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Summary

It is widely agreed that NT would not be a reasonable choice as an RTOS for hard real-time control.
For critical hard real-time environments a small and predictable RTOS coupled with carefully
designed dedicated H/W drivers is chosen in the vast majority of cases, even though it is rarely
formally proven that the level of predictability is sufficient. The functionality and services provided
by such RTOS are minimal, more general purpose computing, data transformation, user interface
are often performed on a separate host.

Soft real-time applications may accommodate to run on less predictable systems, or what we can als
refer to as GPOS (general purpose operating systems) provided that one can acquire enoug
confidence on the overall behavior, by means of empirical measurements. The two obvious reason
to choose a given GPOS are 1) it offers a rich set of services and standard APIs, 2) it is widely
available on off-the-shelf hardware. NT is clearly such a GPOS.

In the context of the QUITE project we analyze how realistic it is to use off-the-shelf NT, how we
can circumvent its deficiencies. As our analysis will point out, the real-time behavior of NT is
primarily dependent on the H/W device drivers. It is therefore impossible to state that NT fulfills our
needs, even for a given processor speed. Along with the analysis, one of our objective has been t
provide a set of tools that one could use to evaluate its own host environment, without any
requirement for dedicated hardware measurement device (timer board or such).

To conciliate both hard real-time requirements and use of GPOS services, commercial companie
have developed real time extensions to NT, which basically consist of an aside real-time OS or
SubSystem, sharing the processor with NT but with higher scheduling privileges. The RT extension
tasks communicate with the NT ones by means of a message passing facility and shared memory
We explain to what extent such extensions could improve predictability.
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Each one of the 60 or so measurements performed for this study last from 15 minutes to 12 hours. It was o
to systematically run each single test for at least a day on two distinct platforms but it quickly became unr
given our hardware resources. Nevertheless, the tests are designed to run for such long times without any o
and it is only a matter of time and hardware resources to perform longer measurements. We are in the p
running all tests for 12 hour periods on our reference platform in order to obtain fully comparable figures
better quantify the outliers.

2. Context and background

The overall objective of the QUITE project is to build a large-scale, QoS-aware, real-time distributed syste
system middle-ware is based on DARPA funded research technologies, namely TMO, AQuA, EPIQ, CE
MSHN, DeSiDeRaTa, QUASAR: SWIFT, TAO, HPF, ViewNT, Ensemble, NetSimQ, ASSERT, Darwin.

Without entering into the details of each of the components, from the OS’s perspective, the fundamental p
of such a system is the end-to-end QoS dimension, requiring that the system services be predictable 
network devices up to the middle-ware node inter-connection management tasks. This implies predic
through the networking protocol stack as well as more traditional requirements such as preemptible sched
accurate timers.

The statement of work for the QUITE contract states:“The contractor shall integrate operating system extensi
components into reference implementations. The base commercial operating system for Quorum shall be M
Windows NT but other commercial operating systems may also be involved. The contractor shall mo
extension components as required to assure proper interface with and operation within the ref
implementation infrastructure and provide these modifications back to the developer of the extension comp
In other words there is a strong incentive to use standard off-the-shelf NT because it is widely available
development environment and APIs are well understood.

NT’s dominant role in the field of Operating Systems has naturally prompted numerous experiments and
regarding its real-time capabilities [3], [14], [4], [17], [18]. Microsoft claims that NT is suitable for most real-
applications, as long as they can be characterized as “soft” real-time ones[1]. A real-time application 
characterized as hard when a missed dead-line has disastrous effects, ranging from non recoverable finan
to loss of lives.

These performance studies, have demonstrated that NT’s predictability is low, that the interrupt handling h
been designed to be efficient (fast) in the vast majority of cases. In this study we do not try to demonstrate
is viable for real time, but rather explain where its architecture conflicts with real time constraints, provide a
tools to measure the impacts, along with the actual figures for a given platform.

The requirements frequently agreed on for a commercial OS to enable real-time determinism are:

• Preemptible and multi threaded. This is the case for NT, but interrupt processing is usually not per
in the context of a thread.

• Multiple priority levels, with a fixed priority scheduling policy, and preferably FIFO (versus Ro
Robin). NT does not offer a FIFO policy, the scheduling quantum is an unescapable parameter.

• Deterministic thread synchronization and switching. This is not the case for windows NT, mostly be
of the interrupt processing architecture. Also the NT kernel does not handle priority inversions (n
inheritance nor ceiling), it would have to be implemented as a library with a non negligible overhead

• Deterministic interrupt and timer services latencies. Interrupt processing in NT has been optimiz
speed efficiency versus predictability.

• Wired (locked) memory. NT offers an API to lock memory, we have not checked its effectiveness.

It clearly appears that the most important obstacle to real-time control in NT is interrupt handling and this 
the primary axis of our study.
3
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• A first section to explain where the scheduling and interrupt handling is an issue.
• A description of what we measure and which methodology to use.
• The measurement figures and analysis for a given platform.
• A section on the usability of real time extensions for NT
• A conclusion

3. NT Internals
In this paragraph we outline where the design of the NT kernel is an issue for hard real-time. The reader m
to [13], [10], [11] and [1] for in depth descriptions.

As Figure 1 illustrates, the Windows NT kernel defines 4 types of runable entities. Let us describe each o
ordered with decreasing scheduling privileges:

• The dispatcher. Unique entity that is activated whenever another scheduling entity blocks or when 
rupts are raised. It is neither preemptible neither interruptible, but runs for fairly short periods of tim

• Interrupt service routines (ISR). Activated to handle interrupts. At interrupt time, if the processor IR
is lower than the associated driver one, the running ISR, DPC or thread will be interrupted. Control 
passed to the corresponding ISR. Typically the ISR routine will just acknowledge the hardware in
and queue a DPC event. It is recommended that device drivers perform minimum work at this poin
is not enforced. ISR’s are interruptible by higher level ISRs but not preemptible by DPCs or threads

• Deferred Procedure Calls (DPC). Queued by ISRs but also eventually by other kernel modules they
mostly used to perform the bulk of interrupt processing. DPCs are always processed before givin
control to threads. DPCs are interruptible (depending on the IRQL) but not preemptible by threads.

