
Avertec Tools

HITAS
Tutorial

Software Release 3.4p5

June 7th, 2010

Avertec Copyright (c) 1998-2006 All Rights Reserved

HITAS Tutorial

1

About this Document

This document explains how to perform:

• STA at Transistor Level with HITAS

• Timing Characterization (.lib)

• Clock Handling

• Analog Blocks Handling

Documentation issued and compliant with Avertec Tools Release 3.4p5.

Please contact support@avertec.com for comments relating to this manual.

HITAS Tutorial

2

Table of Contents

1. Overview ... 5
2. Static Timing Analysis ... 6
2.1. Timing Analysis Theory .. 6
2.1.1. Timing Analysis Goals .. 6
2.1.2. Timing Analysis in the Design Flow .. 6
2.2. Definitions ... 6
2.2.1. Delay Modeling ... 7
Signal Propagation through a Simple Inverter .. 7
Signal Propagation through an RC Network ... 8
2.2.2. Slope Modeling ... 8
2.2.3. Delay Dependancies ... 9
2.3. Delay Calculation ... 10
2.3.1. Electrical Simulation .. 10
Simple Gates ... 10
Complex Designs .. 10
Limitations .. 11
2.3.2. Static Timing Analysis ... 11
STA Basics .. 11
Graph Modeling ... 12
2.3.3. Gate Characterization Methodology .. 15
2.4. Timing Analysis .. 16
2.4.1. What Needs to be Checked? .. 16
2.4.2. The Behavior of Sequential Elements ... 17
Latch .. 17
Flip-Flop ... 18
Dynamic Logic ... 19
2.4.3. Sequential Design Analysis ... 20
Maximum Operating Frequency in Flip-Flop Based Designs 20
Skew Impact Analysis ... 21
2.4.4. Global Characterization ... 23
Global Setup and Hold Times ... 23
Access Time .. 24
3. Introduction to Programming with Tcl ... 26
3.1. Introduction to Tcl .. 26
3.2. Tcl Programming Basics .. 26
3.2.1. Variables and Variable Substitution .. 27
3.2.2. Expressions ... 28
3.2.3. Command Substitution .. 28
3.2.4. Control Flow .. 29
3.2.5. Procedures .. 32

HITAS Tutorial

3

3.2.6. Lists ... 34
3.2.7. Arrays .. 35
3.2.8. Strings ... 37
3.2.9. Input/Output ... 37
3.2.10. Other Miscellaneous Tcl Commands .. 39
4. Examples ... 41
5. Inverter .. 42
5.1. Design Description ... 42
5.2. Database Generation ... 42
5.2.1. Principles ... 42
5.2.2. Global Configuration ... 42
5.2.3. Technology Integration .. 43
5.2.4. Database Generation .. 43
5.3. Database Analysis ... 43
5.3.1. Database overview .. 43
5.3.2. Database properties .. 44
6. Inverter Chain ... 44
6.1. Design Description ... 44
6.2. Database properties ... 44
6.3. Path Reports .. 44
7. Adder ... 46
7.1. Database Generation ... 46
7.1.1. Global Configuration ... 46
7.1.2. Database Generation .. 46
7.2. Path Searching with the Tcl Interface .. 46
7.3. Exercises .. 47
7.4. Solutions ... 47
8. Master-Slave Flip-Flop .. 49
8.1. Timing Checks ... 49
8.1.1. Principles ... 49
8.1.2. STA with Tcl Interface ... 49
Timing Constraints .. 49
Static Timing Analysis ... 50
8.2. Timing Checks ... 50
8.2.1. Input to Latch .. 51
Inputs Specifications ... 51
Timing Checks Description .. 51
Setup Slack ... 52
Hold Slack ... 52
8.2.2. Latch to Latch ... 53
Timing Checks Description .. 53
Setup Slack ... 53
Hold Slack ... 54
8.2.3. Latch to Output ... 54
Output Constraints .. 54
Setup Slack ... 55

HITAS Tutorial

4

Hold Slack ... 56
9. Addaccu .. 57
9.1. Design Description ... 57
9.2. Construction of the Timing Database ... 58
9.3. Timing Paths Identification ... 58
9.4. Timing Paths Validation by SPICE simulation .. 60
9.5. Timing Characterization (.lib) ... 61
9.6. Timing Characterization (.lib) by SPICE simulation .. 61
10. CPU2901 ... 62
10.1. Design Description ... 62
10.2. Database Generation ... 63
10.2.1. Global Configuration .. 63
10.2.2. Database Generation .. 63
10.3. Database Analysis ... 63
10.3.1. Path Searching with the Tcl Interface ... 63
10.4. Timing Checks ... 64
10.4.1. Timing Constraints .. 64
10.4.2. STA ... 64
10.4.3. OCV ... 65
10.4.4. Crosstalk Analysis ... 65
11. Hierarchical Analysis ... 66
11.1. Design Description ... 66
11.2. Database Generation ... 67
11.2.1. Global Configuration .. 67
11.2.2. Database Generation .. 67
11.3. Database Analysis ... 67
11.3.1. Path Searching with the Tcl Interface ... 67
11.4. Timing Checks ... 68
11.4.1. Timing Constraints .. 68
11.4.2. STA ... 68
12. Analog Blocks Handling .. 69
12.1. Objective .. 69
12.2. Database Generation ... 69
12.3. Ignore Function .. 69
12.4. Integration in a Hierarchical Netlist .. 70
13. SSTA ... 71
13.1. Principles .. 71
13.2. Analysis on the ADDACCU .. 71
13.2.1. Generating the data for the SSTA analysis ... 71
13.2.2. Reporting the results for SSTA analysis ... 72
Slack occurrence ... 72
Worst slack distributions ... 72
13.2.3. Generating the data for the PATH analysis .. 73
13.2.4. Reporting the results for SSTA analysis ... 73
Index .. 74

HITAS Tutorial

5

Chapter 1. Overview

This tutorial describes the use of HITAS Static Timing Analysis and Signal Integrity Analysis
platform. The main purpose of this tutorial is to show the ability of the HiTAS platform to analyze
designs at transistor level.

This tutorial explains how to set-up a complete Timing and SI verification flow for each component
of the design, and then for the top-level. The verification flow includes the following steps:

• Build a homogeneous database for each component

• Perform a first analysis of timing paths

• Integrate interface constraints

• Perform Timing Constraint checks (setup/hold)

• Perform a SI analysis

The verification process is detailed in the following diagram:

HITAS Tutorial

6

Chapter 2. Static Timing Analysis

2.1. Timing Analysis Theory

2.1.1. Timing Analysis Goals

The Timing analysis should answer the following questions:

• Does the chip work? With which external timing contraints?

• What are the hold margins?

• What are the sensible paths?

• What is the sensitivity to process variations?

• What is the sensitivity to operating variations (voltage, temperature)?

• What is the chip operating frequency?

• How to improve the design in order to reach the specs

In a top-down approach, Timing Analysis is used for verification purposes. Timing Analysis must
say, given the direct environment of the chip (i.e. timing constraints on the interface), if the chip will
be able to work properly.

In a bottom-up approach, Timing Analysis is used for characterization purposes.

2.1.2. Timing Analysis in the Design Flow

As timing performance of a chip under design is one of the main concerns facing designers, it must
be controlled and refined at each stage of the design flow.

In a classical top-down methodology, timing constraints are set at system-level, and synthesis and
PR tools are timing-driven. A first Timing Analysis run is done after synthesis, and then after
floorplanning and placement. In those cases delays are only estimated, not taking into account the
parasistics induced by global routing.

The final sign-off Timing Analysis and characterization is done after global routing, on a netlist back-
annotated with extracted parasitics (a post-layout netlist).

Since synthesis and PR tools are timing-driven, timing characterizations of the building blocks are
also now needed. Those building blocks are sometimes large third-party IPs, with fixed timing
characterizations. In such cases, timing constraints are also set by those blocks, and the methodology
aquires bottom-up aspects.

2.2. Definitions

HITAS Tutorial

7

2.2.1. Delay Modeling

Signal Propagation through a Simple Inverter

Signal Transition A transition is a change in the state of a signal. A rising
transition occurs when the signal's voltage swings from a
low level to a high level (from 0V to VMAX). A falling
transistion occurs when the signal's voltage goes from a
high level to a low level (from VMAX to 0V). In Avertec
methodology, a signal transition is also refered to as a timing
event

Threshold The delay threshold is the voltage ratio where a signal is
considered as having changed state. Typically, this ratio is
50%. The threshold is also the measurement point for delay
calculation.

Delay A delay is defined between two signal's transitions, having a
causality relation (the first transition implying the second).
The value of a delay is the elapsed time between the instant
of the first signal's transition crossing the threshold and
the instant of the second signal's transition crossing the
threshold. As a result of this definition, it is possible to have
negative delays (especially with a long input slope)

HITAS Tutorial

8

Signal Propagation through an RC Network

Delays can be measured either on the direct output of the gate, or on any node of the RC interconnect
network. Signal propagation through the RC interconnect network causes additionnal delay.

2.2.2. Slope Modeling

The transition of a signal is modeled by its slope:

Slope A slope is defined between two thresholds: a high threshold
(VTH HIGH) and a low threshold (VTH LOW). The value
of the slope is the elapsed time between the instant of the

HITAS Tutorial

9

signal's transition crossing VTH LOW (VTH HIGH) and the
instant of the signal's transition crossing VTH HIGH (VTH
LOW).

Typically, VTH LOW varies from 5% to 40% of VMAX, and VTH HIGH varies from 60% to 95% of
VMAX. A single value defined between two thresholds is a very reductive way to model slopes, as it
gives no information about the shape of the slope. The most basic approach is to assume that the slope
is linear. In Avertec methodology, the shape of the slope is assumed to be an hyperbolic tangent.

2.2.3. Delay Dependancies

The delays and slopes of a given gate depend on three different kinds of factors:

• Internal factors: the implementation of the gate itself. For example, an inverter can be
designed in many ways.

• Local external factors: the immediate environment of the gate.

• Global external factors: the environment of the chip.

• Below 90nm: local internal factors: effective length, stress effect, proximity effects.

Internal Factors • Gate design, transistor sizes

• Transistor models (MOS9, BSIM3, BSIM4, ...)

• Foundry, technology size (0.13microns,
0.09microns ...)

Global External Factors • Process: best, worst, nominal

• Voltage: global chip power supply

• Temperature

Local External Factors • Input Slope

• Output Load (RC network and fanout)

HITAS Tutorial

10

2.3. Delay Calculation

2.3.1. Electrical Simulation

Simple Gates

When dealing with simple gates, delays are most often calculated by electrical simulation (SPICE
simulation). The operating mode for calculating delays characterizing a gate is as follow:

• For each input of the gate: Identify (from the gate's truth table) the causality relations between
possible transitions on the input and possible transitions on the output.

• For each identified relation: Set the pattern (the states of other inputs) that condition this
relation.

• Simulate the design

• Measure the delay associated with the causality relation, i.e. the delay between the input
transition and the resulting output transition. The measurement is performed as explained in
the preceding section.

As an example, let's consider the following gate, and its associated truth table:

The four identified causality relations and associated delays are reported below. The state of the other
input that conditions the causality relation is given between brackets.

delay0: I0 rising -> 0 falling (I1 = 0)
delay1: I0 falling -> 0 rising (I1 = 0)
delay2: I1 rising -> 0 falling (I0 = 0)
deIay3: 1 falling -> 0 rising (I0 = 0)

Four successive electrical simulations are then necessary to completely characterize the gate.

Complex Designs

The same kind of delay calculations can be done on more complex designs. For example, let consider
the following design.

HITAS Tutorial

11

We can deduce from the connectivity of the gates, and from their truth tables, causality relations
between the transitions on inputs A, B, C, D and the transitions on the output I. All the possible
causality relations, and the delay associated with each, are given below. The pattern conditioning each
relation is given between brackets.

delay0: A rising -> I rising (B = 0, C = 0, D = 1)
delay1: A falling -> I falling (B = 0, C = 0, D = 1)
delay2: B rising -> I rising (A = 0, C = 0, D = 1)
delay3: B falling -> I falling (A = 0, C = 0, D = 1)
delay4: C rising -> I rising (A = 0, B = 0, D = 1)
delay5: C falling -> I falling (A = 0, B = 0, D = 1)
delay6: D rising -> I falling (A = 0, B = 0, C = 0)
delay7: D falling -> I rising (A = 0, B = 0, C = 0)

See below an illustration of the calculation of delay0 between A rising and H rising. A rising implies
E falling if B = 0, which sets the value of input B. E falling implies G rising, which in turn implies
I falling if H = 0. H = 0 if F = 1 and D = 1, which sets the value of input D. F = 1 if C = 0, which
sets the value of input C.

