,
the t t v_Di spl ayConnect or ToLat chMar gi n function displays all possible setup and hold values,
depending on the latch involved. All information about the data paths, clock paths and latch involved
Isreported in the addaccu. set uphol d file

Now let's ook at the maximum access paths detection. The related code sequenceis:

Max access paths

set file [fopen $fignanme. accessmax w

set pathlist [ttv_GetPaths $fig * s\[*\] ?? 0 critic access max]
ttv_DisplayPathListDetail $file $pathlist

fclose $file

The ttv_Get Pat hs function looks for all (argument 0) the access paths ending on signals §0:3],
using maximum path values for data and clock. The whole detail of those paths is reported in the
addaccu. accessnax.

The next code sequence deals with minimum access paths, and is very similar to the one described
above. The ttv_Get Pat hs function looks here for all the access paths ending on signals §0:3],
using minimum path values for data and clock. The whole detail of those paths is reported in the
addaccu. accessni n file.

The final code sequence deals with combinational paths between input and output pins:

Conbi natorial paths

set file [fopen $figname. comb W

set pathlist [ttv_GetPaths $fig a\[*\] s\[*\] ?? 0 critic path max]
ttv_DisplayPathListDetail $file $pathlist

set pathlist [ttv_GetPaths $fig b\[*\] s\[*\] ?? 0 critic path max]
ttv_DisplayPathLi stDetail $file $pathli st

set pathlist [ttv_GetPaths $fig sel s\[*\] ?? 0 critic path max]
ttv_DisplayPathListDetail $file $pathlist

set pathlist [ttv_GetPaths $fig ck s\[*\] ?? 0 critic path max]
ttv_DisplayPathListDetail $file $pathlist

fclose $file

The whole detail of those pathsis reported in the addaccu. conb file.

All these paths will be the oneswhich will be used to characterize the design, it istherefore necessary
to carefully check that there are relevant.

59

HITAS Tutorial

9.4. Timing Paths Validation by SPICE simulation

The pat hs_si mu. tcl script performs the same task as the pat hs. tcl script, and re-simulates
the paths with NG-SPICE. NG-SPICE is a freeware SPICE simulator (Berkeley license). It is
provided with this tutorial. Binaries are in . . / bi n/ Li nux/ and ../ bi n/ Sol ari s/ . For the sake of
understanding, the set of paths- reported and simulated - has been reduced to the ones originating from
some inputs only. HITAS actually generates a SPICE deck with all the stimuli allowing for signal
propagation. It automatically invokes the ssmulator and retrieve the results, which are integrated in

the reports. It just needs the following configuration:

avt _config avtSpiceString "./bin/Solaris/ngspice -b $"
The command line which will be invoked by HITAS

avt _config Sinlrool Model ngspice
TellsHITAS the SPICE format to use for the SPICE deck

avt _config sinflechnol ogyName ../techno/bsi mi_dummy. ng
The technology file to include in the SPICE deck (. | NCLUDE)

avt _config avtSpiceQutFile $.10g
TellsHITASthe suffix of the file containing the simulation results, required unlessthe

simulator fixesthis.

ttv_DisplayActivateSi mul ati on yes
The flag for activating the re-simulation of reported paths

Just invoke paths_sinu.tcl to run the simulations. As before, the results are displayed in
the files addaccu. comb, addaccu. set uphol d, addaccu. accessmi n and addaccu. accessmax. An
additionnal column gives the NG-SPICE values.