• Threads. There are 2 types of threads:user threads andkernel threads. A user thread belongs to a use
process (or task) and shares a user virtual memory space with the other user threads belonging to
process. User mode applications are exclusively implemented as user threads. A kernel mode th
only be created by a kernel module (such as a device driver) and shares a unique kernel virtual s
user thread usually runs in user mode, whereas a kernel thread always run in kernel mode. A kern
thread can access system privileged services such as increasing the interrupt request level (IRQL
thread will also run in kernel mode when it requests a kernel service, and will exclusively run kerne
at that time. Throughout the document we will refer touser mode threads andkernel mode threads. A
kernel mode thread stands for either a kernel thread or a user thread executing a kernel service. U
threads are always interruptible. Threads are preemptible according to their scheduling proper
described in following sections.

The NT kernel has clearly been designed to optimize interrupt processing. A device interrupt always pre
user mode thread, or a kernel mode thread if not masked against this particular interrupt, whichever r
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Figure 1: Windows NT Internals
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the relative priority (importance) of the interrupt event but also to acknowledge the hardware interrupt. In t
of NT the bulk of interrupt processing is also considered as more critical than any other activity and the in
processing will complete before the interrupted thread resumes, whether or not the device driver uses 
procedure calls. Only kernel mode threads, including the device driver threads, can raise the interrupt requ
In reality, this means that interrupt processing always has precedence over any other thread.So it is ambiguous to
state that NT is fully preemptible, in the sense that DPCs which are in fact some sort of specialized thread
not preemptible. Interrupt processing and kernel deferred activity will always have precedence over an
activity. It is questionable why Microsoft chose not to implement DPCs as threads. There would be in
performance penalty, but it could be a configurable mode.

As a comparison with another micro kernel, in OSF1-MK, interrupts are queued at any time as well, 
interrupt processing itself is performed by a dedicated thread, whose priority can be adjusted accordin
relative importance as compared with other real-time duties performed by other threads.

The NT kernel operates at one of 32 distinct interrupt levels. The highest ones are mapped to hardware f
intermediate ones are mapped to H/W device interrupts and the lowest ones are used for deferred proced
and asynchronous procedure calls. The very lowest one, 0, also known as passive level, is the one at whic
threads usually run. The kernel dispatcher runs at the highest IRQ level (not interruptible) and is not pree
Its main task is to schedule the various runable entities (i.e. threads, DPCs and ISRs). Although 32 lev
appear sufficient, the IRQ level is not considered when queueing DPCs. Even though [12] explains how D
be queued at head or tail,it is fair to say that there is very little control on how to prioritize interrupt
processing.

The NT kernel distinguishes 32 levels of thread priority. The lower 16 ones are managed with a time share
and decaying priorities. The upper 16 ones are reserved for real-time threads. A real-time thread priority 
The real-time threads are scheduled with a round robin policy, with adjustable quantum. The Win32 API o
window of only 7 priority levels for a given task, but we believe that it is possible to write a kernel module 
driver) to access the full range. So we can consider thatonly 16 levels of real-time thread priority and the lack
of FIFO scheduling (versus Round Robin) are serious limitations.

4. What to measure?
Let us re-state that we do not pretend to characterize windows NT since there is not one well identified NT
but instead numerous HW/WindowsNT environments. We have developed a set of measurement tools, 
can re-use on any platform provided that the processor belongs to the P6 pentium family (more precisely
and 815/100 models, or any more recent one).

The figure that is frequently required by application builders is “How fast and with what predictability can an even
be triggered and processed?“. The event can be external, relayed by a sensor or some dedicated hardware, 
expiration, or any kind of interrupt. This led us to develop 3 typical tests, and a 4th one more specific
environment:

1. A preemption and interrupt disturbance test. The test analyzes how frequently and for which durati
periodic task is interrupted or preempted. This indicates with what predictability a given task (purely
in our case) can be accomplished, and what is the longest delay incurred. The measured activity is
user mode CPU and does not rely on any Win32 or kernel services. This type of activity is the one t
expect to be the most predictable, since it does not depend on kernel or Win32 services. One could
the test to perform any desired type of activity, there are many combinations to be explored.

2. Clock and timer services test. Measures how accurate the base services are. We have found the S
call and the multi-media timers to be the most useful and accurate.

3. Interrupt latency tests. Measures the ISR, DPC and thread wake up latencies for Interrupts
4. UDP/IP latencies. This test is of much higher level but very relevant to our project environment and

involves most critical layers of the NT architecture; Interrupt latencies, context switching and Win32

We think that knowledge of the test implementation is of equal importance to the resulting figures, and w
describe the tests with the appropriate level of details.
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Our goal is to develop tools to measure NT’s real-time capabilities on standard NT workstations and 
without any requirement for dedicated measurement hardware such as special timer boards. As we expec
figures will vary depending on the host’s hardware and drivers, the measurements will need to be pe
multiple times on a variety of hosts. It is therefore desirable that the tools be easy to install and run.

5.1. Measurement accuracy

On x86 PCs, Windows NT clock (GetTickCount()) and multi-media timer (timeGetTime()) services of
standard 10 or 15 ms resolution (depending on both the H/W clock and the Windows NT variant, se
workstation). One can adjust the timeGetTime() resolution to a 1 ms minimum value through the multi-
timeBeginPeriod() service. This is not sufficient to measure sub milliseconds latencies.

As a remedy Windows NT offers a high resolution performance counter (QueryPerformancCounter(
illustrated in table 1 this service is H/W dependent and its resolution remains low for some platforms. Addit
the service time (the time required to read the counter through the Win32 API) is up to 800 times larger t
resolution itself.

Assuming that the host platform is a Pentium based personal computer we can take advantage of the Pen
stamp counter. Note that QueryPerformanceCounter() does use this on-chip counter for recent Pentiu
platforms. The time stamp counter measures cycles. The clock frequency can easily be determined. The tim
counter is accessible to user mode threads on windows NT 4.0, and may therefore be used to measure
across the kernel/user boundary. We have defined a very short asm in-line macro to access this register, 
rdtsc instruction (see the details in appendix A). This macro is accessible both to user mode thread and ker
threads or any kernel code. Table 2 gives a timing comparison with the standard QueryPerformanceCount
service time for the macro variant is 17 to 75 times faster than the QueryPerformanceCounter() API.

5.2. Collecting measurement figures

Real-time worst case measurements require long range measurement periods (hours if not days). Simply r
the worst case and/or the average figure is often not enough to study the overall behavior. On the other h
simply impossible to store millions of samples without impacting the measurements. We provide a libra
enables aggregation of the samples as fractiles using a logarithmic indexing. Thus we minimize the memo
still capturing enough data to characterize the distribution. The library is designed so that any unexpected 
allocation required to store a sample is notified, since it may induce some noise or unexpected delay.