The pattern conditioning A rising -> I rising is then B = 0, C = 0 and D = 1.

Limitations

Though being quite simple, the above circuit has necessited eight simulations of the full design to
completely characterize it.

Actually, for a design of n inputs and m outputs, there may exist up to 2n x 2m causality relations
between input and output transistions. This can lead to a maximum of 2n x 2m electrical simulations
to calculate all the delays associated with those relations, i.e. to characterize the design.

Furthermore, a causality relation is not easy to identify, and the setting of the pattern conditioning
it is a very complex task.

Apart of very regular designs, such as memories, where causality relations are quite simple to
establish, and where simulation can be aggressively optimized, these severe drawbacks render
electrical simulation impossible to apply on designs exceeding a thousand transistors.

2.3.2. Static Timing Analysis

STA Basics

Static Timing Analysis has arisen from two constatations.

HITAS Tutorial

12

The first constatation was that, causality being a transitive relation, a global causality relation (from
an input pin to an output pin) could be discomposed into elementary (gate) causality relations. If we
take the example above, the causality relation A rising -> I rising can be decomposed into A
rising -> E falling -> G rising -> I rising. A typical timing representation of such a
causality relation is given by a timing diagram, as illustrated below.

The second constatation was that, as a first approximation, delays associated with elementary causality
relations could be added to get the delay of the global causality relation. From this statement we can
see that it is possible to calculate (by electrical simulation) the delays associated with a gate only once,
and thus achieve significant gains in calculation complexity: the delay of a global causality relation
can be calculated by just adding elementary delays.

This statement supposes that delays are independent of their local environment. We have already seen
that this is not really the case, and so this leads to some inaccuracy in the delay calculation. We will
now see how to refine the delay modelization to attain a accuracy near the one obtained by electrical
simulation.

Graph Modeling

The previous constatations allow us to model designs using weighted graphs, where an edge is a
signal transition, and an arc is a causality relation. The arcs are weighted by the delay of the causality
relation. The graph of a simple gate (a nor) has the following appearance:

HITAS Tutorial

13

The graph of a gate-level design such as the one below is made by the connexion of the gates' graphs.

Thus, the graph of the design described above has the following appearance:

HITAS Tutorial

14

This graph is known as a causality graph. A global causality relation is represented here by what is
called a path in graph theory terminology.

A graph representation allows us to apply well-known efficient algorithms, such as path searching. In
a quite straightforward manner (compexity O(n)), by just following the arcs, we can identify all the
timing paths of the design (the eight global causality relations described above).

HITAS Tutorial

15

2.3.3. Gate Characterization Methodology

As stated in chapter 1.2.3, gate delays depend on internal factors, global external factors and local
external factors. Until 90nm, internal factors don't change for a given chip, and global external factors
don't change for a given timing analysis run. The only variable factors are the local external factors,
i.e. the input slope and the output load of the gate.

When calculating paths delays, we sum gate delays. As a first approximation, a gate delay can be
modeled by a simple value. Experience has showed that this is very unrealistic, since the local external
factors can vary a lot from one instance of a gate to another. This has led to a more wide-ranging
approach to gate characterization: gate delays are given for a set of input slopes and a set of output
loads.

The most common way to describe this set of delay is a lookup table. A common lookup table is a
2D matrix, having for axes the input load and the output capacitance. The following figure illustrates
a typical lookup-table.

Lookup table characterizations are most often provided with the gate-library itself. Since they are
given for a limited range of PVT, it is often necessary to re-characterize them.

In 90nm and below, other factors may also change: local power supply due to IR-drop, instance
dependant parameters (stress effect, proximity effect). This limits the acccuracy a lookup-table based
characterization.

HITAS Tutorial

16

2.4. Timing Analysis

2.4.1. What Needs to be Checked?

In terms of timing, designs are made of combinational elements, and of sequential (clocked) elements.

What we called combinational elements are elements (logic gates) that just propagate signals,
independantly to any clock.

Sequential elements are clocked elements. In most cases, they have a memorizing behavior controlled
by clock signals (latches, flip-flops). In order to operate correctly, these elements must respect timing
constraints (typically the setting of the data to memorize relative to the clock signals).

A kind of clocked element is the dynamic logic stage (precharged logic). It must also respect timing
constraints.

The main purpose of the timing analysis process is:

• To verify that the design is implemented in such a way that timing constraints are met on
the inner sequential elements.

• To compute the maximum frequencies of the clock signals that still allow the design to
operate correctly.

• To compute constraints on the input pins, that if respected, allow the design to work in any
environment (CPU, SoC, Board).

HITAS Tutorial

17

In the following sections, we will first study the timing behavior of sequential elements such as latches,
flip-flops and dynamic logic gates.

We will then discuss the constraints sequential elements set on the interface of the design (setup and
hold times, access times, frequency)

Then we will study how to integrate those elements in such a way that the design can operate correctly.

2.4.2. The Behavior of Sequential Elements

Latch

Below is the schematic of a simple latch:

The following timing diagram describes the timing behavior of the latch.

When CK is high, the latch is said to be in transparant mode, i.e. the value on the input DIN is
observable on the output DOUT, after the delay Ttransparent, also refered to as transparancy.

When CK goes from high to low (the latch closes), the value of DIN is memorized in the latch. DIN
must be stable at the time CK falls. Actually, to ensure the stabilization of the memory loop, DIN
must not only be stable at the time CK falls, but also for a certain amount of time before CK falls,
and for a certain amount of time after CK falls. These times are refered to as setup time and hold
time respectively.

When CK is low, the latch is said to be in memorizing mode. The value observable on DOUT is the
value memorized when the latch is closed.

HITAS Tutorial

18

When CK goes from low to high, the latch comes back in transparent mode, and a new value on the
input DIN becomes observable on the output DOUT after the delay taccess, also refered to as access
time.

A latch is characterized by four intrinsic values: the transparency, setup, hold and access times.

Flip-Flop

A typical flip-flop is made of two latches in series, where the clocks are inverted.

The following timing diagram describes the timing behavior of the flip-flop.

When CK is high (transp1):

• the first latch is transparent. The value on DIN propagates until M.

• the second latch is memorizing (closed)

When CK goes from high to low (transp1 -> memo1):

• the first latch closes, and the value on DIN is memorized.

• the second latch opens (becomes transparent). The value on M (the memorized value)
becomes observable on DOUT after the delay taccess (the time taken to traverse the second
latch).

HITAS Tutorial

19

When CK is low (memo1):

• the first latch is memorizing, and the value on M does not change

• the second is transparent, the value observable on DOUT is still the value on M.

When CK goes from low to high (memo1 -> transp2):

• the first latch becomes transparent, and a new value becomes observable on M

• the second latch must close before the value on M changes, i.e. tCK->CK' must be smaller
than tDIN->M' ,otherwise the new value is memorized in the second latch.

Dynamic Logic

Below is a typical implementation of Dynamic CMOS logic (precharge-evaluate logic).

During the precharge phase, the output node of the dynamic CMOS stage is precharged to a high logic
level. When the clock signal rises at the beginning of the evaluation phase, there are two possibilities:
the output node of the dynamic CMOS stage is either discharged to a low level through the NMOS
circuitry (falling transition), or it remains high. Regardless of the input voltages applied to the dynamic
CMOS stage, it is not possible for the output node to make a rising transition during the evaluation
phase. Consequently, the input configuration must have been set before the evaluation phase and
must remain stable during it, otherwise an unwanted conducting path may appear through the NMOS
circuitry, leading to an erroneous low-level state of the output node.

HITAS Tutorial

20

2.4.3. Sequential Design Analysis

Maximum Operating Frequency in Flip-Flop Based Designs

Let's consider the following design made up of two flip-flops:

The following timing diagram illustrates the correct operating mode of the design: the value v2 stored
in FF0 becomes accessible on B on the first falling edge of CK, then v2 propagates through the
combinational block, finally v2 is stored by FF1 on the second falling edge of CK.

The design operates correctly because period - tsetup(FF1) > taccess(FF0) + tcomb.
Otherwise, as illustrated in the timing diagram below, if period - tsetup(FF0) < taccess(FF1) +
tcomb, the second falling edge of CK occurs before the value v2 stored in FF0 has propagated through
the combinational block. The value stored by FF1 is v1, the value stored by FF0 in the preceding phase.

HITAS Tutorial

21

From these observations, we can deduce that there exists a minimum period (and a maximum
frequency) allowing the design to operate correctly.

Skew Impact Analysis

Synchronous designs are based upon the communication between memory elements, such as latches
or flip-flops, this communication being controlled by the clock signal. Therefore, a single clock signal
is connected to an important number of memory elements in the design, and it is very difficult to ensure
that the clock signal will propagate homogenously (with the same delay) towards every memory
element, even by inserting clock-tree bufferization. This phenomena is known as clock skew. The
following diagram presents asymmetric clock buffering, leading to skew between the two flip-flops.

The communication between the two flip-flops, taking into account the skew, is illustrated in the
following timing diagram.

if taccess + tcomb > skew, the design will operate correctly.

HITAS Tutorial

22

Otherwise, if taccess + tcomb < skew, the design will not work. Note that this timing error is
independent of the period.

HITAS Tutorial

23

2.4.4. Global Characterization

Global Setup and Hold Times

When a flip-flop input is directly connected to an input pin, or is connected through a combinational
path to an input pin, the respect of setup/hold constraints depends on the stability window of the input
signal itself, and on the propagation delays of the input and clock signals towards the flip-flop.

The input signal's stability window may occur too soon or too late, relative to the clock signal, to
ensure the respect of the setup/hold constraints of the flip-flop.

The final purpose of any design being its integration into a higher-level design, it is therefore necessary
to provide information on the constraints that apply on the input pins of the design, i.e. in which timing
windows input signals must be stable to ensure the respect of internal sequential elements. It is then
possible to make the higher-level design in such a way that the stability windows are correctly set on
the inputs of the design it integrates.

The constraints are obtained by calculating global setup and hold times.

Let's consider the following design, where I and CK are input pins.

The diagram below illustrates the calculation of global setup/hold times.

HITAS Tutorial

24

global_setup = setup + tcomb_I - tcomb_CK
global_hold = hold + tcomb_CK - tcomb_I

Access Time

Another useful information is the access time, which tells the designer when the data on an output pin
is available, relative to a clock edge. In the following design, O is an output pin.

The global access time is illustrated in the timing diagram below.

HITAS Tutorial

25

global_access = tcomb_CK + access + tcomb_O

HITAS Tutorial

26

Chapter 3. Introduction to
Programming with Tcl

By Shyam Pather

Information and Telecommunication Technology Center, University of Kansas

3.1. Introduction to Tcl

Tcl was originally intended to be a reusable command language. Its developers had been creating
a number of interactive tools, each requiring its own command language. Since they were more
interested in the tools themselves than the command languages they would employ, these command
languages were constructed quickly, without regard to proper design.

After implementing several such "quick-and-dirty" command languages and experiencing problems
with each one, they decided to concentrate on implementing a general-purpose, robust command
language that could easily be integrated into new applications. Thus Tcl (Tool Command Language)
was born. Since that time, Tcl has been widely used as a scripting language. In most cases, Tcl is
used in combination with the Tk ("Tool Kit") library, a set of commands and procedures that make it
relatively easy to program graphical user interfaces in Tcl.

One of Tcl's most useful features is its extensibility. If an application requires some functionality not
offered by standard Tcl, new Tcl commands can be implemented using the C language, and integrated
fairly easily. Since Tcl is so easy to extend, many people have written extension packages for some
common tasks, and made these freely available on the internet. (For more information, see the Tcl/
Tk Information page).

3.2. Tcl Programming Basics

The main difference between Tcl and languages such as C, is that Tcl is an interpreted rather than a
compiled language. Tcl programs are simply scripts consisting of Tcl commands that are processed
by a Tcl interpreter at run time. One advantage that this offers is that Tcl programs can themselves
generate Tcl scripts that can be evaluated at a later time. This can be useful, for example, when creating
a graphical user interface with a command button that needs to perform different actions at different
times.

The next several sections descibe the essential elements of Tcl programs. Each section is accompanied
by a series of examples, and a sample Tcl interpreter that you can be use to try out the examples
yourself.

