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A. Identification and Significance of Problem or Opportunity

A.1. Summary

The capability for recovery from failures is incorporated in almost every computer-based
system that exists today. For example, enterprise computer systems utilize ECC memory;
microprocessors detect and “vary out” bad data cache lines; the ubiquitous TCP networking
protocol detects and retransmits “dropped” packets. As a result, the availability and
reliability characteristics of commercial components have improved dramatically, perhaps
by an order of magnitude each decade. Yet, the design of fault tolerance mechanisms for
highly available, mission critical weapons systems continues to be difficult, requiring
specialized skills of highly experienced engineers. In addition, the resulting systems are
often “stove-piped,” requiring a significant effort to coordinate responses to faults in
systems-of-systems environments.

The basic problem is that there is no coordination between the various fault tolerance
techniques. In most cases, this is benign and the system behaves reasonably. In some
situations, however, the fault tolerance strategies interact with   or even interfere with 
each other, possibly leading to a cascade of failures, resulting in overall system failure.
Component failures are generally probabilistic, and these cases are rare enough that the
problem need not be addressed in typical commercial systems.

These issues must be addressed, however, when modern weapons systems are created from
the commercial components. Such systems include two additional fault sources that violate
the stochastic model. The first is battle damage: components in close proximity have a
common failure mode. The second is real-time deadlines: missing a deadline is a failure
that must be handled, but the process of recovering from one such timing failure is likely to
induce another timing failure later.

There is a current opportunity to address this problem arising from the confluence of
several conditions:

• Commercial enterprise systems are becoming complex enough that they require system-
wide resource management, and commercial vendors are adapting their system monitors
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to provide such management. In addition, vendors are cooperating to create relevant
industry-standard models, such as the DMTF’s Common Information Model (CIM), and
The Open Group’s Application Instrumentation and Control (AIC) and Application
Response Measurement (ARM) standards.

• Weapons systems are being redesigned so that they can be upgraded incrementally in
order to incorporate improvements in COTS components, both hardware and software.
This often takes the form of an architecture based on open systems that defines a
common system model for several weapons systems. The Navy, for example, has
recently introduced the Navy Open Architecture (NOA). These common architectures
are a forcing function that encourages the use of industry standards, such as CIM.

• Recent systems research, such as DARPA’s Quorum program, has led to insights into
systems interaction and the identification of QoS parameters that can be used to
characterize the requirements and capabilities of components relative to dependability.

• The Open Group has recently developed a Fast Failure Detector (FFD) component
based on the results of the Quorum program. While this component is specialized
toward detection of network node failures, the process of extracting the failure detector
into a separate component has led to a number of insights about interactions between
components with interacting dependability requirements.

We propose to leverage these insights and develop a dependability model for component
interactions. We will investigate the use of this model in the context of the Navy Open
Architecture with the intent of allowing the use of industry-standard protocols and
commercial components within the NOA resource management system. We will investigate
the feasibility of managing real-time, mission-critical applications using commercial
enterprise resource management systems.

Based on our experience with the FFD component, we believe that the crux of the issue is
identifying the characteristics of a failure the particular guarantee of service that has not
been satisfied. The ability to specify this policy statement with defined, documented, and
measurable parameters will enable an analytic approach to the problem. In the case of
FFD, these policies are incorporated as part of its operational parameters, which are
established via a QoS Application Programming Interface (API). Thus, we intend to focus
specifically on this API as a specific instantiation of a more abstract dependability model.

We propose to use the formulation and definition of this API as a driving function in
examining the role of failure detection in mission-critical applications. We will investigate
potential implementations of such failure detectors that range from intrusive (built into the
algorithms of the application) to passive external observers (no interaction with
applications).

Successful completion of this SBIR effort will produce several products for use in real-time
mission-critical systems:
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• A taxonomy (enumeration) of common failure detection strategies in real-time systems.

• A failure model with QoS characterictics specific to real-time mission-critical systems.

• An API that incorporates those QoS parameters and supports implementations of the
common failure detection strategies.

• A set of reusable failure detector components based on that API.

• A set of worked examples that demonstrate the use of these failure detector components
in implementing highly dependable, real-time systems. These examples would include
scenarios with both commercially available enterprise resource management systems
and specialized resource management systems.