To reduce noise, the test results should not be displayed in real-time, but rather recorded and replayed la

Micro-processor
1 cycle

(ηs)

Counter resolution Service time

Freq. (MHz) Period (ηs) ηs

333 Mhz Pentium II 3 333 3 1611
120 Mhz Pentium 8.333 1.193 838 8125
100 Mhz Pentium 10 1.193 838 8750

Table 1: QueryPerformanceCounter() service
resolution and service time

Micro-processor
QueryPerformanceCounter Inline Macro

Resolution Service time Resolution Service time

333 Mhz Pentium II 3 1611 3 96
120 Mhz Pentium 838 8125 8.333 108
100 Mhz Pentium 838 8750 10 130

Table 2: QueryPerformanceCounter() versus
inline macro timings (ηs units).



5.3. Workloads
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Since we anticipate the results to be device and device driver dependent we attempt to cover the full 
standard devices, but also concurrent cpu activity to analyze the scheduling policy influence. To characte
various workloads we used the NT performance monitor tool, the figures are reported in table 3. The 9 t
workload are:

1. Idle. No user activity. The windows NT system is still connected to the network, the standard window
services are up and running, but there no user specific tasks are activated except the test itself. Th
syscalls/sec are simply a result of the performance monitor probing kernel counters.

2. CPU periodic. A user mode CPU type work-load. This is a single instance of our preemption and int
test running with configurable priority attributes and configurable periodicity. The number of interrupt
second is a consequence of the test switching to a 1 ms clock granularity, to use the multi media tim

3. Make. An nmake command to compile 300 lines of C code.
4. Java. A cpu and graphic intensive multi threaded applet. The number of interrupts per second is the

of the JDK1.2 plug-in switching to a 1 ms clock granularity.
5. Disk. Disk to Disk file copy. (the test copies a total of 370 Mbytes to make sure the file system cach

overflown).
6. Network activity. Copying files between distant hosts.
7. Tty. Transferring bytes from COM1 to COM2, with 115200 bits/sec settings. The number of interrup

second in table 3 confirm that the test reaches the maximum H/W throughput.
8. CD. Reading files from a CD file system.
9. Floppy. File transfers from and to a floppy device.

When performing the measurements, the workloads are activated as a for ever loop.

5.4. Target platform

Unless stated differently, our target platform is an HP XU Kayak, with the following characteristics:
• 333 Mhz pentium II
• 64 Mbyte memory.
• Seagate st34501w SCSI disk (aic78xx.sys)
• HP Ethernet Family Adapter (pcntn4m.sys)
• Hitachi CDR-8335 SCSI CD (piixide.sys)
• Windows NT 4.0 WorkStation.

6. Scheduling, Interrupts and preemptions.
This test program, measures how frequently and for how long a periodic CPU bounded program is interru
preempted. The test iterates over a short sequence of instructions. The code sequence includes 1) a fetch 
stamp counter, 2) cumulating the counter delta less a base reference value (i.e. the excess duration for
sequence) in statistical fractiles and maintaining its minimum and maximum value.

Kernel counter Idle Cpu  Make Java Disk Net Tty CD Floppy

CPU% 0 50 85 95 8 2 24 4 1
Intr/sec 64 1026 93 1035 160 320 12860 100 73
Ctxt Switch/sec 25 100 320 1620 1500 135 60
Syst% 1 25 28 8 1.5 22 4 0.5
Syscalls/sec 290 390 4050 22000 480 300 3583 4200 370
DPCs/sec 1 1 50 1 218 230 25 30 8
Disk Read/sec 2 55
Disk Write/sec 20 55
Disk Read KB/s 2 2900
Disk Write KB/s 1000 2800
Net Packet Send/s 135
Net Packet Recv/s 125
Net Send KB/s 130
Net Recv KB/s 125

Table 3: Work-load characteristics
7
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The shortest time length for this sequence is measured
first and considered the base reference time. The test
then iterates periodically over the short code sequence,
for a given number of loops. The iteration length (i.e.
the active period) and the pause time (inactive period)
are both configurable. The default settings are 33 ms for
both. Once the test is over, the program walks through
the statistics, and compares the excess duration samples
with the reference value. If the ratio is larger than a
configurable value (4 by default) the reference is
considered as an interrupt or a preemption. After some
empirical measurements, a tolerance of up to 4 times the
reference appeared reasonable, the observed interrupt
rate being coherent with the one reported by the NT
performance monitor. Note that using a ratio of 2 or 1
does mot significantly change the results, only by a few
percent as illustrated in appendix B.

This measurement technique is applicable only because
the base reference time for the iterative sequence is
relatively small as compared to the interrupt processing
time. The number of cycles and corresponding time
duration are given in table 4. The ISR latency stands for
the minimal interrupt time for a device interrupt where
the Interrupt Service Routine returns immediately. The
ISR figures are based on results from our interrupt
latency benchmark and are coherent with the ones found in the literature such as [16]. The various conf
parameters were numerous enough to justify a friendly graphical interface, presented on Figure 3. We
consider worth doing it for the other tests at this time.

Since the test pauses for relatively short periods of time, we were constrained to adjust the NT clock granu
1 ms. Otherwise, the effective pause time, which is a multiple of the clock granularity, would be rounded
unacceptable values.

Processor
Single iteration ISR latency

Cycles Duration (us) Cycles Duration (us)

333 Mhz Pentium II 106 0.318 295 0.885
233 Mhz Pentium II 104 446 NA NA
120 Mhz Pentium 102 0.850 NA NA

Table 4: Single iteration base time for the
interrupt/preemption benchmark

Adjust priority

Read Time Stamp Counter

Collect counter delta

Pause

Filter outNo event samples

(hours)
(ms)

No event Interrupt

Base time
Base time

+
Preempt. time

ComputeBase time

Figure 2: Interrupt and preemption measurement

or

(ms)

Figure 3: Preemption test graphical interface
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6.1. Influence of scheduling attributes
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The win32 API maps the 32 real-time priorities to 4 classes (Normal, Idle, High, Real-time) of 7 prioritiesIdle,
Lowest,Below Normal,Normal,Above Normal,Highest, TimeCritical). Priority 0 is reserved for a unique syste
idle thread. The standard default priority is 8 (Normal, Normal).

To confirm the effectiveness of NT’s real-time scheduling we performed 4 distinct tests, each one over a 15
period:

1. The test running with standard scheduling attributes (priority level 8) on an idle system
2. The test running with a normal real-time scheduling attributes (priority level 24) on an idle system
3. Two simultaneous test instances running with normal real-time scheduling attributes (priority level 2
4. One test instance running with time critical real-time scheduling attributes (Priority level 31) and a s

test instance with normal real-time scheduling attributes (priority level 24).