HITAS Tutorial

27

3.2.1. Variables and Variable Substitution

Variables in Tcl, as in most other languages, can be thought of as boxes in which various kinds of
data can be stored. These boxes, or variables, are given names, which are then used to access the
values stored in them.

Unlike C, Tcl does not require that variables be declared before they are used. Tcl variables are simply
created when they are first assigned values, using the set command. Although they do not have to be
deleted, Tcl variables can be deleted using the unset command.

The value stored in a variable can be accessed by prefacing the name of the variable with a dollar sign
("$"). This is known as variable substitution, and is illustrated in the examples below.

Tcl is an example of a "weakly typed" language. This simply means that almost any type of data can
be stored in any variable. For example, the same variable can be used to store a number, a date, a
string, or even another Tcl script.

Example 1.0:

set foo "john"
puts "Hi my name is $foo"
Output: Hi my name is john

This example illustrates the use of variable substitution. The value "john" is assigned to the variable
"foo", whose value is then substituted for "$foo". Note that variable substitution can occur within a
string. The puts command (described in a later section) is used to display the string.

Example 1.1:

set month 2
set day 3
set year 97
set date "$month:$day:$year"
puts $date
Output: 2:3:97

Here variable substitution is used in several places: The values of the variables "month", "day", and
"year" are substituted in the set command that assigns the value of the "date" variable, and the value
of the "date" variable is then substituted in the line that displays the output.

Example 1.2:

set foo "puts hi"
eval $foo
Output: hi

In this example, the variable "foo" holds another (small) Tcl script that simply prints the word "hi".
The value of the variable "foo" is subsituted into an eval command, which causes it to be evaluated
by the Tcl interpreter (the eval command will be described in greater detail in a later section).

HITAS Tutorial

28

3.2.2. Expressions

Tcl allows several types of expressions, including mathematical expressions, and relational
expressions. Tcl expressions are usually evaluated using the expr command, as illustrated in the
examples below.

Example 2.1:

expr 0 == 1
Output: 0

Example 2.2:

expr 1 == 1
Output: 1

Examples 2.1 and 2.2 illustrate the use of relational expressions with the expr command. The first
expression evaluates to 0 (false) since 0 does not equal 1, whereas the second expression evalutates to
1 (true), since, obviously, 1 does equal 1. The relational operator "==" is used to do the comparison.

Example 2.3:

expr 4 + 5
Output: 9

Example 2.3 shows how to use the expr statement to evaluate an arithmetic expression. Here the result
is simply the sum of 4 and 5. Tcl offers a rich set of arithmetic and relational operators, each of which
is described in the expr manual page.

Example 2.4:

expr sin(2)
Output: 0.909297

This example shows that the expr statement can be used to evaluate the result of a mathematical
function, in this case, the sine of an angle. Tcl offers many such mathematical functions, also described
on the expr manual page.

3.2.3. Command Substitution

Just as variable substitution is used to substitute the value of a variable into a Tcl script, command
substitution can be used to replace a Tcl command with the result it returns. Consider the following
example:

Example 3.1:

puts "I am [expr 10 * 2] years old, and my I.Q. is [expr 100 - 25]"
Output: I am 20 years old, and my I.Q. is 75

HITAS Tutorial

29

As this example shows, square brackets are used to achieve command substitution: The text between
the square brackets is evaluated as a Tcl script, and its result is then substituted in its place. In this
case, command substitution is used to place the results of two mathematical expressions into a string.
Command substitution is often used in conjunction with variable substitution, as shown in Example
3.2:

Example 3.2:

set my_height 6.0
puts "If I was 2 inches taller, I would be [expr $my_height+(2.0/12.0)] feet tall"
Output: If I was 2 inches taller, I would be 6.16667 feet tall

In this example, the value of the variable "my_height" is substituted inside the angle brackets before
the command is evaluated. This is a good illustration of Tcl's one-pass recursive parsing mechanism.
When evaluating a statement, the Tcl interpreter, makes one pass over it, and in doing so makes all
the necessary substitutions. Once this is done, the interpreter then evaluates the resulting expression.
If, during its pass over the expression, the interpreter encounters square brackets (indicating that
command substitution is to be performed), it recursively parses the script inside the square brackets
in the same manner. For more information on one-pass parsing, refer to Matt Peters' document on
the topic.

3.2.4. Control Flow

In all but the simplest scripts, some mechanism is needed to control the flow of execution. Tcl offers
decision-making constructs (if-else and switch statements) as well as looping constructs (while, for,
and foreach statements), both of which can alter the flow of execution in response to some condition.
The following examples serve to illustrate these constructs.

Example 4.1:

set my_planet "earth"
if {$my_planet == "earth"} {
 puts "I feel right at home."
} elseif {$my_planet == "venus"} {
 puts "This is not my home."
} else {
 puts "I am neither from Earth, nor from Venus."
}
set temp 95
if {$temp < 80} {
 puts "It's a little chilly."
} else {
 puts "Warm enough for me."
}
Output:
I feel right at home.
Warm enough for me.

Example 4.1 makes two uses of the if-statement. It sets the value of the variable "my_planet" to
"earth", and then uses an if-statement to choose which statement to print. The general syntax of the
if-statementis as follows:

if test1 body1 ?elseif test2 body2 elseif ...? ?else bodyn?

HITAS Tutorial

30

If the test1 expression evaluates to a true value, then body1 is executed. If not, then if there are any
elseif clauses present, their test expressions are evalutated and, if true, their bodies are executed. If
any one of the tests is made successfully, after its corresponding body is executed, the if-statement
terminates, and does not make any further comparisons. If there is an else clause present, its body is
executed if no other test succeeds.

Another decision-making construct is the switch-statement. It is a simplification of the if-statement
that is useful when one needs to take one of several actions depending on the value of a variable whose
possible values are known. This is illustrated in Example 4.2, which uses a switch statement to print
a sentence, depending on the value of a variable "num_legs".

Example 4.2:

set num_legs 4
switch $num_legs {
 2 {puts "It could be a human."}
 4 {puts "It could be a cow."}
 6 {puts "It could be an ant."}
 8 {puts "It could be a spider."}
 default {puts "It could be anything."}
}
Output:
It could be a cow.

The switch-statement has two general forms (both of which are described in detail in the manual
page), but the form used here is as follows:

switch ?options? string {pattern body ?pattern body ...?}

Basically, the string argument is compared to each of the patterns and if a comparison succeeds, the
corresponding body is executed, after which the switch statement returns. The pattern "default", if
present, is always matched, and thus its body always executed if none of the earlier comparisons
succeed.

It is often useful to execute parts of a program repeatedly, until some condition is met. In order to
facilitate this, Tcl offers three looping constructs: the while, for, and foreach statements, each of which
is shown in the examples below.

Example 4.3:

for {set i 0} {$i < 10} {incr i 1} {
 puts "In the for loop, and i == $i"
}
Output:
In the for loop, and i == 0
In the for loop, and i == 1
In the for loop, and i == 2
In the for loop, and i == 3
In the for loop, and i == 4
In the for loop, and i == 5
In the for loop, and i == 6
In the for loop, and i == 7
In the for loop, and i == 8
In the for loop, and i == 9

The general syntax for the for-loop is as follows:

HITAS Tutorial

31

for init test reinit body

The init argument is a Tcl script that initializes a looping variable. In the for-loop used in Example
4.3, the looping variable was called "i", and the init argument simply set it to 0. The test argument is
a Tcl script which will be evaluated to decide whether or not to enter the body of the for-loop. Each
time this script evaluates to a true value, the body of the loop is executed. The first time this script
evaluates to false, the loop terminates. The reinit argument specifies a script that will be called after
each time the body is executed. In Example 4.3, the reinit script increments the value of the looping
variable, "i". Thus, for-loop in this example executes its body 10 times, before its test script evaluates
to false, causing the loop to terminate.

Example 4.4:

set i 0
while {$i < 10} {
 puts "In the while loop, and i == $i"
 incr i 1
}
Output:
In the while loop, and i == 0
In the while loop, and i == 1
In the while loop, and i == 2
In the while loop, and i == 3
In the while loop, and i == 4
In the while loop, and i == 5
In the while loop, and i == 6
In the while loop, and i == 7
In the while loop, and i == 8
In the while loop, and i == 9

Example 4.4 illustrates the use of a while-loop, the general syntax of which follows the form:

while test body

The basic concept behind the while-loop is that while the script specified by the test argument
evaluates to a true value, the script specified by the body argument is executed. The while loop in
Example 4.4 accomplishes the same effect as the for-loop in Example 4.3. A looping variable, "i", is
again initialized to 0 and incremented each time the loop is executed. The loop terminates when the
value of "i" reaches 10. Note, that in the case of the while-loop, the initialization and re-initialization
of the looping variable are not part of the while-statement itself. Therefore, the initialization of the
variable is done before the while-loop, and the reinitialization is incorporated into its body. If these
statements were left out, the code would probably still run, but with unexpected results.

Example 4.5:

foreach vowel {a e i o u} {
 puts "$vowel is a vowel"
}
Output:
a is a vowel
e is a vowel
i is a vowel
o is a vowel
u is a vowel

HITAS Tutorial

32

The foreach-loop, illustrated in Example 4.5, operates in a slightly different manner to the other types
of Tcl loops described in this section. Whereas for-loops and while-loops execute while a particular
condition is true, the foreach-loop executes once for each element of a fixed list. The general syntax
for the foreachloop is:

foreach varName list body

The variable specified by varName takes on each of the values in the list in turn, and the body script
is executed each time. In Example 4.5, the variable "vowel" takes on each of the values in the list "{a
e i o u}" (Tcl list structure will be discussed in more detail in a later section), and for each value, the
body of the loop is executed, resulting in one printed statement each time.

3.2.5. Procedures

Procedures in Tcl serve much the same purpose as functions in C. They may take arguments, and may
return values. The basic syntax for defining a procedure is:

proc name argList body

Once a procedure is created, it is considered to be a command, just like any other built-in Tcl
command. As such, it may be called using its name, followed by a value for each of its arguments. The
return value from a procedure is equivalent to the result of a built-in Tcl command. Thus, command
substitution can be used to substitute the return value of a procedure into another expression.

By default, the return value from a procedure is the result of the last command in its body. However, to
return another value, the return command may be used. If an argument is given to the return command,
then the value of this argument becomes the result of the procedure. The return command may be
used anywhere in the body of the procedure, causing the procedure to exit immediately.

Example 5.1:

proc sum_proc {a b} {
 return [expr $a + $b]
}
proc magnitude {num} {
 if {$num > 0} {
 return $num
 }
 set num [expr $num * (-1)]
 return $num
}
set num1 12
set num2 14
set sum [sum_proc $num1 $num2]
puts "The sum is $sum"
puts "The magnitude of 3 is [magnitude 3]"
puts "The magnitude of -2 is [magnitude -2]"
Output:
The sum is 26
The magnitude of 3 is 3
The magnitude of -2 is 2

HITAS Tutorial

33

This example first creates two procedures, "sum_proc" and "magnitude". "sum_proc" takes two
arguments, and simply returns the value of their sum. "magnitude" returns the absolute value of a
number. After the procedure definitions, three global variables are created. The last of these, "sum"
is assigned the return value of the procedure "sum_proc", called with the values of the variables
"num1" and "num2" as arguments. The "magnitude" procedure is then called twice, first with "3" as
an argument, then with "-2".

The "sum_proc" procedure uses the expr command to calculate the sum of its arguments. The result of
the expr command is substituted into the return statement, making it the return value for the procedure.
The "magnitude" procedure makes use of an if-statement to take different actions, depending on
the sign of its argument. If the number is postive, its value is returned, and the procedure exits
immediately, skipping all the rest of its code. Otherwise, the number is multiplied by -1 to obtain its
magnitude, and this value is returned. The same effect could be achieved by moving the statement
that multiplies the value by -1 into an else-clause, but the purpose of this example was to illustrate the
use of the return statement at several locations within a procedure.

Inside the body of a procedure, new variables may be created with the set command as normal.
However, these variables will be local to the procedure, and will no longer be accessible once the
procedure returns. If access to global variables is needed inside a procedure, these may be accessed
by means of the global keyword, as described in Example 5.2.