The configuration is given for ngspice since the simulator is provided however another simulator can
be used, for example the configuration for hspice would be something like:

avt _config avtSpiceString "hspice $"
The command line which will be invoked by HITAS

avt _confi g Sinlrool Model hspice
TellsHITAS the SPICE format to use for the SPICE deck

avt _config sinflechnol ogyNanme ../techno/ bsi mi_dummy. hsp
The technology file to include in the SPICE deck (. | NCLUDE)

ttv_DisplayActivateSi mul ati on yes
The flag for activating the re-simulation of reported paths

60

HITAS Tutorial

9.5. Timing Characterization (.lib)

The timing abstraction configuration takes place in the charac.tcl script. Let's review the
configuration needed:

i nf _Set Fi gur eNane addaccu
tells the tool to apply the SDC constraints to the design addaccu.

create_cl ock -period 3000 -waveform {0 1500} ck
Creates aclock on signal ck. Period is not relevant, but required by the SDC syntax

i nf _Defi neSl opeRange default {25ps 50ps 100ps 200ps 400ps} custom
The set of slopes to be applied on input pins

i nf _Defi neCapaci tanceRange default {8fF 16fF 32fF 64fF} custom
The set of loads to be applied on output pins

The timing abstraction is done through the command t mabs:

set abs [trmabs $fig NULL * * * -verbose -detailfile $fignane.clog]
lib_drivefile [list $abs] NULL addaccu.lib max

A fileaddaccu. cl og isissued, which contains al the paths used for characterization.

9.6. Timing Characterization (.lib) by SPICE
simulation

The referent script is charac_simu. tcl . The simulation configuration is the same as in the
pat hs_si nu. t cl script, except for the two following lines:

Sinul ati on speed-up
avt _config sinQutLoad dynam c
avt _confi g avt Technol ogyNanme ../techno/ bsi md_dunmy. ng

It just tells HITAS to transform out-of-path transistors into equivalent capacitances.

The charac_sinu.tcl script simulates al the paths used for characterization and issues the
addaccu_gol den. | i b file. It uses a cache mechanism in order to avoid ressmulating severa times
the same path (clock paths for instance).

61

HITAS Tutorial

Chapter 10. CPU2901

10.1. Design Description

Thisexample presents HITAS database construction, case analysis, OCV, Xtak analysis, based upon

asmall 4-bit microprocessor design.
It takes place in the cpu2901/ directory.

scout

CK

9o

fi

0
decald

yvy

Y

cout
ovf

signe

Yyyvy

Zero

1]2:0]

CK

=SO

fonc >
test —> ACCU <«
1[8:6] — 4
scin >
D ——
decalg = l
ng - /T
np / ALU \
cin
1[5:3] /\ \
S R
2:0] ——» le—
)
%)
D
RA RB
A —_—>
B ———> RAM <=
1[8:6] 4‘:
l<
% M —> [
8 = -
decalgr

> decaldr

62

HITAS Tutorial

10.2. Database Generation

10.2.1. Global Configuration

The complete configuration required for the database generation takes placeinthedb. t cl . The script
also launches the commands that effectively generate that database.

Configuration variables are set in the Tcl script by the mean of the avt _confi g function.

avt _config tasCenerateConeFile yes
tells the tool to dump on disk the .cns file, which contains the partitions (the cones)
created by the partitioning agorithm.

i nf _Set Fi gureNane cpu2901
tells the tool to apply the SDC constraints to the cpu design.

set _case_analysis 0 test
Appliesa0 constraint on the pint est

set _case_analysis 1 func
Appliesal constraint on the pin f unc

The temperature and supplies specifications take place in the cpu2901. spi file:

. TEMP 125

. GLOBAL vdd vss
Vsupply vdd 0 DC 1.62
Vground vss 0 DC O

As the cpu2901. spi subcircuit is not instantiated, the vdd and vss signals appear in the . GLOBAL
statement.

10.2.2. Database Generation

The generation launch is done through the command hitas:

avt _LoadFil e cpu2901. spi
set fig [hitas cpu2901]

10.3. Database Analysis

10.3.1. Path Searching with the Tcl Interface

The complete configuration required for the database browsing takes placeinther eport. tcl .
The command:

set fig [ttv_LoadSpecifiedTi m ngFi gure cpu2901]

reads the timing database from disk.