A.2. Problem Description
Modern weapons systems are complex and distributed, involving multiple subsystems, each
of which typically comprises multiple components. System components receive data from
multiple sources of information, fuse that information, select a response, and then put that
response into action. The sensors and actuators are often physically remote, connected via
interruptible communication paths. And, of course, weapons systems are particularly
subject to physical damage.

Modern weapons systems are also mission critical. The overall system must react to
environmental events in a timely and reliable manner. Defensive systems, in particular,
must respond to unpredictable events, and therefore must provide highly reliable, highly
available service even in severe conditions.

A.2.1. Fault Tolerance
Design of fault-tolerant weapons systems is not straight-forward, and a major role of the
system engineer is to select the strategy for providing fault tolerance. There are many fault
tolerance techniques, and any particular system will usually involve multiple mechanisms,
with different choices for different subsystems. In addition, the strategy is usually
hierarchical, whereby individual components are themselves fault-tolerant, but there are
also mechanisms by which higher level components will recover if those fault-tolerant
components should fail.

The rationale for a hierarchy of strategies is that no single system or subsystem can ever
provide 100% availability. There are many reasons: First, it is not possible to predict all
possible failure modes in a system. Thus, it is not possible to systematically design a system
with strategies for recovering from all failures. Second, adding mechanisms for recovery
adds complexity and increases the realm of potential failure modes. Perhaps the most
important restriction, however, is due to the finite resources available to any project: limited
funding, tight timeliness, and a constricted pool of knowledgeable design engineers.

This limitation on resources has led to the increasing utilization of COTS components, and
even commodity components. This evolution is occurring simultaneously at many levels in
the system. Commercial DSP ICs are incorporated into special peripheral boards, which are
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plugged into commercial computer workstations and servers that form the core computing
infrastructure. Those computers then interact utilizing commercial routers communicating
via commercial network products. Software applications are built atop commercial
operating systems and commercial middleware, such as CORBA products. They
incorporate commercial database systems, such as Oracle. The executable programs are
created using commercial compilers that link in commercial algorithm libraries.

Almost by definition, the characteristics of these components are beyond the control of the
system engineer. The evolution of a commercial component will be determined by the
commercial supplier based upon that supplier's view of the "needs" of the marketplace,
which is usually interpreted as the path that provides the most profit to that supplier. As a
result, the components are likely to change over time. Some changes will be benign; others
will even be beneficial. Some, however, will be detrimental to the weapons system. Often
these changes will be subtle, such as timing characteristics, or susceptibility to faults. In
many cases, the manufacturer wasn't aware that customers depended on these
characteristics, assuming that they were uncomplicated internal engineering design choices.

The system engineer can select from suitable components available at design time. The
system engineer can also delay including the modified components into fielded systems, but
only to the extent that earlier versions of those components have been warehoused and are
available. In addition, this imposition of such a delay must be an explicit action. The need
for a delay must be recognized based on detecting changes in components received from the
supplier. (Remember that the manufacturer didn't realize that the change was important.)
That requires significant and ongoing testing of the system, and that requires resources 
which bumps up against the project development resource limits.

Consequently, weapons systems designers must balance many factors in order to create the
most effective system possible. The overall system must be usable in the context that it will
be manufactured, deployed and maintained. The system must adapt to the changes that will
be imposed upon it. Many of these changes are unpredictable and will affect future design
changes. To accommodate future changes, a design must be understandable; to be
understandable, a design must be simple   or be perceived as not complex. This difference
between reality and perception has helped to foster the conversion to use of objects in
systems. To the extent that an object, or other component, can be treated as a black box, a
designer can ignore the subtleties of that component. This results in fewer variables in the
design space, and usually leads to a simpler, more understandable design.