First we clearly observe the effect of the real-time class scheduling, the maximum interrupt time drops fro
to 243µs. Second, it is confirmed that the scheduling policy is Round-Robin, with a quantum close to 30m
We did not find any way to obtain or adjust the quantum value through the win32 API. Measurements on 
platforms indicate that the quantum value appears to be a multiple of the standard NT clock resolution (1
our case).

These figures already indicate that even with privileged scheduling attributes on an idle system, the pre
length for a pure cpu bounded task varies from 1 to 246µs.

6.2. Work-load influence.

We now observe the predictability for the 9 types of workload. The configurable parameter values for the t

Time Shared Fixed Priority

Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Idle I L B N A H C
Normal I L B N A H C
High I L B N A HC
Real-time I L B N A H C

Table 5: Win32 scheduling classes

Preemption
length (µs)

Occurrences

Idle system Background thread Pri 24

Pri 8 Pri 24 Pri 24 Pri 31

1 - 2 567 578 177 1612
2 - 4 410 648 291 161
4 - 8 358427 362081 282241 360316
8 - 16 54596 55695 42192 57376
16 - 32 7046 6253 5064 6487
32 - 64 1611 471 353 439
64 - 128 255 24 17 35
128 - 256 781 108 90 94
255 - 510 278
510 - 1020 8
1020 - 2040 8
2040 - 4080 3
4080 - 8192 500
81912 - 16382
16382 - 32764 5755

Total occurrences 424490 425858 336180 426521
Max. Length 5943 243 28950 246
Active time 6’57” 7’3” 5’30” 6’59”
Intrs/sec 1033 1016 1016 1016

Table 6: Influence of scheduling attributes on preemption
9
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• 33 ms active period.
• 33 ms pause time.
• Normal real-time scheduling attributes (Priority level 24)

The first observation is that intensive disk and networking activity significantly increase the maximum preem
durations, up to over1 ms values. Measurements on distinct hardware platforms have shown much larger v
such as 13 ms maximum preemption delays on an idle system, together with more frequent outliers espe
intense networking activity disk based activity. We do not have access to the driver sources and cannot
precise explanations. For network drivers, in case of intense traffic it is often the case that the driver will 
all packets buffered on the adapter at once, on a single hardware interrupt, and cause unexpecte
proportional to the buffer size. [14] also explains that NDIS can cause long delays when checking for
miniport drivers. For disk drivers, copies of large memory buffers could certainly explain some delays. Th
the case when the H/W is unable to DMA to the final location, such as for high memory addresses.

While developing this test we also observed that the use of floating point instructions and registers coul
unexpected latencies. We do not have any information on how floating point contexts are managed in N
may be the case that NT uses lazy fsave/fresume policies. Our short sequence does not contain any floa
code.

7. Clock and timer services.
Real-time control relies heavily on clock and timer services. We provide 2 basic tests to measure the corres
NT API and services. One to measure the sleepEx() API the other to measure the multi media timers. F
needs to understand that a standard NT workstation is configured with a rather low timer resolution (10 or
Services such as sleepEx() and the SetTimer() are directly dependent on this resolution and therefore unus
can change the timer resolution using the timeBeginPeriod() API down to a minimum resolution value of 1m
SleepEx() call is then more accurate, but the SetTimer() is unaffected. NT offers another timer (timeSetE
for multimedia applications, which is dependent on the adjustable timer resolution. Such a timer may also
for other critical applications, besides multi media ones.

7.1. SleepEx() API.

The test basically iterates over a SleepEx() API invocation. The effective sleep time is measured with t
stamp counter. The test is in fact more sophisticated to avoid stroboscopic effects. Simply iterating would
synchronize the next SleepEx() invocation with the last clock interrupt. So the test iterates CPU wise for a 
period of time between 0 and the actual timer resolution (1ms in our case). We have performed the test f
the standard timer resolution (15 ms in our case) then with a 1ms resolution against the various workload

Preemption
length (µs)

Occurrences

Idle CPU  Make Java Disk Net Tty CD Floppy

1 - 2 5936 13781 51715 363403 290513 46328 562351 449676 17173
2 - 4 1148 181 613623 252435 327749 5341 2832 19644 3103
4 - 8 17431995 17371963 18462807 18426879 17141543 16114152 6123793 16541150 17649575
8 -16 2646904 2698110 3506763 3526674 5319637 6453197 207359597 3425003 4410545
16 - 32 292657 311801 261413 254619 903920 1195352 4130484 865993 349859
32 - 64 4859 5333 307417 190591 293509 1207523 29040225 150770 44221
64 - 128 724 876 20029 5497 4189 263354 24919 2693 1577
128 - 256 4767 4967 1197 634 2931 91166 2159 80 4563
256 - 512 13 4 3795 4575 2125 39422 2958 10 151
512 - 1024 1 4658
1024 - 2048 4

Total 20389023 20407016 23228759 23025307 564750 25420497 247249318 21455019 22480767
Max. length 294 286 409 384 547 1289 341 349 303
Active time (CPU) 5:34:28 5:35:1 5:30:14 5:34:26 5:28:17 5:31:13 4:42:22 5:35:12 5:38:13
Intrs/sec 1016 1015 1172 1147 1233 1279 14594 1067 1118

Table 7: Workload influence on preemption
10
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The configurable parameters for the SleepEx test were:
• 15 minute test period.
• 5 ms sleep time argument to SleepEx().
• Normal real-time scheduling attributes (priority level 24).

.

The deviation is uniformly distributed within a [-0.1 ms to 1 ms] range (the index scale is logarithmic). Th
expected, and means that the precision cannot be better than that of the timer resolution. The maximum 
is prone to variations similarly to the preemption test. Measurements on distinct hardware with the same pa
configuration have shown deviation values as high as 4 ms.

We believe we can provide much better resolutions (down toµs values) using the Pentium on board timer/coun
(local APIC) with a dedicated driver and specific APIs, in a similar way to that used to perform our interrupt l
measurements in section 8.

7.2. Multi Media timers

As opposed to a standard NT timer a multi media timer is implemented as a separate thread and fits mu
naturally into a real-time context. Our test simply time-stamps every timer event with the time stamp counte
and compares the deltas with the timer programmed time value.

The configurable parameters for the test were:

• 15 minute test period.
• 5 ms period argument to timeSetEvent().
• Normal real-time scheduling attributes (priority level 24).