Example 5.2:

proc dumb_proc {} {
 set myvar 4
 puts "The value of the local variable is $myvar"
 global myglobalvar
 puts "The value of the global variable is $myglobalvar"
}
set myglobalvar 79
dumb_proc
Output:
The value of the local variable is 4
The value of the global variable is 79

The procedure "dumb_proc" achieves no special purpose, and is simply designed to illustrate the use
of the global keyword to access global variables. It takes no arguments, and as such its argument
list is empty. Note that even though the procedure takes no arguments, the empty list structure must
still be included. The procedure first creates a local variable, "myvar", sets its value to "4", and then
displays it. Then it uses the global keyword to gain access to a global variable named "myglobalvar".
The value of this global variable is then printed.

After the procedure definition, a global variable "myglobalvar" is created, and assigned a value of
"79". The procedure "dumb_proc" is then called, resulting in the output shown above.

HITAS Tutorial

34

3.2.6. Lists

Lists in Tcl provide a simple means by which to group collections of items, and deal with the collection
as a single entity. When needed, the single items in the group can be accessed individually. Lists are
represented in Tcl as strings with a specified format. As such, they can be used in any place where
strings are normally allowed. The elements of a list are also strings, and therefore any form of data
that can be represented by a string can be included in a list (allowing lists to be nested within one
another). The following examples will illustrates many important list commands:

Example 6.1:

set simple_list "John Joe Mary Susan"
puts [lindex $simple_list 0]
puts [lindex $simple_list 2]
Output:
John
Mary

Example 6.1 creates a simple list of four elements, each of which consists of one word. The lindex
command is then used to extract two of the elements in the list: the 0th element and the 2nd element.
Note that list indexing is zero-based. It is also important to see that the lindex command, along
with most other list commands, takes an actual list as its first argument, not the name of a variable
containing a list. Thus the value of the variable "simple_list" is substitued into the lindex command.

Example 6.2:

set simple_list2 "Mike Sam Heather Jennifer"
set compound_list [list $simple_list $simple_list2]
puts $compound_list
puts [llength $compound_list]
Output:
{John Joe Mary Susan} {Mike Sam Heather Jennifer}
2

Example 6.2 is a continuation of Example 6.1, and assumes the variable "simple_list" (created in
Example 6.1) still exists. In this example, a new variable called "simple_list2" is created, and assigned
the value of another simple four-element list. A compound list is then formed by using the list
command, which simply forms a list from its arguments. The list command ensures that proper list
structure is observed, even when its arguments themselves are lists, or other complex structures.
Displaying the value of "compound_list" shows that it is a list of two elements, each of which is itself
a list of four elements. The llength command is used to obtain the length of the list, "compund_list",
which is 2 in this case.

This example highlights two ways in which to create lists in Tcl: by explicitly listing the elements
within quotes, and by using the list command. Explicity listing the elements works well when each of
the elements is a single word. However, if the elements contain whitespaces, then maintaining proper
list structure becomes a little more tricky. For these cases, the list command proves very useful.

Example 6.3:

set mylist "Mercury Venus Mars"
puts $mylist
set mylist [linsert $mylist 2 Earth]

HITAS Tutorial

35

puts $mylist
lappend mylist Jupiter
puts $mylist
Output:
Mercury Venus Mars
Mercury Venus Earth Mars
Mercury Venus Earth Mars Jupiter

In example 6.3, a simple list of 3 items is created, and assigned to the variable "mylist". The linsert
command is then used to insert a new item into this list. Note that, as with the llength command, the
linsert command takes an actual list as its first argument, not the name of a variable containing a list.
The linsert command returns a list that is the same as the list it was passed, except that the specified
item is inserted in the appropriate position. This return value needs to be assigned back to the variable
"mylist" in order for the list stored in that variable to change.

One list command that does not behave in this way is the lappend command. It takes the name of a
variable as its first argument, and appends its subsequent arguments onto the list stored in that variable.
Thus the value of the variable is modified directly. Understanding the difference between the way the
lappend command works, and the way that commands such as linsert work is fundamental to using
lists correctly.

The list commands presented here are only a small subset of those available. Refer to the manual
pages, or one of the other Tcl/Tk references for a complete description of all list commands.

3.2.7. Arrays

Another way of grouping data in Tcl is to use arrays. Arrays are simply collections of items in which
each item is given a unique index by which it may be accessed. As with all other Tcl variables, arrays
need not be declared before they are used, and, unlike arrays in C, their size need not be specified
either. An individual element of an array may be referred to by using the array name, followed
immediately by the index of the element, enclosed in parentheses. Array elements are treated much
like any other Tcl variables.

They are created by means of the set command, and their values can be substituted using the dollar
sign ("$"), as is the case with other variables.

Example 7.1:

set myarray(0) "Zero"
set myarray(1) "One"
set myarray(2) "Two"
for {set i 0} {$i < 3} {incr i 1} {
 puts $myarray($i)
}
Output:
Zero
One
Two

In Example 7.1, an array called "myarray" is created and initialized. Note that no special code is
required to create the array because it is created by the set statement that assigns a value to its first
element. The forloop simply prints out the value stored in each element of the array. Note the use of
variable substitution in the array index and the array name.

HITAS Tutorial

36

Example 7.2:

set person_info(name) "Fred Smith"
set person_info(age) "25"
set person_info(occupation) "Plumber"
foreach thing {name age occupation} {
 puts "$thing == $person_info($thing)"
}
Output:
name == Fred Smith
age == 25
occupation == Plumber

Example 7.2 illustrates one of the unique features of Tcl arrays: array indices need not be integers.
In fact, array indices can take on any string value. In this case, the array "person_info" is created
with three elements. The indices for the elements are "name", "age", and "occupation". The foreach-
loop simply displays each of the elements in the array. Using arrays with named indices is one of
the ways to abstract objects in Tcl. In Example 7.2, the "person_info" array can be thought of as an
"object" describing a person. Each of the elements in the array then describes a fundamental attribute
of the object.

One problem with using named indices with arrays is that one needs to remember the names of all the
elements in order to traverse the array. In Example 7.2, for example, the names of all the elements had
to be listed explicitly. In a case such as this one, in which there are only three elements, this does not
present much of a problem. However, if the array contained many more elements, explicitly listing
them each time the array had to be traversed would lead to very messy code. The array Tcl command,
illustrated in Example 7.3, provides a means to get around this problem.

Example 7.3:

set person_info(name) "Fred Smith"
set person_info(age) "25"
set person_info(occupation) "Plumber"
foreach thing [array names person_info] {
 puts "$thing == $person_info($thing)"
}
Output:
occupation == Plumber
age == 25
name == Fred Smith

Example 7.3 produces essentially the same result as Example 7.2, but it makes use of the array
command to obtain the names of the elements in the array, instead of listing them explicitly. The
array elements are displayed in a different order than they were in Example 7.2, simply because the
array command returns the names of the elements in a different order than the one in which they were
explicitly listed previously. The general purpose of the array command is to retrieve various pieces of
information about an array (such as its size or the names of its elements), and perform other operations
(such as searching) on it. The general syntax of the array command is:

array option arrayName ?arg arg ...?

HITAS Tutorial

37

The option argument specifies which array operation to perform. In the case of Example 7.3, the option
argument is given the value "names", which causes the array command to return a list of the names of
the elements in the array given by the arrayName argument. For a complete list of the allowed values
of the option argument, and well as a description of the corresponding operations, refer to the manual
page for the array command.

3.2.8. Strings

Since strings are the most prevalent data type in Tcl, it makes sense that Tcl provides a rich set of
functions for manipulating them. Most string operations are done by means of the string command,
which takes the following general form:

string option arg ?arg ...?

The string command actually performs several different functions, and the option argument is used
to differentiate between them. Example 8.1 creates a string and then uses the string command to
manipulate it, and obtain information about it.

Example 8.1:

set str "This is a string"
puts "The string is: $str"
puts "The length of the string is: [string length $str]"
puts "The character at index 3 is: [string index $str 3]"
puts "The characters from index 4 through 8 are: [string range $str 4 8]"
puts "The index of the first occurrence of letter \"i\" is: [string first i $str]"
Output:
The string is: This is a string
The length of the string is: 16
The character at index 3 is: s
The characters from index 4 through 8 are: is a
The index of the first occurrence of letter "i" is: 2

In Example 8.1, a variable called "str" is created, and initialized to the value, "This is a string". The
string commmand is then used with various options to obtain various pieces of information about the
string. Refer to the manual page for the string command for a complete listing and explanation of
the various options. Also, there are several other string-related commands worth exploring, such as
format, regexp, regsub, and scan.

3.2.9. Input/Output

Most input and output operations in Tcl are done by means of the puts and gets commands. Most of
the examples in this document have made use of the puts command to display output on the console.
In a similar manner, the gets command can be used to wait for input from the console, and optionally
store it an a variable. Its general syntax has the following form:

gets channelId ?varName?

The first argument to gets is the name of an open channel from which to read data, and can be thought
of as a file descriptor in the C sense. If the varName argument is specified, gets stores the data it reads
in that variable, and returns the number of bytes read. If varName is not specified, then gets simply
returns the data it read.

HITAS Tutorial

38

Example 9.1:

puts -nonewline "Enter your name: "
set bytesread [gets stdin name]
puts "Your name is $name, and it is $bytesread bytes long"
Output: (note that user input is shown in italics)
Enter your name: Shyam
Your name is Shyam, and it is 5 bytes long

Example 9.1 makes use of both the puts and gets commands. The puts command is used with the
- nonewline flag to suppress the trailing newline that it normally appends to its output. A variable,
"bytesread", is then assigned the result of a gets command that reads from the channel "stdin" (the
standard input), and stores the data it reads in the variable, "name". Thus "bytesread" ends up storing
the number of bytes of user input read from the console.

In Example 9.1, gets was used to read from the channel "stdin" (created automatically when the Tcl
interpreter is started) which corresponds to the standard input. The puts command can also be used
with a channel identifier to write to a specific channel. However, if no channel identifier is passed to
puts, it writes to the standard output (this is the way puts has been used throughout this document).
In addition to the standard input and output, channels can also be created to read from other types of
files. As illustrated by Example 9.2, the open command can be used to open a channel to a file, and
obtain an appropriate identifier for the channel. This identifier can then be passed to gets to read from
the file, or puts to write to the file.

Example 9.2:

set f [open "/tmp/myfile" "w"]
puts $f "We live in Texas. It's already 110 degrees out here."
puts $f "456"
close $f
Output: (none)

This example uses the open command to open a channel to a file called "/tmp/myfile". The syntax of
the open command can take on three forms, one of which is:

open name ?access?

The access argument specifies what type of access (for example, read-only access or read-write access)
to the file given by name is desired. See the manual page for the open command for a complete
description of the access modes. In this case, write-only access is desired, so the value "w" is given
for the access argument.

The open command returns a channel identifier that can be used with gets and puts to read and write
from the file. In Example 9.2, this identifier is stored in the variable, "f". The puts command is then
used to write two strings to the file, and then the close command is used to close the file.

Example 9.3 reads the file created in Example 9.2, and displays its contents.

Example 9.3:

set f [open "/tmp/myfile" "r"]
set line1 [gets $f]
set len_line2 [gets $f line2]
close $f
puts "line 1: $line1"

HITAS Tutorial

39

puts "line 2: $line2"
puts "Length of line 2: $len_line2"
Output:
line 1: We live in Texas. It's already 110 degrees out here.
line 2: 456
Length of line 2: 3

The file, "/tmp/myfile", is opened in read-only mode with the open command. The gets command is
then used with the channel identifier returned by open to read from the file. The first call to gets does
not give it the name of a variable in which to store the data it reads, so this data is returned instead.
Command substitution is used to store it in the variable, "line1". The second call to gets tells it to
store the data it reads in the variable, "line2". Therefore, gets would return the number of bytes it read,
which, by means of command substitution, is stored in the variable "len_line2". Since all the data has
been read, the file is then closed.

In this case, it was known that the file contained only two lines of data. If the length of the file was not
known, the eof command could be used with a while loop to read until the end of the file was reached.

3.2.10. Other Miscellaneous Tcl Commands

eval

As described earlier, Tcl uses a one-pass parsing mechanism when evaluating scripts. It is sometimes
useful, however, to have the interpreter make more than one pass over a script before evaluating it.
Being able to force the interpreter to parse a script more than once allows one to store Tcl scripts in
variables, and have them be evaluated at a later time. This is shown in Example 10.1:

Example 10.1:

set foo "set a 22"
eval $foo
puts $a
Output:
22

The variable "foo" is set to the value "set a 22", which is itself a Tcl script. Next, the value of the
variable "foo" is substituted into the eval command. The eval command simply passes its arguments
through the Tcl interpreter for another round of parsing. When the interpreter encounters the statement
"eval $foo", the first round of parsing simply substitutes the value of the variable "foo" in the place
of "$foo", resulting in the expression "eval set a 22". The eval command then sends its arguments,
"set a 22", through the interpreter again, resulting in the variable "a" being created and assigned the
value "22".