Many components, of course, should not be treated as black boxes. There are the variations
in COTS components described earlier. Purpose-built components will experience similar
evolution. In addition, there may be knowledge available that improves the ability to select
an effective strategy for recovery from failures. For example, an application running on
computers that are subject to battle damage might provide overall higher availability when
the recovery strategy involves switching to a physically distant backup computer.
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A.2.2. Failure Detection
In order to recover from a failure, a system must be cognizant that a failure has occurred.
Real-time systems have time constraints. In many cases the timeliness of an operation is
more important than the knowledge incorporated into that operation. For example, the
signal processing subsystems of distributed radar systems are often organized into
processor pools. Processing of individual radar reports will be apportioned among those
processors. If one of those processors should fail, the fate of a particular computation
operation may be irrelevant. What is important is that the overall system continue operation
  that it continue to receive radar sensor reports, that it continue to process most of those
reports, and that it continue to produce radar track information in a timely manner.

In order to continue real-time operation in the presence of failures, however, the system
must incorporate a strategy for dealing with failures. In this example, for instance, the
system must not suspend operation while waiting for the results of all computations that
have been assigned to other components. Instead, it might disregard the missing
computation result and continue its processing using the information that is available. There
is a trade-off here, however. Utilization of more data sources typically produces better
information. A multi-sensor radar system should fuse as many of those sources as are
available. Thus, timely detection of a failure is important: The earlier that a system knows
that a component has failed, the sooner it can abort the wait for data from that component,
and the faster it can produce and deliver its own result.

Timely detection of failures may be particularly crucial to certain types of operations.
While radar systems may be relatively insensitive to the loss of individual sensor reports,
other systems may not be. For example, an offensive weapons system may distribute its
computations across a processor pool. In this case, however, each of those results may be
necessary for successful launch. Thus, a missing computation due to a failed component
must be reassigned to another component. But, the recovery action can not be initiated until
the failure has been detected. The longer the period before the failure has been detected, the
less time is left for the execution of the recovery action prior to the deadline.

Of course, an alternate strategy would have been to perform each computation in parallel.
This is not usually feasible to due the enormousness of the required computation. Even if it
were, however, there is still the possibility of both computations failing. This is why
selection of failure recovery strategies is so important to the systems engineer. Fault
tolerance is a systemic property (an emergent property in complexity theory). Fault
tolerance is a distinct engineering discipline. There is a separate body of literature and a
separate base of engineering experience. This knowledge base must be effectively
integrated into the overall system design.

The dissection of separate, reusable components for failure detection and recovery
promotes the effectiveness of that integration. The separation allows the incorporation of
specialized knowledge about the application environment and the nature of failures that are
probable. Separation also allows the use of detection strategies that were not contemplated
as part of the original component. Reuse improves the quality of the component by
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increasing the resources available for developing, documenting, and testing the component.
In addition, reuse leads to the development of an experience base   the existence of
knowledge about how to use a component, how it behaves, how it misbehaves, and how its
operation can be misunderstood.

A.2.3. False Positives
The requirement for timeliness in real-time systems has a side-effect: sometimes a
component has not failed, but is simply slow. This tardiness is often an expected occurence
in normal operation. Environmental noise on a communication link can lead to corrupted
information and the need for data retransmission. Operating system schedulers include
some jitter   even in real-time operating systems. Application algorithms may be
unpredictable. Kalman filters, for instance, involve a third power dependency.

The root cause of the problem in generally irrelevant (for purposes of maintaining
timeliness.). Sometimes, the failure detector in a real-time system must declare a
component to be failed even when it is only tardy. This is a false positive condition and
must be handled appropriately. If an application has determined that a component has failed
and then a result from that component shows up, the application is likely to produce an
incorrect result. In addition, there is often a high cost for reincorporating failed components
  and even tardy components   back into the normal processing stream.

This leads to a trade-off: the shorter the latency that is tolerated by a failure detector, the
more quickly a system can recover from a failure. Conversely, the longer the latency, the
fewer false positives that will occur. The choice of the latency period is a Quality of Service
(QoS) issue, and the system engineer should be able to treat the selection as an explicit
design parameter. In fact, this selection of timeout characteristics is probably the most
common criterion used for failure detectors, and incorporating it as a tuning parameter is
key to the creation of reusable componentry.