63

HITAS Tutorial

The command:

set clist [ttv_GetPaths $fig * * rr 5 critic path max]

gives the 5 most critical paths (cri ti ¢ and pat h arguments) of the design, that begin and end on a
rising transition (r r argument), with no specification of signal name (* * arguments), in the database
pointed out by $f i g. The function returns a pointer on the newly created list.

The command:
ttv_DisplayPat hLi st Detail $l og $cli st

displaysinthelog file the detail of all the paths of the path list given by thet t v_Get Pat hs function.

10.4. Timing Checks

The complete configuration required for stability analysistakes placeinthesta. tcl .

10.4.1. Timing Constraints

Timing constraints are set in SDC format. Let's review the constraints commands applied to the
cpu2901.

i nf _Set Fi gureNane cpu2901
tells the tool to apply the SDC constraints to the design cpu2901.

create_cl ock -period 10000 -waveform {5000 0} ck
Creates of clock of period 10000

set _input_delay -min 2000 -clock ck -clock fall [all _inputs]

set _input_delay -nmax 3000 -clock ck -clock fall [all _inputs]
Defines a switching window between times 2000 and 3000 on the input connectors

10.4.2. STA

Launch of the static timing analysisis done by invoking the following commands:
As before, the command:
set fig [ttv_LoadSpecifiedTi m ngFi gure cpu2901]
reads the timing database from disk.
The command:
set stbfig [stb $fig]

launches the STA
The function:

64

HITAS Tutorial

stb_Di spl aySl ackReport [fopen slack.rep w] $fig * * ??2 10 all 10000

displays aglobal slack report inthefile sl ack. r ep.
10.4.3. OCV

Comment out the command i nf _Def i nePat hDel ayMar gi n and observe the differences in the dack
file. This command adds a margin of 1nson all data paths

10.4.4. Crosstalk Analysis

Launch of the crosstalk analysis is done by invoking the following commands (script xt al k. t cl):

As before, the command:
set fig [ttv_LoadSpecifiedTi m ngFi gure cpu2901]

reads the timing database from disk.
The crosstalk analysisis activated by switching on the following variables:

avt _config stbDetail edAnal ysis yes
avt _config stbCrosstal kMbde yes

The command:
set sthfig [stb $fig]

launches the crosstalk-aware STA
The function:

stb_Di spl aySl ackReport [fopen slack xtalk.rep w $fig * * ?2? 10 all 10000

printsaglobal slack reportinthefilesl ack_xt al k. r ep, displaying variationsdueto crosstalk effects.

65

HITAS Tutorial

Chapter 11. Hierarchical Analysis

11.1. Design Description

This example illustrates the complete STA and Sl of a hierarchica macro. It takes place in the

h_nacr o/ directory.

The design is made up of two levels of hierarchy asin the following diagram:

S

» Top-level

» Hierarchical design
» Verilog format

» #parasitics = 417
» #coup. cap. = 116

A

» 4-bit PG adder

» Transistor-level
design

» Spice format

» #transistors = 106
» #parasitics = 1756
» #coup. cap. = 288

p R—

» 4-bit CPU core » 4-bit 128-word Memory
» Transistor-level design » Abstracted Timing Model
» Spice format » LIB format

» #transistors = 4792
» #parasitics = 106276
» #coup. cap. = 16315

The two low-level blocks adder and cpu2901 are full-custom blocks (analyzed in the preceding
examples), designed at transistor-level, and extracted as flat transistor net-lists with parasitics

(including coupling capacitances).

The ram4x128 is an abstracted model of a 128-4bit-word memory.

Thetop-level instantiates these three blocks, and is back-annotated with parasitics (including coupling

capacitances).