One might be tempted to think that the use of the eval command could be avoided and simply replaced
with the statement,

$foo

This does not work because, on encountering the statement "$foo", the interpreter simply replaces it
with the value stored in the variable "foo", and then considers its parsing work done. So, "$foo" gets
replaced by "set a 22", but the interpreter never parses "set a 22", which it needs to do to make sense
of the components of the statement (it needs to realize that "set" corresponds to a built in command,
and that it is being passed two arguments, "a" and "22") and evaluate it correctly .

HITAS Tutorial

40

catch

When an error occurs in a Tcl command, the entire script of which it is a part is halted, and an error
message is displayed. However, instead of halting the whole Tcl script, it may be useful to simply
display a friendly error message and continue execution of the Tcl script.

The catch command prevents Tcl's error handling mechanisms from executing (and thus halting
execution) and simply returns a meaningful value when an error occurs. This allows the program to
define its own behaviour in the case of an error.

Example 10.2:

set retval [catch {set f [open "nosuchfile" "r"]}]
if {$retval == 1} {
 puts "An error occured"
}
Output: (if there is no file "nosuchfile" in the current directory).
An error occured

The catch command is given a Tcl script as an argument. It evaluates this script, and if an error occurs,
it returns 1, otherwise it returns 0. In Example 10.2, the script passed to catch tries to open a file named
"nosuchfile". Assuming that no file with this name exists in the current directory, the open command
should return an error. Since it occurs within a catch statement, the normal Tcl error handling routines
do not get invoked, and the catch command simply returns 1. This return value is assigned to the
variable "retval", which is checked to determine whether or not to print the error message. The catch
command can be used in many different ways, only one of which is shown here. Refer to the manual
page for a more complete description.

HITAS Tutorial

41

Chapter 4. Examples

This document contains a collection of examples, each one illustrating a feature or set of features.
Those examples appear in the following directories:

• inv/: guidelines for database construction and analysis, based upon a single inverter and a
chain of inverters. Introduction to the Tcl interface.

• adder/: guidelines for database construction and analysis, based upon a full-adder design.
Path reporting and simulation

• ms/: guidelines for database construction and analysis of a master-slave flip-flop.
Introduction to timing checks and slack reports.

• addaccu/: guidelines for .lib characterization of a simple adder-accumulator design. Link
with 3rd-party simulator

• cpu2901/: guidelines for database construction of a small microprocessor. Introduction to
advanced configuration. Path reporting, timing checks and slack reports.

• h_macro/: guidelines for hierarchical database construction and timing analysis of a
hierachical design made up of custom macros and pre-characterized blocks.

• blackbox/: guidelines for handling of analog blocks. Introduction to the two most simple
techniques.

HITAS Tutorial

42

Chapter 5. Inverter

5.1. Design Description

This example presents HITAS elementary concepts, based upon a simple inverter design and later
an inverter chain.

The first example takes place in the inv/ directory.

5.2. Database Generation

5.2.1. Principles

The database generation follows the steps below:

• Design partitioning: the algorithm creates a net-list of pseudo-gates from the flat transistor
net-list. Partitions are called "cones" and have the property to be electrically independent
from one to the other.

• Automatic memory components recognition: a memory-identification engine analyzes cones
and loop between cones, and flags latches and pre-charged elements.

• Graph modeling: a cone is modeled as a graph, where edges are events on signals, and where
arcs are possible causality relations between events. Causality relations are also called timing
arcs.

• Creation of delay models: a delay model, derived from the BSIM MOS equations, is
associated with each timing arc.

• Creation of all the timing paths: the successive timing arcs between connectors and memory
elements are merged to create timing paths. All the possible timing paths in the design are
saved into the database.

5.2.2. Global Configuration

The complete configuration required for the database generation takes place in the db.tcl. The script
also launches the commands that effectively generate that database.

Configuration variables are set in the Tcl script by the mean of the avt_config function.

avt_config tasGenerateConeFile yes

tells the tool to dump on disk the .cns file, which contains the partitions (the cones)
created by the partitioning algorithm.

avt_config avtVerboseConeFile yes

tells the tool to dump on disk the .cnv file, which is a more readable version.

HITAS Tutorial

43

avt_config simVthHigh 0.8

High threshold of the slope.

avt_config simVthLow 0.2

Low threshold of the slope.

avt_config simSlope 20e-12

Transient time of the slope in second.

avt_config simToolModel ngspice

tells the tool the technology file type (which simulator it is designed for)

The temperature and supplies specifications take place in the inv.spi file:

.TEMP 125
Vsupply vdd 0 DC 1.62
Vground vss 0 DC 0

5.2.3. Technology Integration

The technology file is included with a SPICE .INCLUDE directive in the inv.spi file (in the case of
recursive inclusions, paths must be absolute).

In the present example, the .INCLUDE directive is used.

.INCLUDE ../techno/bsim4_dummy.ng

5.2.4. Database Generation

The generation launch is done through the command hitas:

avt_LoadFile inv.spi spice
set fig [hitas inv]

The hitas function takes as argument the name of the figure (the subckt for a SPICE netlist) to
analyze. The tas function returns a pointer on the timing database newly created. This pointer can be
used as an input to further steps of verification, thus avoiding costly re-reading of the timing database
from the disk.

To perform the database generation, just launch the script db.tcl

5.3. Database Analysis

5.3.1. Database overview

At this step of the analysis process, the timing database of the adder sub-circuit consists of four files:

DTX file All the timing arcs of the sub-circuit, based upon
the characterization of the "cones" created during the
partitioning phase.

HITAS Tutorial

44

STM file The models that allow to computing the delay values for
timing arcs and timing paths.

RCX file The interconnect elements (RC) at the physical boundary
of the sub-circuit. This file is used for hierarchy purposes,
allowing the partial flatten of interconnections at upper
levels of hierarchy.

5.3.2. Database properties

The script db.tcl presents also Tcl access to the properties of the database:

• Temperature

• Power supply

Other properties are available. See HITAS Reference Guide.

Chapter 6. Inverter Chain

6.1. Design Description

This second example (also in directory inv/) presents HITAS database construction and database
browsing concepts, based upon a inverter-chain design (file inv_chain.spi).

6.2. Database properties

The script db_chain.tcl performs the database construction in the same way than the previous
example. It also presents Tcl acces to the properties of the database:

• Temperature

• Power supply

• Input slope

• Output load

• Generation date

Other properties are available. See HITAS Reference Guide.

6.3. Path Reports

The script report.tcl shows a typical path report. The commands in the script are the following:

set fig [ttv_LoadSpecifiedTimingFigure inv_chain]

HITAS Tutorial

45

This command loads the timing database (.dtx, .stm and .cns files) into the program's memory.

set clist [ttv_GetPaths $fig * * rf 5 critic path max]

This command looks for the 5 longest paths (5 critic path max) in the circuit starting and ending
on any terminal node (* *), with a rising transition on start node and a falling transition on the end
node (rf). A terminal node is a pin or a latch.

set f [fopen inv_chain.paths "w+"]

This commands opens a file inv_chain.paths for further writing.

ttv_DisplayPathListDetail $f $clist

This command prints in file inv_chain.paths the result ($clist) of the previous command
ttv_GetPaths. For results on standard output, replace $f by stdout. The output looks like:

 Voltage : 1.62V
 Temperature : 125 degree C

 *** Path list (unit:[ns]) ***

 Path Start Start Path Total Data Ending Start
 time slope delay delay lag slope From_node To_node
__
 1 0.000 0.200 0.397 0.397 0.000 0.031 (R) in (F) out

Node type Index:
 (C) : Clock node (L) : Latch node (F) : Flip-flop node
 (B) : Breakpoint node (K) : Latch command node (S) : Output connector node
 (SZ): Output HZ connector (N) : Precharge node

 *** Path details (unit:[ns]) ***

Path (1) :

 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line

 0.000 0.000 0.200 R 0.020 in in
 0.070 0.070 0.094 F 0.027 1 1 inv
 0.186 0.116 0.111 R 0.027 2 2 inv
 0.258 0.072 0.074 F 0.027 3 3 inv
 0.372 0.114 0.106 R 0.027 4 4 inv
 0.397 0.025 0.031 F 0.007 (S) out out inv

 0.397 0.397 (total)

There is actually only one path in this inverter chain.

HITAS Tutorial

46

Chapter 7. Adder

This example tackles similar concepts as the ones described in the previous example. It just illustrates
them on a more slightly complex design, a combinational full adder.

This example takes place in the adder/ directory.

7.1. Database Generation

7.1.1. Global Configuration

The complete configuration required for the database generation takes place in the db.tcl. It is the
same as in the previous example (inverters). The script also launches the commands that effectively
generate that database.

The temperature and supplies specifications take place in the adder.spi file:

.TEMP 125

.GLOBAL vdd vss
Vsupply vdd 0 DC 1.62
Vground vss 0 DC 0

As the adder.spi subcircuit is not instantiated, the vdd and vss signals appear in the .GLOBAL
statement.

The technology file is included with a SPICE .INCLUDE directive in the adder.spi file.

.INCLUDE ../techno/bsim4_dummy.ng

7.1.2. Database Generation

The generation launch is done through the command hitas:

avt_LoadFile adder.spi spice
set fig [hitas adder]

The hitas function takes as argument the name of the figure (the subckt for a SPICE netlist) to
analyze. The tas function returns a pointer on the timing database newly created. This pointer can be
used as an input to further steps of verification, thus avoiding costly re-reading of the timing database
from the disk.

To perform the database generation, just launch the script db.tcl

7.2. Path Searching with the Tcl Interface

The complete configuration required for the database browsing takes place in the report.tcl.

The command:

HITAS Tutorial

47

set fig [ttv_LoadSpecifiedTimingFigure adder]

reads the timing database from disk (as said before, the re-reading of the database can be avoided
by directly taking as an input the return value of the hitas function. For the sake of clarity, and
because we are dealing with small timing databases, we preferred to split different verification steps
into different scripts).

The command:

set clist [ttv_GetPaths $fig * * rr 5 critic path max]

gives the 5 most critical paths (critic and path arguments) of the design, that begin and end on a
rising transition (rr argument), with no specification of signal name (* * arguments), in the database
pointed out by $fig. The function returns a pointer on the newly created list.

The command:

ttv_DisplayPathListDetail stdout $clist

displays on the standard output the detail of all the paths of the path list given by the ttv_GetPaths
function.

To get these paths, launch the script report.tcl.

7.3. Exercises

• Ex 1.1. Get the list of connectors with the Tcl interface and with the GUI.

• Ex 1.2. Get the critical paths between selected connectors, with any transition, with the Tcl
interface and with the GUI

• Ex 1.3. Get all the parallel paths of the most critical path with the Tcl interface and with
the GUI

• Ex 1.4 Get the detail of a parallel path and identify divergence

• Ex 1.5 Hide the column Line Type in the report and observe the results

• Ex 1.6 Change the unit of the report from ns ps (ttv_SetupReport)

7.4. Solutions
#!/usr/bin/env avt_shell

Ex adder.1
set fig [ttv_LoadSpecifiedTimingFigure adder]
set clist [ttv_GetTimingSignalList $fig connector interface]
foreach c $clist {
 puts "[ttv_GetTimingSignalProperty $c NAME] [ttv_GetTimingSignalProperty $c DIR]"
}

Ex adder.2
set fig [ttv_LoadSpecifiedTimingFigure adder]
set clist [ttv_GetPaths $fig a_0 cout ?? 5 critic path max]
ttv_DisplayPathListDetail stdout $clist

HITAS Tutorial

48

Ex adder.3 and adder.4
set fig [ttv_LoadSpecifiedTimingFigure adder]
set clist [ttv_GetPaths $fig * * rr 5 critic path max]
set plist [ttv_GetParallelPaths [lindex $clist 1] 10]
ttv_DisplayPathListDetail stdout $plist

Ex adder.5 and adder.6
ttv_DisplayPathDetailHideColumn dt.linetype
ttv_SetupReport ps
ttv_DisplayPathListDetail stdout $plist

HITAS Tutorial

49

Chapter 8. Master-Slave Flip-Flop

This example presents how HITAS performs timing checks upon a sequential design. The example
given here is a simple master-slave flip-flop (msdp2_y diagram below). It takes place in the directory
ms/

ckpckn
ck

ckn

ckp

ckn

ckp

ckp

ckn

ckp

ckn

dff_m
dff_s

t

di

8.1. Timing Checks

8.1.1. Principles

Static Timing Analysis is performed by propagating interface constraints towards latch's inputs and
commands, and towards output connectors. Once interface constraints have been propagated, the tool
computes the setup and hold slacks.