A.2.4. Fault Isolation and Failure Recovery
It is not sufficient just to detect a failure. The system must identify the characteristics of the
failure and make a determination about the fault (or faults) that is causing the failure. It is
not necessary, however, for a system to fully determine the root cause of a failure. It does
not matter, for example, whether the central processor or the system bus of a computer has
failed. Applications will not be able to run on that computer, so a recovery strategy must
involve the use of a different computer. Similarly, it does not matter whether a remote
computer has failed or whether only the communications links to that computer have failed.
No data is flowing to or from that computer, so a recovery strategy must involve a different
computer using a different set of communications links.

It is important, however, for the system to determine a consistent strategy for failure
recovery. Different components in a system may be impacted differently by a particular
failure. Accordingly, each of the components might initiate a different recovery procedure,
a situation that often leads to chaos and overall system failure. Thus, it is necessary that
failure recovery be coordinated. In highly integrated systems, such as the Navy Open
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Architecture, this coordination must cover both the real-time and non-real-time portions of
the system. It is very beneficial, therefore, for the real-time portions of the system to be
integrated with the enterprise resource management system(s) for the overall system.

Most of this coordination must occur prior to the failure. The role (or roles) that each
component plays must have been identified as part of system configuration and appropriate
information provided to the components. In addition, up-to-date state information must be
maintained throughout the system as part of its normal execution. Then, when a failure
happens, each component is already aware of the state of other components. This reduces
the amount of data that must be exchanged during failure recover to only the information
about the failure and its effects on the various components.

A.3. An Analysis of the Problem in the Context of Navy Applications
Although many aspects of military weapons systems are similar to commercial systems,
there are numerous differences that can affect the selection of solution patterns for Navy
weapons systems.

One distinguishing feature is the real-time nature of the systems. Generally, commercial
systems can be real-time or they can be complex, distributed systems. There are few
commercial systems that are both. Military systems, on the other hand, are often both real-
time and complex, distributed systems. The hallmark of future military systems will be the
capability of correctly operating in more complex contexts than the enemy can.

The purpose of offensive military weapons is to disable the enemy's fighting capacity,
which is usually performed by destroying the enemy's weapons and often by killing enemy
forces. Because the enemy has similar but opposing goals, defensive military weapons
systems are usually life-critical. In addition, the stimuli applied to defensive systems are
often under the control of the enemy, which can be expected to select times and methods of
attack for its own advantage. Thus, it is important that shipboard resources be applied to the
most critical tasks. Dynamic changes in resource availability should result in a reevaluation
and potentially a reassignment of resources.

Explicit management of resources is so critical that the Navy Open Architecture includes a
separate subsystem for this purpose. This subsystem is pervasive and comprehensive: it
interacts with and controls components at every level of the system. It must evaluate the
overall mission of the ship and assign resources accordingly. The reuse and interoperability
aspects are obviously important, and this is one area where the benefits of a common
architecture are particularly apparent.

Consider the issue of fault trend analysis, as it might be performed by HP’s OpenView
resource management system. Failure detectors for individual components could report
“interesting” events, e.g., network packets with bad checksums, or message latencies over
75% of the timeout values. Background trend analyzers could then predict failures. For
example, if a particular application is encountering such problems, that application may be
misconfigured. On the other hand, if all applications using a particular network are
encountering problems, then that network might be overloaded. This analysis can then
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direct additional analysis. Notice, however, that the “interesting” events are mostly easily
identified via specific criteria. The definition and use of mensurable metrics within a system
simplify the task of resource management allowing the use of simple analysis techniques
rather than heuristics, which are inherently system-specific. The use of commensurable,
industry standard metrics enables the reuse of common, perhaps even commercial resource
managers. Thus, the identification and specification of common QoS parameters for failure
detection is important to the overall problem of system resource management.

A.4. Opportunity
The capabilities of The Open Group offer an excellent opportunity for advancing the
effectiveness of failure detection   in both Navy applications and in commercial
applications. The Open Group provides experience in QoS-aware components for real-time,
fault-tolerant systems, and a history of transferring technology to commercial vendors. In
addition, it has existing relationships with defense contractors, such as Lockheed Martin
and Raytheon, who can provide a knowledge of Navy applications needs and an
understanding of the underlying nature of those applications, resulting in an ability to
distinguish between those characteristics that are fundamental to a solution, and those
characteristics that are artifacts of the history of an applications domain. These
collaborations offer the potential for short-term incorporation of effective solutions into
Navy applications and the possibility of possible transfer to commercial vendors and COTS
status over the longer term.