SleepEx()
deviation (µs)

Occurrences

Std Clock Clock granularity adjusted to 1ms

Idle Idle CPU  Make Java Disk Net Tty CD Floppy

-8192 : - 4096 1104
-4096 : - 2048 7990
-2048 : -1024 3899
-1024 : - 512 1933
-512 : - 256 979
-256 : -128 477
-128 : -64 226 5359 5839 4082 3919 4984 5337 3517 5370 5630
-64 : -32 120 4845 4878 4896 4849 4844 4866 4108 4872 4860
-32 : -16 59 2487 2467 2467 2498 2467 2449 2197 2496 2480
-16 : -8 28 1277 1303 1258 1303 1238 1268 1061 1244 1259
-8 : 0 25 1244 1266 1267 1225 1301 1240 1088 1281 1281
0 : 8 37 1282 1246 1247 1240 1228 1254 1122 1221 1272
8 : 16 15 1187 1220 1194 1228 1179 1227 1137 1192 1200
16 : 32 67 2407 2385 2388 2345 2467 2359 2146 2447 2379
32 : 64 116 4878 4903 4873 4895 4873 4874 4395 4840 4890
64 : 128 260 9663 9640 9635 9576 9638 9688 8925 9685 9629
128 : 256 482 19907 19897 19800 19814 19810 19854 18807 19899 19887
256 : 512 1003 39008 39018 38953 39027 39034 39020 38711 38993 39036
512 : 1024 2001 59012 58583 60237 60388 59428 59072 62243 59024 58799
1024 : 2048 4024 5 2 42 6 3 15 2117 4
2048 : 4096 7839
4096: 8192 15635
8192 : 16384 9282

Total occurrences 57500 152561 152647 152339 152313 152494 152543 151574 152561 152606
Max. deviation 10806 1068 1059 1506 1110 1099 1375 1448 907 1073
Avg. deviation 3098 398 395 407 408 401 399 435 398 397

Table 8: SleepEx() timing deviations
11
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Since the timer events only occur at clock interrupt time, the deviation average is much smaller than th
Sleep() like API, but the maximum deviation is comparable. It is interesting to note that the maximum de
values are closely related to the number of interrupts per second, such as for the tty, net and java workloa
to table 3 for the workload characterizations) and underlines how dependent we are on other interrupt 
whether or not of equal importance or priority as compared to clock services.

8. Interrupt latencies
We are interested in measuring the 3 basic latencies that characterize interrupt handling in windows NT (F
The ISR latency is the elapsed time between the real hardware event and the time at which the Interrup
Routine is invoked. The DPC latency is the elapsed time between the hardware event and the time the DP
is invoked. Note that it is not a requirement for drivers to use such DPC mechanisms. But generally minimu
is performed at ISR time and the bulk of the interrupt processing is done at DPC time. Finally the most im
latency to the user is the time elapsed between the real H/W event and the time at which the thread han
event is woken up. For a better analysis of the interrupt latencies, we will consider both absolute and 
latencies as depicted in Figure 4.

Most interrupt latency measurements are performed with the help of some dedicated HW board offering so
resolution timers. These measurements are therefore difficult to reproduce or to perform on new pla
Beginning with the 735/90 and 815/100 models, and in all the P6 family, the Pentium processors include
APIC with a programmable counter/timer. The specifications are publicly available in the Pentium S
Programming Guide [19]. We have developed a dedicated kernel driver, associated with a user mode pro
schedule interrupts and to time stamp the chronological events. The driver is designed and written in confo
with the Microsoft DDK [20] programming rules and we believe its architecture is close to that of typical win
NT drivers.

MMtimer
drift (µs)

Occurrences

Idle CPU  Make Java Disk Net Tty CD Floppy

-1024 : - 512 21 24 3253
-512 : - 256 118 229 7 174 9246
-256 : -128 1566 1327 9046 8205 13215 4946 23136 3816 2522
-128 : -64 156827 157069 148730 149700 145004 152752 105335 154565 155872
-64 : -32 4 2 254 33 158 204 1744 16 4
-32 : -16 1 2 43 2 5 44 818 1 2
-16 : -8 14 15 396
-8 : 0 15 3 11 385 2
0 : 8 2 18 1 6 392
8 : 16 8 1 8 393
16 : 32 14 3 20 802
32 : 64 20 1 2 46 1562
64 : 128 26 26 4 68 2789
128 : 256 42 201 57 4339
256 : 512 28 31 4414
512 : 1024 21600 21600 21582 21600 21599 21576 19319 21600 21600
1024 : 2048 21 1 18 1677

Total occurrences 180000 180000 180000 180000 180000 180000 180000 180000 18000
Max. drift 898 887 1570 926 1090 1510 1514 929 955
Avg. (absolute) 206 206 207 207 206 206 234 206 206

Table 9: Multi media timer drift

Time
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DPC
Scheduled

Thread
Woken Up
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Thread Wake Up (absolute)

Figure 4: Interrupt latency categories

DPC (relative) Thread Wake Up (relative)



A user mode control program enables control (start and stop) of the APIC timer and adjustment of the timer
e APIC
o fetches
 the user
e various
er keeps
are ISR
or time

oads. We

 is for
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s often
frequency and mode (one shot or periodic). At ISR time the driver simply stores the TSC counter and th
counter values in a dedicated interrupt record location and then queues a DPC. At DPC time the driver als
the 2 counter values and adds them to the same record. The driver then returns the record structure to
through an IoCompleRequest(). Once the thread is waken up it in turn fetches the counters and deducts th
latencies. The reason we use the APIC counter value in addition to the TSC value, is that the APIC count
running once the timer interrupt has occurred and its relative value is used to compute the real hardw
latency, from the physical event time to the ISR invocation. We do not see other software alternatives f
stamping the real H/W event.

We have performed the tests in the same conditions as for the previous tests, against the 9 types of workl
present the results as 3 distinct tables. The configurable parameters for the tests were:

• 15 minute test period.
• 10 ms interrupt periodicity.
• Time Critical Real Time Scheduling property. (priority level 31)
• IRQL 29.

The rather high IRQL value is quite un-realistic, since it is at a higher level than the clock IRQL (28), This
historical reasons. However as we explained previously there is very little influence on interrupt proc
ordering. In any case, a higher IRQL can only provide better figures, since the APIC interrupts are les
masked.