The complete configuration required for database construction takes place in the db.tcl. It does not
differ from previous examples

The complete configuration required for STA takes place in the sta.tcl.

8.1.2. STA with Tcl Interface

Timing Constraints

Timing constraints are set in SDC format (Synopsys Design Constraints). Let's review the constraints
commands applied to the flip-flop:

HITAS Tutorial

50

inf_SetFigureName msdp2_y

tells the tool to apply the SDC constraints to the design msdp2_y.

create_clock -period 1000 -waveform {500 0} ck

Defines the clock waveform.

set_input_delay -clock -ck -clock_fall -min 200 di

set_input_delay -clock -ck -clock_fall -max 300 di

Tells the tool that inputs signals on di may switch between times 200 and 300.

set_output_delay -clock ck -clock_fall -min 200 t

set_output_delay -clock ck -clock_fall -max 400 t

Tells the tool that the delay from output connector t to the next memory element
(hypothetical).

Static Timing Analysis

Launch of the STA is done by invoking the following commands (file sta.tcl):

The command:

set fig [ttv_LoadSpecifiedTimingFigure msdp2_y]

reads the timing database from disk.

The command:

set stbfig [stb $fig]

launches the static timing analysis. The stb function returns a pointer on the newly created figure,
which back-annotates the timing database with timing propagation information.

The function:

stb_DisplaySlackReport [fopen slack.rep w] $fig * * ?? 10 all 10000

displays a global slack report in the file slack.rep.

8.2. Timing Checks

The next sections explain how timing checks are performed. They describe the more common
situations one can be faced to, i.e.:

• Input to latch

• Latch to latch

• Latch to output

For each situation, an example of slack report is shown, and we explain the details of the timing
checks calculation.

HITAS Tutorial

51

8.2.1. Input to Latch

Inputs Specifications

Regarding input specifications, the STA engine of HITAS makes the assumption that input data is
coming from a latch clocked on the opposite phase of the one the data arrives on. In our flip-flop
example, dff_m is opened on the high state of ck, so di is supposed to come from a latch opened
on the low state of ck.

As a result, di should be specified as coming from ck falling, i.e. when the latch src opens. The
corresponding SDC commands should look like:

create_clock -period 1000 -waveform {500 0} ck
set_input_delay -clock -ck -clock_fall -min 200 di
set_input_delay -clock -ck -clock_fall -max 300 di

Timing Checks Description

Diagram below illustrates the way set_input_delay directives are propagated throughout the design,
and where timing checks are performed.

HITAS Tutorial

52

Setup Slack

Input to latch setup slack report is described in the slack.rep file

Path (4) : Slack of 0.762
 DATA VALID:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line
 __
 0.300 0.000 0.200 R 0.034 di di
 0.498 0.198 0.310 F 0.028 (L) dff_m dff_m master
 __
 0.498 0.198 (total)

 DATA REQUIRED:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line
 __
 0.000 0.000 0.200 F 0.016 (C) ck ck
 0.239 0.239 0.258 R 0.046 (CK) ckn ckn inv
 0.340 0.101 0.140 F 0.036 (CK) ckp ckp inv
 0.260 -0.081 [INTRINSIC SETUP]
 1.260 +1.000 [NEXT PERIOD]
 __
 1.260 0.260 (total)

The value of the setup slack is given by clock_path - data_path = 1260ps - 498ps = 762ps. The
intrinsic setup corresponds to an additional delay which models the amount of time required for secure
memorization of the data.

Hold Slack

Input to latch hold slack report is described in the slack.rep file

Path (2) : Slack of 0.005
 DATA VALID:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line
 __
 0.200 0.000 0.200 F 0.034 di di
 0.542 0.342 0.508 R 0.028 (L) dff_m dff_m master
 __
 0.542 0.342 (total)

 DATA REQUIRED:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line
 __
 0.000 0.000 0.200 F 0.016 (C) ck ck
 0.239 0.239 0.258 R 0.046 (CK) ckn ckn inv
 0.537 +0.298 [INTRINSIC HOLD]
 __
 0.537 0.537 (total)

The value of the hold slack is given by data_path - clock_path = 542ps - 537ps = 5ps. The intrinsic
hold corresponds to an additional delay which models the amount of time required for ensuring that
the next cycle's data is not memorized in the current cycle.

HITAS Tutorial

53

8.2.2. Latch to Latch

Timing Checks Description

Latch to latch timing checks require no additional configuration, as they are based upon the signals
already propagated from inputs, and upon the clock specification. The propagation of the s.w., and
corresponding timing checks are described in the following timing diagram:

Setup Slack

Latch to latch setup slack report is described in the slack.rep file

Path (3) : Slack of 0.284
 DATA VALID:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line

 -0.500 0.000 0.200 R 0.016 (C) ck ck
 -0.399 0.101 0.128 F 0.046 (CK) ckn ckn inv
 -0.236 0.164 0.169 R 0.036 (CK) ckp ckp inv
 -0.152 0.083 0.139 F 0.028 (L) dff_m dff_m master
 0.090 0.242 0.189 R 0.040 n11 n11 inv
 0.321 0.231 0.305 F 0.089 (L) dff_s dff_s slave

 0.321 0.821 (total)

 DATA REQUIRED:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line

 0.500 0.000 0.200 R 0.016 (C) ck ck
 0.601 0.101 0.128 F 0.046 (CK) ckn ckn inv
 0.605 +0.005 [INTRINSIC SETUP]

HITAS Tutorial

54

 0.605 0.105 (total)

Hold Slack

Latch to latch hold slack report is described in the slack.rep file

Path (3) : Slack of 0.146
 DATA VALID:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line
 __
 -0.500 0.000 0.200 R 0.016 (C) ck ck
 -0.399 0.101 0.128 F 0.046 (CK) ckn ckn inv
 -0.281 0.119 0.177 R 0.028 (L) dff_m dff_m master
 -0.223 0.057 0.088 F 0.040 n11 n11 inv
 0.106 0.329 0.447 R 0.089 (L) dff_s dff_s slave
 __
 0.106 0.606 (total)

 DATA REQUIRED:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line
 __
 0.500 0.000 0.200 R 0.016 (C) ck ck
 0.601 0.101 0.128 F 0.046 (CK) ckn ckn inv
 0.764 0.164 0.169 R 0.036 (CK) ckp ckp inv
 0.960 +0.196 [INTRINSIC HOLD]
 -0.040 -1.000 [PREVIOUS PERIOD]
 __
 -0.040 0.460 (total)

8.2.3. Latch to Output

Output Constraints

Still based on the flip-flop design described above, the timing propagation on output t is done as
follow:

HITAS Tutorial

55

In order to get setup and hold slacks on the output, one must define timing constraints on t. These
timing constraints are defined with the set_output_delay SDC function. The set_output_delay
specifies propagation delays from output connector to the next memory element latching the data. As
a result, min and max delays are defined as shown in the diagram below.

One must also define the edge the data will be latched by. Here, dff_s is closed on the high state of
ck. The data launched by t is supposed to be latched by a memory element clocked on the opposite
phase, i.e. closed on low state of ck. Therefore, constraints on t should be specified relative to falling
edge of ck (when dst latch closes). The set_output_delay functions should be used as follow:

set_output_delay -clock ck -clock_fall -min 200 t
set_output_delay -clock ck -clock_fall -max 400 t

Setup Slack

Latch to output setup slack report is described in the slack.rep file

Path (1) : Slack of 0.030
 DATA VALID:
 Delay

HITAS Tutorial

56

 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line
 __
 0.000 0.000 0.200 F 0.016 (C) ck ck
 0.239 0.239 0.258 R 0.046 (CK) ckn ckn inv
 0.340 0.101 0.140 F 0.036 (CK) ckp ckp inv
 0.568 0.227 0.327 R 0.089 (L) dff_s dff_s slave
 0.570 0.003 0.118 F 0.011 (S) t t inv
 __
 0.570 0.570 (total)

 -> Specification: Must be stable after 0.600

The setup time is calculated with the maximum set_output_delay value - maximum data path - which
is 400ps. As the period is 1000ps, data must arrive before time 1000 - 400 = 600ps. The setup slack
is given by 600 - 570 = 30ps.

Hold Slack

Latch to output hold slack report is described in the slack.rep file

Path (5) : Slack of 0.635
 DATA VALID:
 Delay
 Acc Delta R/F Cap[pf] Type Node_Name Net_Name Line

 0.000 0.000 0.200 F 0.016 (C) ck ck
 0.239 0.239 0.258 R 0.046 (CK) ckn ckn inv
 0.385 0.146 0.235 F 0.089 (L) dff_s dff_s slave
 0.435 0.050 0.082 R 0.011 (S) t t inv

 0.435 0.435 (total)

 -> Specification: Must be stable before -0.200

The hold time is calculated with the minimum set_output_delay value - minimum data path - which
is 200ps. The hold slack is given by data path - clock path = 435 + 200 - 0 (the clock is ideal in the
set_output_delay definition) = 635ps.

HITAS Tutorial

57

Chapter 9. Addaccu

This example describes a global timing characterization methodology. It is based upon a simple 4-
bit adder-accumulator.

This example takes place in the directory addaccu/.

Timing characterization provides the timing properties (or constraints) of a macroblock, generally in
the Liberty format. The purpose of the timing characterization is to provide other tools in the design
flow - physical design, chip-level STA - with sufficient timing information about the macroblock, so
that those tools can perform their task correcly. Typically, the information given in the Liberty file are:

• Setup and Hold Constraints (Sequential): the maximum and minimum arrival times of data
signals on input pins relative to clock signals (on clock pins)

• Access Times (Sequential): the maximum and minimum departure times of data signals on
output pins relative to clock signals (on clock pins)

• Propagation Times (Combinational): the maximum and minimum path delays between inout
and output pins

We describe here a methodology for secure timing characterization of macroblocks and cells. The
following steps are involved:

• Construction of the macroblock timing database

• Identification of the paths involved in the timing constraints

• Validation of the paths and accuracy check by SPICE simulation

• Timing characterization for different slopes and loads

• Timing characterization by SPICE simulation for different slopes and loads

9.1. Design Description

The addaccu chip consists of a four-bit adder, a four-bit register, and a 2 to 1 four-bit multiplexer.

HITAS Tutorial

58

The circuit performs an addition between either the b[3:0] and a[3:0] inputs when sel is set to 0, or
between b[3:0] and the content of the four-bit register when sel is set to 1. The content of the register
is overwritten by the values of the outputs s[3:0] on each falling edge of the clock, ck..

9.2. Construction of the Timing Database

The temperature and supplies specifications take place in the addaccu_schem.spi file:

.TEMP 125

.GLOBAL vdd vss
Vsupply vdd vss DC 2.0
Vground vss 0 DC 0

As the addaccu_schem.spi subcircuit is not instantiated, the vdd and vss signals appear in the
.GLOBAL statement.

In the present example, the .INCLUDE statement is used for technology file integration:

.INCLUDE ../techno/bsim4_dummy.ng

The additional configuration required for the database construction takes place in the db.tcl script.
The script also launches the commands that effectively generate that database.

Configuration variables are set in the Tcl script by the mean of the avt_config function.

avt_config tasGenerateConeFile yes

tells the tool to dump on disk the .cns file, which contains the partitions (the cones)
created by the partitioning algorithm.

avt_config avtVerboseConeFile yes

tells the tool to dump on disk the .cnv file, which is a more readable version.

avt_config simVthLow 0.2

Low threshold of slope definition

avt_config simVthHigh 0.8

High threshold of slope definition

avt_config simToolModel ngspice

tells the tool the technology file type (which simulator it is designed for)

The construction itself is done through the command hitas:

avt_LoadFile addaccu_schem.spi
set fig [hitas addaccu]

9.3. Timing Paths Identification

The paths.tcl script reports the timing paths involved in the constraints described above (setup,
hold, access and combinational paths).