A.5. Proposed Solution

A.5.1. Overview
As a result of research sponsored by DARPA, the US Air Force, the US Navy, and several
commercial organizations, The Open Group has developed a vision for addressing the
special requirements of distributed, real-time, fault-tolerant systems. We are currently
developing a framework and tool kit that implements portions of that vision under a Phase
II SBIR effort (see Section K). Previously developed components include CORDS/GIPC, a
real-time group communication system (see Related Work). During research sponsored
under DARPA's Quorum program, the concepts used in the CORDS/GIPC failure detector
were extracted and reimplemented in a separate component, the Fast Failure Detector
(FFD), which can be used independently of CORDS/GIPC.

The Open Group believes that an opportunity exists to develop a better model of failure
identification and detection, and to provide componentized support for real-time, fault-
tolerant distributed systems. We believe that this model and these components could be
incorporated into shipwide resource management systems based on commercial products,
such as HP’s OpenView or IBM’s Tivoli, and propose to investigate this opportunity using
Navy Open Architecture weapons systems as prototypical applications.

The effort would focus on the failure detection aspect of the overall problem because of the
potential for extracting it to a separate, reusable component that could be inserted into
existing applications with minimal impact on the current designs. We would also intend to
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explore the feasibility of using multicast protocols as a fundamental (but optional)
communication concept within the failure management system in future Navy applications.
Examples of such multicast protocols include group communications, such as the
CORDS/GIPC component, and publish/subscribe protocols.

A.5.2. Fast Failure Detector
The existing Fast Failure Detector (FFD) addresses a problem identified by the HiPer-D
group (see Related Work section). The HiPer-D test-bed uses the Ensemble group
communication system to provide scalable fault tolerance. One of the tightest real-time
constraints within the HiPer-D system is the Aegis AAW (ship self-defense) execution
path, which includes multiple applications and has an aggregate required response time on
the order of multiple seconds. The HiPer-D prototype system easily achieves this goal
during normal operation.

The Hiper-D team determined that the system did not, however, meet this deadline while
recovering from component failures. (Note that this is a self-imposed goal within the HiPer-
D project. The actual Aegis system does not have this requirement and takes at least an
order of magnitude longer to recover from failures.) The basic problem is that the
performance scalability of the system is based on the use of virtual synchrony, which
requires that multiple nodes coordinate the delivery of messages. The Ensemble group
communication system delivers each data message to the nodes of all recipients. The nodes
must then exchange additional control messages to determine that all intended recipients
have received all required messages. At that point, each node can release the data messages
to the application processes. If one node does not acknowledge receipt, the other nodes
must delay (on that particular data stream) until the node does respond or until the node is
ejected from group membership.

Real-time systems must meet time constraints. Real-time systems utilizing group
communication must impose time limits on receipt of message acknowledgements in order
to meet those time constraints. Nodes that do not respond must be ejected from group
membership in order for the overall application to meet its timeliness goals. A problem
arises in that sometimes unresponsive nodes have not failed, but instead are simply slow,
i.e., situations where tardy nodes induce false positive conditions. While handled correctly
by applications based on group communications, the result is that each tardy application
must be reinitialized and then allowed to rejoin the execution group. This is an expensive,
high overhead proposition, requiring full reacquisition of application state, and is highly
undesired by systems engineers.

A basic design issue with using network communication in fault-tolerant systems is that
there is no positive indication that a failure has occurred. Instead, failure is inferred by the
absence of anticipated activity. Ensemble's group communication host failure detection
mechanism is based on time-outs of heartbeat messages. Individual message delivery time-
outs typically must operate an order of magnitude faster than the overall system time
constraint. Thus, the AAW execution path would require sub-second time-outs.
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Unfortunately, these time-out periods are of the same magnitude as scheduling jitter in non-
real-time operating systems and middleware components.