8.1. ISR latency.

ISR latency
(µs)

Occurrences

Idle CPU  Make Java Disk Net Tty CD Floppy

0 - 1 1
1 - 2 85777 87828 3823 6 35190 74636 51707 61717 83853
2 - 4 4202 1890 47019 67810 48672 14935 24944 28108 5977
4 - 8 18 277 37956 22100 6095 420 177 172 164
8 -16 3 4 1056 84 41 8 240 3 5
16 - 32 2 470 1
32 - 64 12 1 943
64 -128 12 1 1803
128 - 256 22 1 3719
256 - 512 52 5408
512 - 1024 46 589

Total samples 90000 90000 90000 90000 90000 90000 90000 90000 90000
Max. latency 11 14 765 12 121 161 643 13 173
Min. latency 1.21 0.975 1.21 1.89 1.08 1.15 1.05 1.06 1.03
Avg. latency 1.40 1.4 4.5 3.53 2.29 1.64 37.49 1.72 1.45

Table 10: ISR latencies
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The relatively high maximum latencies (up to 765µs) indicate that some kernel code remains masked against
for such
various
ot in the
s.

SR latency
 the case
. Indeed
ISR and
e DPCs

ordering
e ISR)

e absolute
s before
ernel or
interrupts for relatively long periods of time. The real issue is that even the clock appears to be masked 
long periods (since our driver IRQL is higher than that of the clock). Observing the variation across the 
workload it is certainly the case that this masked code ise located in interrupt handlers, but apparently n
clock driver. It is impossible to state whether this misbehaving code is located inside ISR or DPC handler

8.2. DPC latency.

As a general observation, note that if the average absolute latency is the same as the sum of the average I
and the average relative latency (such as 5.19 compared to 1.40 + 3.78 for the Idle workload), this is not
for the minimum and maximum latencies (i.e 3.99 compared to 1.21 + 2.58 and 192 compared to 11 + 190)
there is a very small probability that the worst case latencies (or minimum latencies) be observed for both 
DPC for the same sample. Comparing to the previous table, the worst case latencies confirm that som
consume non negligible CPU resources, thus deferring other DPC regardless of IRQ levels. The lack of 
for DPCs is visible from the Tty average latency. Otherwise, the low DPC latency of 3 to 4 us (relative to th
is very reasonable.

8.3. Thread Wake-Up latency

Exactly the same observations as those made above for the DPC latencies regarding the comparison of th
and relative latencies apply here as well. For the Network activity bounded workload, there are large delay
the request thread is awoken. Using the SDK, DDK, and Resource kit we did not find any system thread (k

DPC latency
(µs)

Occurrences

Idle CPU  Make Java Disk Net Tty CD Floppy

2 - 4 1 32045 3
4 - 8 89588 57081 17714 20400 64284 85811 61691 86443 88315
8 - 16 396 851 67096 67138 24813 3765 9999 3299 1616
16 - 32 11 17 4353 2411 727 257 3015 183 54
32 - 64 1 2 566 43 169 128 2817 72 6
64 - 128 1 2 125 4 2 35 1824 3 2
128 - 256 2 2 37 4 5 3 3765 4
256 - 512 60 1 5807
512 - 1024 49 1082

Total samples 90000 90000 90000 90000 90000 90000 90000 90000 90000
Max. latency Absolute 192 203 771 245 180 343 692 84 248

Relative to ISR 190 202 753 243 177 340 227 81 246
Min. latency Absolute 3.99 3.39 4.3 5.6 4.36 4.37 4.13 4.21 3.78

Relative to ISR 2.58 2.16 2.62 3.32 2.67 2.65 2.58 2.67 2.42
Avg. latency Absolute 5.19 4.68 11.48 9.87 7.44 5.75 48.11 6.09 5.31

Relative to ISR 3.78 3.28 6.98 6.33 5.15 4.11 10.63 4.37 3.85

Table 11: DPC latencies

Thread wake-up latency (µs)
Occurrences

Idle CPU  Make Java Disk Net Tty CD Floppy

0 -32
16 - 32 89888 89707 15895 9082 57022 85403 57236 82565 89136
32 - 64 106 289 68966 76113 32541 4233 18144 7380 815
64 - 128 3 1 4892 4798 432 289 3173 55 45
128 - 256 3 3 127 5 5 51 3690 3
256 - 512 58 2 20 6288 1
512 - 1024 62 4 1469

Total samples 90000 90000 90000 90000 90000 90000 90000 90000 90000
Max. latency Absolute 244 222 807 284 203 663 715 105 268

Relative to DPC 239 43 270 124 114 657 112 78 97
Min. latency Absolute 18.77 16.39 19.11 23.88 18.80 18.11 16.52 18.89 18.3

Relative to DPC 13.71 12.77 13.98 17.49 13.66 12.95 12.03 13.68 13.67
Avg. latency Absolute 20.69 20.04 43.50 44.91 30.81 23.74 70.88 24.35 21.08

Relative to DPC 15.51 15.36 32.02 35.04 23.37 17.98 22.76 18.26 15.77

Table 12: Thread Wake Up latencies
14



user) running at level 31, this would indicate that there is heavy processing done at DPC time for networking.
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If there is no way to fix NT so that it uses threads instead of DPCs for interrupt handling, rewriting or ad
drivers (provided that the sources or the H/W specifications are available) so that they use threads the
would certainly improve predictability.

9. UDP/IP stack latencies
As we pointed out earlier, the distributed QOS dimension of the Quite project implies that windows NT netw
predictability is critical for our project. Let us first state that a standard Ethernet based inter-connection i
threat to determinism since the Ethernet protocol is by definition non predictable (unbounded re-emission 
On the other hand, even if we had an ATM network and the associated NT driver, we are not intere
measuring how a particular driver performs but rather how the NT networking layer behaves. Hence we d
a pseudo virtual NDIS driver with the single purpose of measuring the network stack latency, without trans
data over a real network. We chose to emulate Ethernet at the physical layer and UDP as the upper leve
since they require minimum code development in the driver. Also note that the UDP is a good candidate fo
Communication oriented protocols.

Since we desired the pseudo packet reception events to be unrelated to any software request, but rather m
packet reception we decided to re-use the local APIC driver to generate pseudo network packets. A
advantage is also the ability to precisely time-stamp the “pseudo” packet reception interrupt. So we have de
a NIC driver that interfaces with the NDIS library at the base of a UDP/IP stack on one side and interfaces t
APIC driver at the other end to simulate a network source. The local APIC driver as been extended to run in
mode where the ISR handler queues an alternate DPC, belonging to the pseudo NIC driver.

Since the pseudo NIC driver is not connected to any real network, the driver must be prepared to handle s
known packets so that the windows NT networking services and registry be properly configure and so 
network exception events increase the noise. The driver handles a subset of the ARP, ICMP, and NET_B
protocol packets. The ICMP is fairly useful for test purpose. The driver also handles the UDP based packe
that our test uses to measure the latency.