HITAS Tutorial

59

Let's have a look at the following code sequence in the script:

Setup / Hold paths
set file [fopen $figname.setuphold w]
ttv_DisplayConnectorToLatchMargin $file $fig * "split all"
fclose $file

The function ttv_DisplayConnectorToLatchMargin displays the setup and hold constraints
associated with the input pins, related to the clock signal created with the create_clock
statement (note that the frequency information is irrelevant here, as setup and hold constraints
do not depend upon frequency - the syntax just requires it). Precisely, for each input pin,
the ttv_DisplayConnectorToLatchMargin function displays all possible setup and hold values,
depending on the latch involved. All information about the data paths, clock paths and latch involved
is reported in the addaccu.setuphold file.

Now let's look at the maximum access paths detection. The related code sequence is:

Max access paths
set file [fopen $figname.accessmax w]
set pathlist [ttv_GetPaths $fig * s\[*\] ?? 0 critic access max]
ttv_DisplayPathListDetail $file $pathlist
fclose $file

The ttv_GetPaths function looks for all (argument 0) the access paths ending on signals s[0:3],
using maximum path values for data and clock. The whole detail of those paths is reported in the
addaccu.accessmax.

The next code sequence deals with minimum access paths, and is very similar to the one described
above. The ttv_GetPaths function looks here for all the access paths ending on signals s[0:3],
using minimum path values for data and clock. The whole detail of those paths is reported in the
addaccu.accessmin file.

The final code sequence deals with combinational paths between input and output pins:

Combinatorial paths
set file [fopen $figname.comb w]
set pathlist [ttv_GetPaths $fig a\[*\] s\[*\] ?? 0 critic path max]
ttv_DisplayPathListDetail $file $pathlist
set pathlist [ttv_GetPaths $fig b\[*\] s\[*\] ?? 0 critic path max]
ttv_DisplayPathListDetail $file $pathlist
set pathlist [ttv_GetPaths $fig sel s\[*\] ?? 0 critic path max]
ttv_DisplayPathListDetail $file $pathlist
set pathlist [ttv_GetPaths $fig ck s\[*\] ?? 0 critic path max]
ttv_DisplayPathListDetail $file $pathlist
fclose $file

The whole detail of those paths is reported in the addaccu.comb file.

All these paths will be the ones which will be used to characterize the design, it is therefore necessary
to carefully check that there are relevant.

HITAS Tutorial

60

9.4. Timing Paths Validation by SPICE simulation

The paths_simu.tcl script performs the same task as the paths.tcl script, and re-simulates
the paths with NG-SPICE. NG-SPICE is a freeware SPICE simulator (Berkeley license). It is
provided with this tutorial. Binaries are in ../bin/Linux/ and ../bin/Solaris/. For the sake of
understanding, the set of paths - reported and simulated - has been reduced to the ones originating from
some inputs only. HITAS actually generates a SPICE deck with all the stimuli allowing for signal
propagation. It automatically invokes the simulator and retrieve the results, which are integrated in
the reports. It just needs the following configuration:

avt_config avtSpiceString "./bin/Solaris/ngspice -b $"

The command line which will be invoked by HITAS

avt_config SimToolModel ngspice

Tells HITAS the SPICE format to use for the SPICE deck

avt_config simTechnologyName ../techno/bsim4_dummy.ng

The technology file to include in the SPICE deck (.INCLUDE)

avt_config avtSpiceOutFile $.log

Tells HITAS the suffix of the file containing the simulation results, required unless the
simulator fixes this.

ttv_DisplayActivateSimulation yes

The flag for activating the re-simulation of reported paths

Just invoke paths_simu.tcl to run the simulations. As before, the results are displayed in
the files addaccu.comb, addaccu.setuphold, addaccu.accessmin and addaccu.accessmax. An
additionnal column gives the NG-SPICE values.

The configuration is given for ngspice since the simulator is provided however another simulator can
be used, for example the configuration for hspice would be something like:

avt_config avtSpiceString "hspice $"

The command line which will be invoked by HITAS

avt_config SimToolModel hspice

Tells HITAS the SPICE format to use for the SPICE deck

avt_config simTechnologyName ../techno/bsim4_dummy.hsp

The technology file to include in the SPICE deck (.INCLUDE)

ttv_DisplayActivateSimulation yes

The flag for activating the re-simulation of reported paths

HITAS Tutorial

61

9.5. Timing Characterization (.lib)

The timing abstraction configuration takes place in the charac.tcl script. Let's review the
configuration needed:

inf_SetFigureName addaccu

tells the tool to apply the SDC constraints to the design addaccu.

create_clock -period 3000 -waveform {0 1500} ck

Creates a clock on signal ck. Period is not relevant, but required by the SDC syntax

inf_DefineSlopeRange default {25ps 50ps 100ps 200ps 400ps} custom

The set of slopes to be applied on input pins

inf_DefineCapacitanceRange default {8fF 16fF 32fF 64fF} custom

The set of loads to be applied on output pins

The timing abstraction is done through the command tmabs:

set abs [tmabs $fig NULL * * * -verbose -detailfile $figname.clog]
lib_drivefile [list $abs] NULL addaccu.lib max

A file addaccu.clog is issued, which contains all the paths used for characterization.

9.6. Timing Characterization (.lib) by SPICE
simulation

The referent script is charac_simu.tcl. The simulation configuration is the same as in the
paths_simu.tcl script, except for the two following lines:

Simulation speed-up
avt_config simOutLoad dynamic
avt_config avtTechnologyName ../techno/bsim4_dummy.ng

It just tells HITAS to transform out-of-path transistors into equivalent capacitances.

The charac_simu.tcl script simulates all the paths used for characterization and issues the
addaccu_golden.lib file. It uses a cache mechanism in order to avoid resimulating several times
the same path (clock paths for instance).

HITAS Tutorial

62

Chapter 10. CPU2901

10.1. Design Description

This example presents HITAS database construction, case analysis, OCV, Xtalk analysis, based upon
a small 4-bit microprocessor design.

It takes place in the cpu2901/ directory.

HITAS Tutorial

63

10.2. Database Generation

10.2.1. Global Configuration

The complete configuration required for the database generation takes place in the db.tcl. The script
also launches the commands that effectively generate that database.

Configuration variables are set in the Tcl script by the mean of the avt_config function.

avt_config tasGenerateConeFile yes

tells the tool to dump on disk the .cns file, which contains the partitions (the cones)
created by the partitioning algorithm.

inf_SetFigureName cpu2901

tells the tool to apply the SDC constraints to the cpu design.

set_case_analysis 0 test

Applies a 0 constraint on the pin test

set_case_analysis 1 func

Applies a 1 constraint on the pin func

The temperature and supplies specifications take place in the cpu2901.spi file:

.TEMP 125

.GLOBAL vdd vss
Vsupply vdd 0 DC 1.62
Vground vss 0 DC 0

As the cpu2901.spi subcircuit is not instantiated, the vdd and vss signals appear in the .GLOBAL
statement.

10.2.2. Database Generation

The generation launch is done through the command hitas:

avt_LoadFile cpu2901.spi
set fig [hitas cpu2901]

10.3. Database Analysis

10.3.1. Path Searching with the Tcl Interface

The complete configuration required for the database browsing takes place in the report.tcl.

The command:

set fig [ttv_LoadSpecifiedTimingFigure cpu2901]

reads the timing database from disk.

HITAS Tutorial

64

The command:

set clist [ttv_GetPaths $fig * * rr 5 critic path max]

gives the 5 most critical paths (critic and path arguments) of the design, that begin and end on a
rising transition (rr argument), with no specification of signal name (* * arguments), in the database
pointed out by $fig. The function returns a pointer on the newly created list.

The command:

ttv_DisplayPathListDetail $log $clist

displays in the log file the detail of all the paths of the path list given by the ttv_GetPaths function.

10.4. Timing Checks

The complete configuration required for stability analysis takes place in the sta.tcl.

10.4.1. Timing Constraints

Timing constraints are set in SDC format. Let's review the constraints commands applied to the
cpu2901:

inf_SetFigureName cpu2901

tells the tool to apply the SDC constraints to the design cpu2901.

create_clock -period 10000 -waveform {5000 0} ck

Creates of clock of period 10000

set_input_delay -min 2000 -clock ck -clock_fall [all_inputs]

set_input_delay -max 3000 -clock ck -clock_fall [all_inputs]

Defines a switching window between times 2000 and 3000 on the input connectors

10.4.2. STA

Launch of the static timing analysis is done by invoking the following commands:

As before, the command:

set fig [ttv_LoadSpecifiedTimingFigure cpu2901]

reads the timing database from disk.

The command:

set stbfig [stb $fig]

launches the STA

The function:

HITAS Tutorial

65

stb_DisplaySlackReport [fopen slack.rep w] $fig * * ?? 10 all 10000

displays a global slack report in the file slack.rep.

10.4.3. OCV

Comment out the command inf_DefinePathDelayMargin and observe the differences in the slack
file. This command adds a margin of 1ns on all data paths

10.4.4. Crosstalk Analysis

Launch of the crosstalk analysis is done by invoking the following commands (script xtalk.tcl):

As before, the command:

set fig [ttv_LoadSpecifiedTimingFigure cpu2901]

reads the timing database from disk.

The crosstalk analysis is activated by switching on the following variables:

avt_config stbDetailedAnalysis yes
avt_config stbCrosstalkMode yes

The command:

set stbfig [stb $fig]

launches the crosstalk-aware STA

The function:

stb_DisplaySlackReport [fopen slack_xtalk.rep w] $fig * * ?? 10 all 10000

prints a global slack report in the file slack_xtalk.rep, displaying variations due to crosstalk effects.

HITAS Tutorial

66

Chapter 11. Hierarchical Analysis

11.1. Design Description

This example illustrates the complete STA and SI of a hierarchical macro. It takes place in the
h_macro/ directory.

The design is made up of two levels of hierarchy as in the following diagram:

The two low-level blocks adder and cpu2901 are full-custom blocks (analyzed in the preceding
examples), designed at transistor-level, and extracted as flat transistor net-lists with parasitics
(including coupling capacitances).

The ram4x128 is an abstracted model of a 128-4bit-word memory.

The top-level instantiates these three blocks, and is back-annotated with parasitics (including coupling
capacitances).

HITAS Tutorial

67

11.2. Database Generation

11.2.1. Global Configuration

The complete configuration required for the database generation takes place in the db.tcl. The script
also launches the commands that effectively generate that database.

avt_config avtLibraryDirs ".:../lab3_adder:../lab6_cpu"

tells the tool where to find timing databases for the lower levels of hierarchy.

avt_config avtVddName vdd

tells the tool which signal must be considered as a power supply, necessary as netlist
is not spice.

avt_config avtVssName vss

idem for ground signal identification.

avt_config tasHierarchicalMode yes

tells the tool to work hierarchically.

avt_LoadFile ./ram4x128.lib lib

load the abstracted block ram4x128.lib

avt_LoadFile top.v verilog

load the Verilog netlist of top

avt_LoadFile top.spef spef

load the parasitics back-annotation in SPEF format

11.2.2. Database Generation

The generation launch is done through the command hitas:

set fig [hitas top]

11.3. Database Analysis

11.3.1. Path Searching with the Tcl Interface

The complete configuration required for the database browsing takes place in the report.tcl.

The command:

set fig [ttv_LoadSpecifiedTimingFigure top]

reads the timing database from disk.

The command:

HITAS Tutorial

68

set clist [ttv_GetPaths $fig * * uu 5 critic path max]

gives the 5 critical paths of the design.

The command:

ttv_DisplayPathListDetail stdout $clist

displays on the standard output the detail of all the paths of the path list given by the ttv_GetPaths
function.

11.4. Timing Checks

The complete configuration required for stability analysis takes place in the sta.tcl.

11.4.1. Timing Constraints

Timing constraints are set in SDC format. For this example we use the same constraints specified for
the cpu2901 example.

11.4.2. STA

Launch of the static timing analysis is done by invoking the following commands:

As before, the command:

set fig [ttv_LoadSpecifiedTimingFigure top]

reads the timing database from disk.

The command:

set stbfig [stb $fig]

launches the STA

The function:

stb_DisplaySlackReport [fopen slack.rep w] $fig * * ?? 10 all 10000

displays a global slack report in the file slack.rep.

HITAS Tutorial

69

Chapter 12. Analog Blocks Handling

12.1. Objective

HITAS is designed to compute propagation delays in digital designs. The advantage of this restrictive
target is to enable very fast computing times. The drawback is that non-digital block characterization
is not directly handled by HITAS and should be supplied to 3rd-party analog simulators. However,
HITAS provides various ways to link with external characterizations.