Ensemble's design target was to provide high throughput, not real-time predictability. As
such, multiple threads of control are used internally to batch messages in order to optimize
network traffic. There is no way to tag particular messages and/or threads as high priority.
Thus, the only way to provide higher priority to the heartbeat messages would be to provide
higher priority to the entire Ensemble AAW process. Due to its life-critical function, the
AAW execution path was already operating at one of the highest priority levels in the
system. Thus, there was no way to provide a design-time guarantee that the HiPer-D AAW
application could meet its latency performance objectives while recovering from failures.

The existing FFD was conceived as a way to address this deficiency. Recognizing that the
crux of the problem was delivery of low latency messages, the FFD component replicates
Ensemble's heartbeat function. The FFD component, however, has been developed using
real-time design and programming techniques. Thus, system resources can be dedicated to
the delivery and processing of time-critical heartbeat messages. If FFD determines that a
remote node has failed   or is simply tardy, it notifies the application on the local node,
which then initiates ejection of the other node. (The original design called for FFD to inject
the failure notification directly into Ensemble, but that proved to require too many changes
to Ensemble itself.)

As a result of the development and inclusion of FFD, HiPer-D engineers have reported that
they are operating test-bed systems achieving node failure detection times on the order of
100 to 150 milliseconds. This performance is being achieved using Sun Microsystems
computers running Solaris, and PC-class systems running Carnegie Mellon University's
version of Linux with Resource Kernel enhancements on a Gigabit Ethernet network.

A.6. Technical Approach
Although our technical approach is based on the currently existing Fast Failure Detector,
discussions with the HiPer-D team led to insights about potential modifications, extensions,
and alternate algorithms. These concepts provide the basis for creating a general API that
would enable an object-oriented approach to mission-critical applications across a broad
range of problem areas, including Navy weapons systems.

A.6.1. Current Fast Failure Detector (FFD)
The current FFD has several advantages. First, it has a simple, easily understandable
interface. Essentially, the API is a list of network hosts and a maximum latency time. The
FFD generates heartbeat messages to announce its liveness to other FFD components;
simultaneously, it checks for heartbeat messages received from other instances of FFD on
other hosts. If no messages are received from a host for a period longer than the maximum
allowed, the application is notified by a callback or a local message (depending on the
selected communication structure).
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Second, the FFD is a separate component that performs only failure detection. Thus, it can
be inserted into other applications without perturbing the design strategies of those
applications. This also simplifies testing. Many "fault-tolerant" applications aren't:
Although the designs were intended to provide fault tolerance, there are often design or
implementation errors. Because of limited testing time and facilities, many systems cannot
perform exhaustive testing of faulty component configurations. We have been able to
deploy and test FFD simply and effectively using fault-insertion techniques as well as by
explicitly taking nodes off-line. In addition, the use of the FFD API simplifies testing of the
application by reducing the number of external fault signals, as well as providing a
convenient point for initiating fault insertion into the application.

Another advantage is that the FFD has been designed using real-time design techniques.
Each function within FFD is performed within a single dedicated thread, allowing precise
allocation of resources to each function. The locks are organized into a simple hierarchy,
allowing the effective use of operating system locks that support priority ceiling or priority
inheritance algorithms. Finally, FFD has low overhead: its CPU usage is below the
threshold of measurement (on Solaris and Linux) in the existing test-bed configurations.

The current FFD is also capable of enhancing the real-time performance of a pre-existing
component that was not designed for use in real-time systems. By amplifying the
capabilities of such components, FFD increases the number and variety of components
suitable for use in real-time, fault-tolerant applications.

A.6.2. Alternate Fast Failure Detector Implementations
Our experience with the current FFD both in The Open Group's facilities and in the HiPer-
D test-bed at NSWC Dahlgren has identified several enhancements and alternate
implementations that we believe would prove useful in other applications, such as Navy
weapons systems. The enhancements and alternate implementations generally would not
alter the API for applications using the existing FFD capabilities.