The measurement sequence for sending and receiving packets is asymmetric. To measure the receive sid
program controls the APIC driver to run in network performance measurement mode (i.e. use an alterna
belonging to the pseudo NIC driver), sets the periodicity and then invokes recvfrom() iteratively. Each 
receives a new packet, the test fetches the current value of the Time Stamp Counter and subtracts the T
register in the packet. To measure the send side, the test itself timestamps a packet that it sends via the soc
API, the packet is forwarded through the NDIS stack to the pseudo NIC, which immediately time stam
packet. The driver must return a packet with the time stamp counter value, but this step is not accounte
measurement. Also note that the send side does not require any support from the local APIC. The s
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measurement requires two UDP messages, whereas the receive side only requires one.
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The test only requires 2 long words (32 bit) to be stored in the network packets, one for the Time Stamp 
the other one as a packet number. So the overall network packet size is 54 bytes.

9.1. UDP/IP Receive latency

The configurable parameter values are:
• 15 minutes test
• Time Critical Real Time scheduling attributes (Level 31)
• 10 ms interval between packets.

The latencies do not appear worse than the preemption latencies for a simple CPU program. We would ne
the test for longer period of times and a higher periodicity for increased confidence. Still the resu
encouraging.

9.2. UDP/IP Send latency

The configurable parameter values are:
• 15 minutes test
• Time Critical Real Time scheduling attributes (Level 31)
• 10 ms interval between packets.

As compared to the receive case figures, the latencies are smaller, as expected. The send test is not interr
it simply performs a socket() call and proceeds in the kernel, for a fairly small duration. It is then more imm
interrupts or preemptions than for the receive case.

10. Using NT real-time extensions.

We have investigated 3 commercial Real Time extensions to NT. Our study was limited to reading the 
company provided documentation as well as some performance studies such as [2] and [4]. We did not ex

UDP/IP Receive
latency (µs)

Occurrences

Idle CPU  Make Java Disk Net Tty CD Floppy

32 - 64 89206 89442 22285 12343 58412 86892 55675 88116 89482
64 - 128 76 534 63947 74378 30821 1493 33194 1189 482
128 - 256 2 23 3704 3956 93 137 410 25 36
256 - 512 2 1 55 4 4 93 7
512 - 1024 8 12
1024 -2048 1

Total samples 89286 9000 90000 90681 89330 88627 89286 89330 90000
Max. latency 275 265 1033 381 314 775 352 181 225
Avg. latency 42.69 42.39 80.25 84.24 58.73 47.11 62.84 47.00 43.63
Elapsed time 14’53” 15’00” 15’00” 15’07” 14’53” 14’46” 14’52” 14’53” 15’00”

Table 13: UDP/IP Receive latencies

UDP/IP Send
latency (µs)

Occurrences

Idle CPU  Make Java Disk Net Tty CD Floppy

16 - 32 77180 76870 1386 24707 46976 26087 49275 74068
32 - 64 6877 7190 44671 41183 47798 35941 53749 34503 9200
64 - 128 16 13 35715 42206 11543 489 3851 291 155
128 - 256 1664 724 24 17 1 4 27
256 - 512 14 1 27

Total samples 84073 84073 83450 84113 84073 83450 83488 84073 83450
Max. latency 84 77 288 187 268 462 149 135 172
Avg latency 27 28 65 69 45 31 41 33 28
Elapsed time 15’3” 15’3” 14’56” 15’3” 15’3” 14’56” 14’57” 15’3” 14’56”

Table 14: UDP/IP Send latencies
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with the extensions, neither did we perform any measurements. The 3 extensions are:

r in the
 the NT
other NT
and RT

 thread
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and logs
ic to the
• HyperKernel from Imagination Systems Incorporated [5].
• INtime kernel from Radisys Corporation [6].
• RTX Real-Time Subsystem from VenturCom [7].

The three extensions are not architectured nor implemented identically. HyperKernel and INtime are simila
sense that the extension is implemented as an aside protected kernel running with higher privilege than
kernel. RTX is implemented as an NT subsystem inside which RT threads also have precedence over any 
activity. The three extensions offer specific RT APIs plus some interfaces to communicate between NT 
threads. We will not describe other differences, but rather emphasize the key architectural elements.

As depicted in Figure 7, functionally the whole NT system
acts as an RT thread of the RT kernel extension, but with
the least privileges (lowest priority). Note that the
HyperKernel has an optional anti-starving mechanism for
NT, but at the cost of higher worst case timings. The RT
extensions offer FIFO scheduling, more priority levels,
synchronization mechanisms with priority inversion
handling. Dedicated drivers for real-time control devices
would be implemented as RT threads. A subset of the
WIn32API is available to the RT threads, with predictable
service times. The NT threads and the RT threads can
communicate using messages or shared memory.

Typically, a real-time control application is written in
such a way that the time critical components run as RT
threads on top of limited but predictable kernel services. On Figure 8, the robot arm is controlled by an RT
(#1). Whichever activity occurs on the windows NT system, the RT thread would preempt it at any time, inc
when processing interrupts such as disk transfer ones. The other components, less critical, may be implem
NT threads and access the full Win32 API. In our example, NT thread #2 acquires data from RT thread #1 
it onto disk. Threads #1 and #2 communicate with messages or shared memory through an API specif
extension.

Communication and synchronization between the
application time critical threads (#1) and non critical
threads (#2) must be carefully designed to prevent
priority inversion like symptoms. For instance, if thread
#1 and thread #2 share some buffer or mail box to
exchange data, the buffer may overflow while waiting for
disk IOs to complete, and it should not block thread#1.
Despite the fact that the application designer may have
ensured that the overall system could sustain the highest
data throughput, NT is unfortunately not deterministic.

Note that this design phase, where one must prioritize the
tasks, choose the appropriate synchronization and
analyze schedulability is also applicable to a pure NT
solution, where the time critical components would be
written such that they would rely as little as possible on
un-predictable Win32 services. Still we have
demonstrated that even pure CPU tasks are not immune
to unexpected delays on windows NT and this is where
the real time extensions are much more appropriate. So
clearly, RT extensions for NT can drastically improve
predictability, certainly with sub-milliseconds worst case
latencies if the application is adequately architectured.