This example presents two of the simplest ways with which HITAS can deal with analog blocks. It
takes place in the blackbox/ directory.

12.2. Database Generation

The complete configuration required for the timing database generation takes place the db.tcl script.
The temperature and power supplies are specified directly in the circuit.spi file.

12.3. Ignore Function

The simplest and often sufficient technique for handling analog parts of a design is to tell HITAS to
explicitly ignore them so that they will be included in the timing database.

HITAS can ignore specified components with inf_DefineIgnore command. This directive can be
used to ignore transistors, instances, resistances, capacitances and diodes by specifying them by name

It is equivalent to commenting out elements in the spice netlist

See HiTas Reference Guide for further details.

inf_SetFigureName circuit

tells the tool to apply the SDC constraints to the design.

inf_DefineIgnore resistances R1

tells the tool to ignore the resistance named R1 in the design.

inf_DefineIgnore instances INV1

tells the tool to ignore the instance inverter named INV1 in the design.

The first ignore directive is to remove what HITAS considers to be a short circuit between the power
supplies. A resistance such as this causes problems for the identification of power supply nets and
so must be handled like this.

The output logging function has been activated in the db.tcl script for file parsing statistics (see
documentation of avtLogFile and avtLogEnable in the reference guide for more details). Look at
the generated log file to see the effect of the directive.

HITAS Tutorial

70

The second directive effectively leaves a hole in the netlist, however, this poses no problem for the
timing database generation for the rest of the circuit. Try running the path report script (report.tcl)
both with and without this directive to see the effect. Leave this directive commented out for the next
section.

12.4. Integration in a Hierarchical Netlist

The second way of handling analog parts is the incorporation of timings from a .lib file to model
the timing of a block (anolog or otherwise) instantiated within a hierarchical netlist. In order to use
this method it is first of all necessary to create "analog holes" in the netlist where these blocks are
instantiated. This is done with the avt_SetBlackBoxes function, taking as argument the list of the
sub-circuits to blackbox.

The default behavior of HITAS is not to try to fill the "holes". To tell the tool to fill the holes with
timing characterizations, the tasBlackboxRequiresTimings variable is set to yes in the db.tcl
script.

The timing information for these "holes" must be provided from an external timing database, this is
typically done by loading an appropriate .lib file.

In this example, we will be using an external .lib to represent the timings for the flip-flop. Although
this is not really an analog circuit, the procedure would be the same for an analog block and a flip-
flop is a simple example containing setup, hold and access arcs.

To try this, you should recreate the timing database with the following lines in the appropriate script:

avt_SetBlackBoxes {msdp2_y}
avt_config tasBlackboxRequiresTimings yes
...
avt_LoadFile ./msdp2_y.lib lib

The timing arcs for the instances msdp2_y are directly integrated in the new database. The database
for circuit is flat and does not contain instances of msdp2_y.

Examine the timing database using the path report script and compare with the path reports obtained
without "blackboxing" of the flip-flops.

HITAS Tutorial

71

Chapter 13. SSTA

13.1. Principles

HITAS SSTA is a Monte-Carlo like analysis: it is based on a collection of STA samples. Each STA
sample is based upon the creation of a timing database sample, constructed by picking up random
values for the statistical parameters embedded in either the SPICE netlist or the technology files.
An SSTA sample consists therefore of a timing database and a STA run. In the end, there are as
many different timing databases and STA runs as SSTA samples. STA runs are of course highly
configurable, in order to extract any relevant information.

13.2. Analysis on the ADDACCU

This example features 2 analysis: A SSTA analysis and the PATH analysis. In the SSTA analysis,
slacks are computed, sorted and displayed in an efficient way. In the PATH analysis, particular paths
are retrieved and their variations are displayed. For each of those analyses, 50 runs are performed on
the ADDACCU design.

13.2.1. Generating the data for the SSTA analysis

The script to generate the SSTA data is no different from a standard STA script except for 2 TCL
instructions inserted at the beginning and at the end of the script. The script used to generate those
data is named ssta.tcl.

The first instruction is responsible for the handling of the 50 runs:

runStatHiTas 50 -incremental -result slacks.ssta -storedir store

In case the configuration variable avtLibraryDirs is used, this instruction must be placed after the
configuration because modifications are applied to this configuration variable to get proper search
paths.

Calling runStatHiTas will launch 50 separate runs of the ssta.tcl script one by one
(multiprocessing is not used in the tutorial). Each run will have its data written into the file
slacks.ssta and the required information to display the slack details will be stored in the directory
store.

Using the option -storedir is not mandatory but if it is not used, only the slack summaries will be
available.

The -incremental flag is set to enrich any previous execution of the SSTA database so 50 more runs
will be added to any existing set of runs.

The second instruction is responsible for the handling of STA data:

ssta_SlackReport -senddata $stbfig simple

HITAS Tutorial

72

ssta_SlackReport is called after the stb API execution. The stability figure and a slack data output
mode is given to the function. The only mode available at the moment is simple. Called in this
form, it retrieves at most the 10000 worst negative slacks from the stability figure. If no negative
slacks are found, the worst positive one is searched. The slack descriptions are then written to the file
slacks.ssta for a future use.

13.2.2. Reporting the results for SSTA analysis

The script slack_analysis.tcl reads the slacks.ssta file and uses the data in the directory store
to display some results.

Slack occurrence

The first kind of result output is generated using the command:

ssta_SlackReport -display "slacks.ssta" $ofile -storedir store

The report is driven to the file slack_report.log.

At the beginning of the report, yield information is printed: the total number of runs, the number of
runs with negative holds, the number of runs with negative setups, the number of runs with PVT errors
and the global yield.

In a second part, each negative slack is printed with the number of occurrence the of slack, the run
number where the slack is the worst, some statistical information and the slack description. As the
store directory is given as an argument to the function, the detail of each negative slack is displayed
after this summary.

Finally, at the end, a list with the different seeds used to generate each run database is displayed.

Worst slack distributions

The second kind of result is output in a set of file through a gnuplot graphical file representation by
using the command:

ssta_SlackReport -plot "slacks.ssta" "distrib"

distrib is a prefix that will be used to generate the gnuplot files. There are 2 plots: 1 for the setups
slacks and 1 for the holds slacks.

The gnuplot command file will be named distrib.holds.plt and distrib.setups.plt. The
corresponding data files are distrib.holds.plt.dat and distrib.holds.plt.dat.

The distributions can be viewed using the UNIX command:

gnuplot <command file>

HITAS Tutorial

73

13.2.3. Generating the data for the PATH analysis

The script to generate the PATH data is very easy. In this case there is no need for stability to be
performed. The only operation to be done is to retrieve the list of desired paths to analyse. In this
example all paths and accesses will be taken. As for the SSTA data generation, 2 TCL instructions
are inserted at the beginning and at the end of the script. In between, the UTD is built and the path
search is performed. The script used to generate those data is named paths.tcl.

The first instruction is responsible for the handling of the 50 runs:

runStatHiTas 50 -incremental -result paths.ssta -storedir store_paths

The instruction is placed after the configuration variable avtLibraryDirs

After the UTD generation, the list of accesses and paths are extracted from the UTD and merged
together:

set paths [concat [ttv_GetPaths $fig -access] [ttv_GetPaths $fig]]

The last instruction is responsible for the handling of PATH data:

ssta_PathReport -senddata $paths simple

ssta_PathReport is called with the path list and a path data output mode. The only mode available
at the moment is simple. The path descriptions are written into the file paths.ssta for a future use.

13.2.4. Reporting the results for SSTA analysis

The script path_analysis.tcl reads the paths.ssta file and uses the data in the directory
store_paths to display some results.

The path result report is generated using the command:

ssta_PathReport -display "paths.ssta" $ofile -storedir store_paths

The report is driven to the file path_report.log.

A summary of all paths/accesses is printed at the beginning of the report. Each path has an entry in
the summary with some statistical information, the minimum delay of the path and the corresponding
run number, the maximum delay and the corresponding run number and finally the path description.

As the store_paths directory is given as an argument to the function, the detail of each path is
displayed after this summary. There are 2 details for each path: the detail for the minimum path value
and the detail for the maximum path value.

Finally, at the end, a list with the different seeds used to generate each run database is displayed.

HITAS Tutorial

74

Index

No index for this document.

	1. Overview
	2. Static Timing Analysis
	2.1. Timing Analysis Theory
	2.1.1. Timing Analysis Goals
	2.1.2. Timing Analysis in the Design Flow

	2.2. Definitions
	2.2.1. Delay Modeling
	Signal Propagation through a Simple Inverter
	Signal Propagation through an RC Network

	2.2.2. Slope Modeling
	2.2.3. Delay Dependancies

	2.3. Delay Calculation
	2.3.1. Electrical Simulation
	Simple Gates
	Complex Designs
	Limitations

	2.3.2. Static Timing Analysis
	STA Basics
	Graph Modeling

	2.3.3. Gate Characterization Methodology

	2.4. Timing Analysis
	2.4.1. What Needs to be Checked?
	2.4.2. The Behavior of Sequential Elements
	Latch
	Flip-Flop
	Dynamic Logic

	2.4.3. Sequential Design Analysis
	Maximum Operating Frequency in Flip-Flop Based Designs
	Skew Impact Analysis

	2.4.4. Global Characterization
	Global Setup and Hold Times
	Access Time

	3. Introduction to Programming with Tcl
	3.1. Introduction to Tcl
	3.2. Tcl Programming Basics
	3.2.1. Variables and Variable Substitution
	3.2.2. Expressions
	3.2.3. Command Substitution
	3.2.4. Control Flow
	3.2.5. Procedures
	3.2.6. Lists
	3.2.7. Arrays
	3.2.8. Strings
	3.2.9. Input/Output
	3.2.10. Other Miscellaneous Tcl Commands

	4. Examples
	5. Inverter
	5.1. Design Description
	5.2. Database Generation
	5.2.1. Principles
	5.2.2. Global Configuration
	5.2.3. Technology Integration
	5.2.4. Database Generation

	5.3. Database Analysis
	5.3.1. Database overview
	5.3.2. Database properties

	6. Inverter Chain
	6.1. Design Description
	6.2. Database properties
	6.3. Path Reports

	7. Adder
	7.1. Database Generation
	7.1.1. Global Configuration
	7.1.2. Database Generation

	7.2. Path Searching with the Tcl Interface
	7.3. Exercises
	7.4. Solutions

	8. Master-Slave Flip-Flop
	8.1. Timing Checks
	8.1.1. Principles
	8.1.2. STA with Tcl Interface
	Timing Constraints
	Static Timing Analysis

	8.2. Timing Checks
	8.2.1. Input to Latch
	Inputs Specifications
	Timing Checks Description
	Setup Slack
	Hold Slack

	8.2.2. Latch to Latch
	Timing Checks Description
	Setup Slack
	Hold Slack

	8.2.3. Latch to Output
	Output Constraints
	Setup Slack
	Hold Slack

	9. Addaccu
	9.1. Design Description
	9.2. Construction of the Timing Database
	9.3. Timing Paths Identification
	9.4. Timing Paths Validation by SPICE simulation
	9.5. Timing Characterization (.lib)
	9.6. Timing Characterization (.lib) by SPICE simulation

	10. CPU2901
	10.1. Design Description
	10.2. Database Generation
	10.2.1. Global Configuration
	10.2.2. Database Generation

	10.3. Database Analysis
	10.3.1. Path Searching with the Tcl Interface

	10.4. Timing Checks
	10.4.1. Timing Constraints
	10.4.2. STA
	10.4.3. OCV
	10.4.4. Crosstalk Analysis

	11. Hierarchical Analysis
	11.1. Design Description
	11.2. Database Generation
	11.2.1. Global Configuration
	11.2.2. Database Generation

	11.3. Database Analysis
	11.3.1. Path Searching with the Tcl Interface

	11.4. Timing Checks
	11.4.1. Timing Constraints
	11.4.2. STA

	12. Analog Blocks Handling
	12.1. Objective
	12.2. Database Generation
	12.3. Ignore Function
	12.4. Integration in a Hierarchical Netlist

	13. SSTA
	13.1. Principles
	13.2. Analysis on the ADDACCU
	13.2.1. Generating the data for the SSTA analysis
	13.2.2. Reporting the results for SSTA analysis
	Slack occurrence
	Worst slack distributions

	13.2.3. Generating the data for the PATH analysis
	13.2.4. Reporting the results for SSTA analysis