The design of the current FFD was undertaken to address a specific deficiency in failure
detection identified by the NSWC HiPer-D team   the lack of rapid, reliable detection of
failures of remote components on networked hosts. The HiPer-D applications already had
rapid failure detectors for other failure modes, most notably the detection of process failures
via the use of the UNIX waitpid(3) and the Windows NT Event wait system mechanisms.
Internally, however, the HiPer-D applications make little distinction between the two
failure modes. Generally, when a process/component fails, the failed component is
immediately excluded from current processing and a pre-assigned backup process is
activated and brought into the processing configuration when convenient for the
application. The design of the applications would be simplified if both types of failures
were handled in a similar fashion and if failure notifications for both local and remote
components were received via the same mechanism. Thus, one can see the utility of
developing a failure detector with a similar interface to the current one but that instead
responds to process termination notifications.
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In fact, there are additional alternate implementations that appear to be useful. One would
detect liveness of threads within a multi-threaded application. For a variety of reasons,
individual threads will often get "hung." Many real-time applications are event driven and
implemented as an event loop. Once each time through the event loop, each thread could
invoke a software component that updated a mailbox in shared memory. A single such
"dead-man timer" failure detector could effectively monitor the operation of many such
threads. Such an implementation would have the benefits of a common interface along with
very inexpensive operation in the real-time threads.

Other implementations might take advantage of knowledge of characteristics of the
underlying infrastructure. For example, the current FFD utilizes the IP multicast protocol to
reduce the amount of network message traffic. While IP multicast effectively leverages the
bus nature of coaxial-based Ethernet, many higher speed networks such as optical switches
do not natively provide it. Thus, an FFD that could aggregate ("piggy-back") messages
might cause less interference with normal application data traffic. Also, some switch
technologies provide switch-specific information that could be used.

There is a significant body of academic literature of failure detection algorithms and
particularly on consensus using failure detection algorithms   although there is little
emphasis on real-time systems. We would investigate the literature for algorithms suitable
for Navy systems.

Other implementations of a failure detector might differ primarily in the interface to the
underlying communication structure. For example, the existing FFD operates at the socket
level, using IP multicast. A failure detector in a CORBA-based environment might use the
same failure detection and prediction algorithms, but it might communicate using CORBA
invocations, or a CORBA event channel, or even the recently introduced CORBA Multicast
capability. Such a component might also be expected to interface with the CORBA ORB 
or provide input into a CORBA Multicast component. CORBA timeouts might provide
additional (perhaps secondary) means of failure detection. Other implementations might not
be network based at all, but would use alternate mechanisms such as UNIX process
mechanisms (e.g., waitpid(2) as mentioned earlier), or explict messages from components
that explicitly terminate after internally detecting inconsistencies.

A.6.3. Enhanced Fast Failure Detection Capabilities
Once we have identified alternate implementations with identical APIs, it becomes useful to
consider mechanisms for aggregating indications of failure. Instead of having to
communicate with multiple failure detectors, an application could register its interest in
multiple failure conditions and interact with only one failure detector. It is not yet clear
whether such a capability would best be provided via a special failure detection aggregation
module, or via another alternate implementation that just happened to interact with multiple
other failure detectors, or via some other mechanism. We would investigate this capability
as part of the proposed effort.
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Separate failure detector components can also assist with failure prediction. The current
FFD, for example, monitors the latency of heartbeat messages. When latency is low, failure
due to network or processor overload is unlikely. Increased latency, however, is indicative
of increased loading on the network and/or the processor, and latencies that are approaching
the maximum allowed are a predictor of failure. While the FFD generates information about
the latency of messages, it is not yet apparent how best to make this information available
to the applications. Indeed, this may be one of the areas where the capabilities of existing
commercial enterprise resource managers can be utilized. We propose to investigate this
issue as part of the proposed effort.

A.7. Benefits of Approach
The benefits of our approach accrue primarily due to the componentization of the functions
supporting fault tolerance   the failure detector over the short term; failure identification
and recovery, and use of commercial and specialized fault management and enterprise
resource managers over the longer term. The particular advantages over the continued
enmeshment in applications include:

• Reduction in development costs and time due to reuse of components

• Improved mission effectiveness due to better tested, more dependable components

• Reduced costs for testing due to more effective unit testing and less interaction
between defects in fault tolerance components and overall system operation

• Less dependence on design decisions made many years before deployment. A
system engineer can alter parameters for failure recovery strategies after system
integration   when their interactions can be experimentally measured

• More effective field upgrades. Modifications to adapt weapons systems to new
battlefield situations can be performed with significantly less development cost 
and particularly less time   because many of the modifications can be performed
by adjusting component parameters. Even those that require software development
will be simplified because of the separation of components

• Reduced upgrade costs due to less dependency on the particular character of
particular hardware and/or software components

• Improved potential for ability to use COTS fault tolerance components

B. Phase I Technical Objectives
The technical objectives of the Phase I effort will be to:

1) Produce failure models that can be used to characterize the requirements of real-
time, mission-critical applications. The failure model will include multiple strategies
and QoS metrics.