66

HITAS Tutorial

11.2. Database Generation

11.2.1. Global Configuration

The complete configuration required for the database generation takes placeinthedb. t cl . The script
also launches the commands that effectively generate that database.

avt _config avtLibraryDirs ".:../lab3_adder:../lab6_cpu"
tells the tool where to find timing databases for the lower levels of hierarchy.

avt _config avtVddNanme vdd
tells the tool which signal must be considered as a power supply, necessary as netlist
is not spice.

avt _config avtVssNanme vss
idem for ground signal identification.

avt _config tasHi erarchical Mbde yes
tells the tool to work hierarchically.

avt _LoadFile ./ramix128.1ib Iib
|oad the abstracted block ram4x128.lib

avt _LoadFile top.v verilog
load the Verilog netlist of top

avt _LoadFil e top. spef spef
load the parasitics back-annotation in SPEF format
11.2.2. Database Generation

The generation launch is done through the command hitas:

set fig [hitas top]

11.3. Database Analysis

11.3.1. Path Searching with the Tcl Interface

The complete configuration required for the database browsing takes placein ther eport. tcl .
The command:
set fig [ttv_LoadSpecifiedTi m ngFi gure top]

reads the timing database from disk.
The command:

67

HITAS Tutorial

set clist [ttv_GetPaths $fig * * uu 5 critic path max]

givesthe 5 critical paths of the design.
The command:

ttv_DisplayPat hLi st Detail stdout $cli st

displays on the standard output the detail of all the paths of the path list given by thett v_Get Pat hs
function.

11.4. Timing Checks

The complete configuration required for stability analysistakes placeinthesta. tcl .

11.4.1. Timing Constraints

Timing constraints are set in SDC format. For this example we use the same constraints specified for
the cpu2901 example.

11.4.2. STA

Launch of the static timing analysisis done by invoking the following commands:
As before, the command:

set fig [ttv_LoadSpecifiedTi nm ngFigure top]

reads the timing database from disk.
The command:

set stbfig [stb $fig]

launches the STA
The function:

stb_Di spl aySl ackReport [fopen slack.rep w] $fig * * ?? 10 all 10000

displays aglobal slack report in thefilesl ack. rep.

68

HITAS Tutorial

Chapter 12. Analog Blocks Handling

12.1. Objective

HITAS isdesigned to compute propagation delaysin digital designs. The advantage of thisrestrictive
target isto enable very fast computing times. The drawback is that non-digital block characterization
is not directly handled by HITAS and should be supplied to 3rd-party analog simulators. However,
HITAS provides various ways to link with external characterizations.

This example presents two of the simplest ways with which HITAS can deal with analog blocks. It
takes place in the bl ackbox/ directory.

12.2. Database Generation

The compl ete configuration required for the timing database generation takes placethedb. t cl script.
The temperature and power supplies are specified directly intheci rcui t. spi file.

12.3. Ignore Function

The simplest and often sufficient technique for handling analog parts of adesignisto tell HITAS to
explicitly ignore them so that they will be included in the timing database.

HITAS can ignore specified components with i nf _Def i nel gnore command. This directive can be
used to ignore transistors, instances, resistances, capacitances and diodes by specifying them by name

It is equivalent to commenting out elementsin the spice netlist
See HiTas Reference Guide for further details.
i nf _Set Fi gureNane circuit

tells the tool to apply the SDC constraints to the design.

i nf_Definel gnore resistances Rl
tellsthe tool to ignore the resistance named R1 in the design.

i nf _Definelgnore instances | NVl
tells the tool to ignore the instance inverter named INV 1 in the design.

Thefirst ignore directive isto remove what HITAS considersto be a short circuit between the power
supplies. A resistance such as this causes problems for the identification of power supply nets and
so must be handled like this.

The output logging function has been activated in the db. t cI script for file parsing statistics (see
documentation of avt LogFi | e and avt LogEnabl e in the reference guide for more details). Look at
the generated log file to see the effect of the directive.

69

HITAS Tutorial

The second directive effectively leaves a hole in the netlist, however, this poses no problem for the
timing database generation for the rest of the circuit. Try running the path report script (r eport. tcl)
both with and without this directive to see the effect. Leave this directive commented out for the next
section.