DPC
ISR

NT/Win32 threads

NT Executive

NT drivers

NT dispatcher

RT Threads

RT Dispatcher

Figure 7: NT RT extensions
functional architecture

DPC
ISR

NT/Win32 threads

NT Executive

NT drivers

NT dispatcher

RT Threads

RT Dispatcher

Hardware

Figure 8: Typical real-time control
with RT extensions
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Let us now analyze how this applies to the Quite environment and what the impacts are. As compared to a typical
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real-time control application the primary focus of Quite is Distributed QoS. This means that not only the ind
nodes may control dedicated hardware such as radars, but it is required that communication and failure d
with participating nodes be predictable. The same way the robot arm is controlled by an NT thread, n
communication must be implemented on the NT extension. It is not conceivable to rely on the NT side
drivers and protocol stacks since we would lower our determinism to that of NT, thus completely loosi
benefits of the real-time extension. The consequences are that 1) the network device drivers must be
especially for the extension, 2) the network stack protocols (ATM, ARP, IP, UDP ...) must be ported 
extension as well. In the case of a typical real-time control application, the H/W controllers are dedicated
not supported by NT, so it is required that a driver be developed anyway. In our case, we are not able to r
NT network drivers, even though most network cards are supported by NT. Adapting the standard IP protoc
require significant engineering effort to enforce per session QoS. We did not find any references to IP su
the documentation of he extensions, nor references to supported drivers for ATM or predictable network int

Finally, we must address the issue of sharing the communication link between NT and the Real-time exte
It is highly probable that the NT side application component will require access to the network. It appe
realistic if not impossible to share the network interface driver between NT and the extension. We wou
again lower our determinism to that of NT. Instead we can think of two deterministic solutions.

1. The first approach (Figure 9) consists in driving two network interfaces, one handled by NT, the oth
the Real-time extension.
Advantages: - It does not require additional software (but it still requires a NIC driver and protocol

on the extension side.
- It allows eventually to drive two networks, with distinct traffic types and predictability

Drawbacks: - The requirement for a second network interface.
- Some administration complexity since the host will have two addresses.

2. The other approach (Figure 10) would be to drive the single network interface on the extension side
packets would be at first filtered by a high priority thread (#1). Packets that are not relevant to the ex
side components would be immediately handed off to a low priority thread (#2) and later on transmi
an NT thread (#3). This thread would act as a software NIC driver and communicate with an NDIS 
Advantages: - It does not require an additional interface

- The host is configured with a single address.
Drawbacks: - It requires development of a packet filter and a forwarder on the Real-time extensio

and a pseudo software NIC driver on the NT side.
- The software must be carefully designed so that the handling of non critical network pa

does not induce unpredictable latencies on the critical tasks.
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Figure 9: Dual NIC approach

DPC
ISR

NT/Win32 threads

NT Executive

NT drivers

NT dispatcher

RT Threads

RT Dispatcher

H/W NIC

IP

stack

N
D
I
S

1

2

Figure 10: Shared NIC approach
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11. Conclusions

admit that
 and the
able 3).

n (i.e.
latencies,
gures
le

simply
ome NT
orst case

ctability

ed/

inntr-

p

ac/

/rtx/

om/

innt-
We have summarized the worst case figures for each individual test in table 15.

Among the measurements, the make based workload causes some of the worst latency figures. We must 
we cannot really explain why, since interrupt wise, the disk based workload does not show similar figures,
compiler input and output files are local. The disk transfer sizes are also comparable in both workloads (t
Running all tests for longer periods of time would certainly give better confidence.

In any case, for this particular platform , the figures clearly indicate that it is unwise to rely on deviationsinferior
to 2 ms. This is relatively high. The study also demonstrates that without any additional in-depth informatio
source code), it is extremely hard to locate precisely the components or drivers that cause the worst case 
and whether or not the empirical measurements captured, or have the ability to capture, the worst case fi
More generally, thesmall number of priority levels and theabsence of FIFO scheduling may be a strong obstac
to building real-time applications.

It is important to realize that there is no way of proving formally what the worst case figures are for NT, we 
offer some standard tests that can be used to perform measurements empirically. Rewriting or adapting s
drivers, such as the disk or network ones, to use threads instead of DPCs would certainly decrease the w
latencies. New measurements would then be required.

In the context of the Quite project, the use of real-time extensions would undoubtedly enhance the predi
but at the cost of at leastdeveloping dedicated network drivers (ATM like) and a fullprotocol stack specific to
the extension.
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Test
Worst case latency or deviation (µs)

Idle CPU  Make Java Disk Net Tty CD Floppy

Periodic CPU Preemptions 294 286 409 384 547 1289 341 349 303
Timer services Sleep 1068 1059 1506 1110 1099 1375 1448 907 1073
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Table 15: Worst case latency and deviation figures summary
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Appendix A - Time stamp counter macros

r mode
recisely
The following macros enable access to the Pentium TSC register with minimum overhead, from both use
threads and from any kernel module. The syntax is presently dependent on Microsoft’s compiler (more p
SDK or DDK in our case) but should be easily adaptable to other compilers.

#define rdtsc __asm _emit 0x0f __asm _emit 0x31

/* 32 bit variant */

#pragma warning( disable : 4035 )
__inline int read_timestamp()
{
  __asm {
    mov edx, edx; Just so that edx be saved or unused in upper block */
    rdtsc;
  }
}

#pragma warning( default : 4035 )

/* 64 bit  variant */
#pragma warning( disable : 4035 )
__inline LONGLONG read_Xtimestamp()
{
  __asm {
    rdtsc;
  }
}

#pragma warning( default : 4035 )
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Appendix B - interrupt/preemption benchmark filtering method

act the
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The screen capture (Figure 11) of a pop up window for the preemption test illustrates how we extr
preemption latency figures. The goal of this test is to measure the variations for interrupt and preemption du
As explained in section 6, we measure the duration of a short fixed sequence of code (fixed number of cyc
data sampling and gathering must be part of this code sequence, otherwise the test would potentially miss 
while gathering each figure. So whether or not the code sequence is interrupted, its duration (less the base
time) is recorded. This explains the first row of figures on the screen capture, accounting for 99.96%
occurrences with an average null duration deviation (offset as compared to the minimum reference
representing un-interrupted sequences.

We consider that the sequences that are really interrupted are the ones for which the duration variation (of
reference) is at least 4 times as large as the reference duration (4 x 0.313 = 1.252µs). Note that using a lower ratio
such as 2 or even 1 would not significantly change the results. We empirically adjusted the ratio to 4 to m
interrupt/sec. ratio to that of the NT performance monitor and believe that the very small deviations are re
translation or memory cache misses. This ratio is adjustable at test start-up.

Figure 11: Preemption test text mode output
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