2) Identify a set of candidate commercial enterprise resource managers that could be
used with componentized failure detectors in real-time mission-critical systems.
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3) Produce a set of scenarios wherein the commercial resource managers can utilizing
information from failure detectors to assist the process managing the shipboard
reosurces to meet Navy mission requirements.

4) Specification of an object-oriented API for controlling alternative implementations
over a broad performance range. The API would also provide an interface to the
enterprise resource managers.

5) A set of prototype components that conform to the API, including failure detectors
based on FFD.

6) A simple demonstration application that exercises the prototype components. (The
role of commercial resource management components may be simulated.).

C. Phase I Work Plan
For Phase I, we propose the following activities to create a technical design to support
failure detection in targeted real-time, fault-tolerant applications:

Application Analysis
We will identify and investigate several Navy-related candidate applications. We will draw
upon Navy and Navy contractor resources as well as other defense contractors in The Open
Group’s membership base. We will also investigate civilian applications. We will primarily
draw upon The Open Group’s membership base, including participants in The Open
Group’s Quality of Service Task Force1 and the Real-Time and Embedded Systems
Forum.2 Candidates SIAC3, The European Union’s Netframe project, as well as other banks
and other financial institutions.

Based on our existing experience, we will start with the Aegis AAW Auto-Special
Doctrine. For each application, we will identify the failure dependencies and identify the
requirements for each. For example, we know that the timeout latencies for the radar
processing path in the AAW application are much lower than those on the resource
management path. This AAW application is also interesting because there are at least two
different implementations (one in the existing Aegis fleet, and one in the HiPer-D test-bed).
It should be noted that the performance characteristics of this application are classified. We
do not anticipate a need to understand the actual performance requirements, only the impact
of varying the QoS parameters.

                                               
1 http://www.opengroup.org/qos/
2 http://www.opengroup.org/rtforum/
3 The Securities Industry Automation Corporation (SIAC) operates the computing infrastructure for the New
York Stock Exchange (NYSE).
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Failure Detection Models and API
We will use the results of this analysis to create simple models of the failure detection
aspects of the applications, and we will identify QoS metrics that are common to the failure
models of these applications. We will define an API that incorporates those QoS metrics
and provides control over the failure detection strategies that were identified earlier.

Analysis of Commercial Enterprise Management Systems
We will investigate the capabilities of commercially available enterprise management
systems to determine their applicability to real-time mission-critical systems with particular
emphasis on the Navy applications identified earlier. We will develop scenarios that
demonstrate the use of the products in Navy systems such as the Navy Open Architecture.

Prototype Components and Demonstration Application
We will develop prototype components that implement the API identified earlier as well as
a demonstration application based on one of the scenarios that demonstrate the use of the
commercial enterprise resource management system. Because the use of a commercial
product would entail significant resources, both product cost and training time, we expect to
simulate these capabilities.

Evaluation
We will analyze the results of this effort and document the results of the investigation and
the proposed design. We will discuss these results with Navy personnel and defense
contractors as well as other interested parties.

Option
If the option is approved, we would extend the investigation to explore the instantiation of
the proposed API and components within the context of existing commercial systems.
Candidates include the OMG’s Real-Time CORBA suite, which is currently developing a
standardized interface for reliable multicast communication; the DMTF’s Common
Information Model (CIM), which is specifying parameters that are common across industry
segments; and The Open Group’s Application Instrumentation and Control (AIC), which is
identifying related sets of application measurements. Based on this investigation, we would
formulate a plan for commercializing these failure identification concepts and components.

  end 