12.4. Integration in a Hierarchical Netlist

The second way of handling analog parts is the incorporation of timings from a. | i b file to model
the timing of a block (anolog or otherwise) instantiated within a hierarchical netlist. In order to use
this method it is first of all necessary to create "analog holes® in the netlist where these blocks are
instantiated. This is done with the avt _Set Bl ackBoxes function, taking as argument the list of the
sub-circuits to blackbox.

The default behavior of HITAS is not to try to fill the "holes'. To tell the tool to fill the holes with
timing characterizations, the t asBl ackboxRequi r esTi ni ngs variable is set to yes in the db. t cl
script.

The timing information for these "holes" must be provided from an external timing database, thisis
typically done by loading an appropriate. | i b file.

In this example, wewill be using an external . 1'i b to represent the timings for the flip-flop. Although
thisis not really an analog circuit, the procedure would be the same for an analog block and a flip-
flop is asimple example containing setup, hold and access arcs.

To try this, you should recreate the timing database with the following lines in the appropriate script:

avt _Set Bl ackBoxes {nsdp2_y}
avt _confi g tasBl ackboxRequiresTi mi ngs yes

avt_LoadFile ./msdp2_y.lib Iib
The timing arcs for the instances nsdp2_y are directly integrated in the new database. The database
for ci rcui t isflat and does not contain instances of msdp2_y.

Examine the timing database using the path report script and compare with the path reports obtained
without "blackboxing" of the flip-flops.

70

HITAS Tutorial

Chapter 13. SSTA

13.1. Principles

HITAS SSTA isaMonte-Carlo like analysis: it is based on a collection of STA samples. Each STA
sample is based upon the creation of a timing database sample, constructed by picking up random
values for the statistical parameters embedded in either the SPICE netlist or the technology files.
An SSTA sample consists therefore of a timing database and a STA run. In the end, there are as
many different timing databases and STA runs as SSTA samples. STA runs are of course highly
configurable, in order to extract any relevant information.

13.2. Analysis on the ADDACCU

This example features 2 analysis: A SSTA analysis and the PATH analysis. In the SSTA analysis,
slacks are computed, sorted and displayed in an efficient way. In the PATH analysis, particular paths
are retrieved and their variations are displayed. For each of those analyses, 50 runs are performed on
the ADDACCU design.

13.2.1. Generating the data for the SSTA analysis

The script to generate the SSTA data is no different from a standard STA script except for 2 TCL
instructions inserted at the beginning and at the end of the script. The script used to generate those
dataisnamedssta.tcl.

Thefirst instruction is responsible for the handling of the 50 runs:
runStat Hi Tas 50 -increnmental -result slacks.ssta -storedir store

In case the configuration variable avt Li brar yDi r s is used, thisinstruction must be placed after the
configuration because modifications are applied to this configuration variable to get proper search
paths.

Caling runstatHi Tas will launch 50 separate runs of the ssta.tcl script one by one
(multiprocessing is not used in the tutorial). Each run will have its data written into the file
sl acks. sst a and the required information to display the slack details will be stored in the directory
store.

Using the option - st or edi r is not mandatory but if it is not used, only the slack summaries will be
available.

The-i ncrenment al flagisset to enrich any previous execution of the SSTA database so 50 more runs
will be added to any existing set of runs.

The second instruction is responsible for the handling of STA data:

ssta_Sl ackReport -senddata $stbfig sinple

71

HITAS Tutorial

ssta_Sl ackReport iscalled after thest b API execution. The stability figure and a slack data output
mode is given to the function. The only mode available at the moment is si npl e. Called in this
form, it retrieves at most the 10000 worst negative slacks from the stability figure. If no negative
slacks are found, the worst positive oneis searched. The slack descriptions are then written to thefile
sl acks. sst a for afuture use.

13.2.2. Reporting the results for SSTA analysis

Thescript sl ack_anal ysi s. t cl readsthesl acks. sst a fileand usesthe datain the directory st or e
to display some resullts.

Slack occurrence

Thefirst kind of result output is generated using the command:
ssta_Sl ackReport -display "slacks.ssta" $ofile -storedir store

Thereport isdriven to thefile sl ack_report. | og.

At the beginning of the report, yield information is printed: the total number of runs, the number of
runswith negative holds, the number of runswith negative setups, the number of runswith PVT errors
and the global yield.

In a second part, each negative dack is printed with the number of occurrence the of slack, the run
number where the slack is the worst, some statistical information and the slack description. As the
st or e directory isgiven as an argument to the function, the detail of each negative slack is displayed
after this summary.

Finaly, at the end, alist with the different seeds used to generate each run database is displayed.
Worst slack distributions

The second kind of result is output in a set of file through a gnuplot graphical file representation by
using the command:

ssta_Sl ackReport -plot "slacks.ssta" "distrib"

di stri b isaprefix that will be used to generate the gnuplot files. There are 2 plots. 1 for the setups
slacks and 1 for the holds slacks.

The gnuplot command file will be named distrib. holds.plt and distrib.setups.plt. The
corresponding datafilesaredi stri b. hol ds. pl t. dat anddi strib. hol ds. pl t. dat .

The distributions can be viewed using the UNIX command:

gnupl ot <comand fil e>

72

HITAS Tutorial

13.2.3. Generating the data for the PATH analysis

The script to generate the PATH data is very easy. In this case there is no need for stability to be
performed. The only operation to be done is to retrieve the list of desired paths to analyse. In this
example al paths and accesses will be taken. As for the SSTA data generation, 2 TCL instructions
are inserted at the beginning and at the end of the script. In between, the UTD is built and the path
search is performed. The script used to generate those datais named pat hs. t cl .

Thefirst instruction is responsible for the handling of the 50 runs:
runStatHi Tas 50 -incremental -result paths.ssta -storedir store_paths

The instruction is placed after the configuration variable avt Li braryDirs

After the UTD generation, the list of accesses and paths are extracted from the UTD and merged
together:

set paths [concat [ttv_GetPaths $fig -access] [ttv_GetPaths $fig]]
Thelast instruction is responsible for the handling of PATH data:

ssta_Pat hReport -senddata $paths sinple

sst a_Pat hReport iscalled with the path list and a path data output mode. The only mode available
at the moment issi npl e. The path descriptions are written into the file pat hs. sst a for afuture use.

13.2.4. Reporting the results for SSTA analysis

The script pat h_anal ysis.tcl reads the paths. ssta file and uses the data in the directory
st or e_pat hs to display some results.

The path result report is generated using the command:

ssta_Pat hReport -display "paths.ssta" $ofile -storedir store_paths

Thereport isdriven to thefile pat h_report. | og.

A summary of all paths/accesses is printed at the beginning of the report. Each path has an entry in
the summary with some statistical information, the minimum delay of the path and the corresponding
run number, the maximum delay and the corresponding run number and finally the path description.

As the st ore_pat hs directory is given as an argument to the function, the detail of each path is
displayed after this summary. There are 2 detailsfor each path: the detail for the minimum path value
and the detail for the maximum path value.

Finaly, at the end, alist with the different seeds used to generate each run database is displayed.

73

HITAS Tutorial

| ndex

No index for this document.

74

	1. Overview
	2. Static Timing Analysis
	2.1. Timing Analysis Theory
	2.1.1. Timing Analysis Goals
	2.1.2. Timing Analysis in the Design Flow

	2.2. Definitions
	2.2.1. Delay Modeling
	Signal Propagation through a Simple Inverter
	Signal Propagation through an RC Network

	2.2.2. Slope Modeling
	2.2.3. Delay Dependancies

	2.3. Delay Calculation
	2.3.1. Electrical Simulation
	Simple Gates
	Complex Designs
	Limitations

	2.3.2. Static Timing Analysis
	STA Basics
	Graph Modeling

	2.3.3. Gate Characterization Methodology

	2.4. Timing Analysis
	2.4.1. What Needs to be Checked?
	2.4.2. The Behavior of Sequential Elements
	Latch
	Flip-Flop
	Dynamic Logic

	2.4.3. Sequential Design Analysis
	Maximum Operating Frequency in Flip-Flop Based Designs
	Skew Impact Analysis

	2.4.4. Global Characterization
	Global Setup and Hold Times
	Access Time

	3. Introduction to Programming with Tcl
	3.1. Introduction to Tcl
	3.2. Tcl Programming Basics
	3.2.1. Variables and Variable Substitution
	3.2.2. Expressions
	3.2.3. Command Substitution
	3.2.4. Control Flow
	3.2.5. Procedures
	3.2.6. Lists
	3.2.7. Arrays
	3.2.8. Strings
	3.2.9. Input/Output
	3.2.10. Other Miscellaneous Tcl Commands

	4. Examples
	5. Inverter
	5.1. Design Description
	5.2. Database Generation
	5.2.1. Principles
	5.2.2. Global Configuration
	5.2.3. Technology Integration
	5.2.4. Database Generation

	5.3. Database Analysis
	5.3.1. Database overview
	5.3.2. Database properties

	6. Inverter Chain
	6.1. Design Description
	6.2. Database properties
	6.3. Path Reports

	7. Adder
	7.1. Database Generation
	7.1.1. Global Configuration
	7.1.2. Database Generation

	7.2. Path Searching with the Tcl Interface
	7.3. Exercises
	7.4. Solutions

	8. Master-Slave Flip-Flop
	8.1. Timing Checks
	8.1.1. Principles
	8.1.2. STA with Tcl Interface
	Timing Constraints
	Static Timing Analysis

	8.2. Timing Checks
	8.2.1. Input to Latch
	Inputs Specifications
	Timing Checks Description
	Setup Slack
	Hold Slack

	8.2.2. Latch to Latch
	Timing Checks Description
	Setup Slack
	Hold Slack

	8.2.3. Latch to Output
	Output Constraints
	Setup Slack
	Hold Slack

	9. Addaccu
	9.1. Design Description
	9.2. Construction of the Timing Database
	9.3. Timing Paths Identification
	9.4. Timing Paths Validation by SPICE simulation
	9.5. Timing Characterization (.lib)
	9.6. Timing Characterization (.lib) by SPICE simulation

	10. CPU2901
	10.1. Design Description
	10.2. Database Generation
	10.2.1. Global Configuration
	10.2.2. Database Generation

	10.3. Database Analysis
	10.3.1. Path Searching with the Tcl Interface

	10.4. Timing Checks
	10.4.1. Timing Constraints
	10.4.2. STA
	10.4.3. OCV
	10.4.4. Crosstalk Analysis

	11. Hierarchical Analysis
	11.1. Design Description
	11.2. Database Generation
	11.2.1. Global Configuration
	11.2.2. Database Generation

	11.3. Database Analysis
	11.3.1. Path Searching with the Tcl Interface

	11.4. Timing Checks
	11.4.1. Timing Constraints
	11.4.2. STA

	12. Analog Blocks Handling
	12.1. Objective
	12.2. Database Generation
	12.3. Ignore Function
	12.4. Integration in a Hierarchical Netlist

	13. SSTA
	13.1. Principles
	13.2. Analysis on the ADDACCU
	13.2.1. Generating the data for the SSTA analysis
	13.2.2. Reporting the results for SSTA analysis
	Slack occurrence
	Worst slack distributions

	13.2.3. Generating the data for the PATH analysis
	13.2.4. Reporting the results for SSTA analysis

