Fault Management Based on Quality of Service Criteria

Douglas Wells
The Open Group
August, 2001

This paper summarizes some thoughts on managing faults within large,
complex, distributed object systems and describes initial results of an implementation
experiment targeting real-time systems. The proposed method incorporates fault
management within a QoS-based resource management architecture that allows trade-offs
among multiple QoS dimensions, including timeliness, integrity and reliability. Initial
results of this process include afast failure detector, which can reliably detect host node
failures in real-time systems with sub-second time constraints.

I ntroduction

In recent years the DARPA Quorum program has sponsored research in managing the
end-to-end quality-of-service (QoS) characteristics of mission-critical applications. This
effort has resulted in the development of technology that permits configuration decisions
to be delayed until execution time. This late binding allows execution-time factors to be
incorporated in the decision process, resulting in more informed assignment of resources
and overall more effective defense systems.

The focus so far has been on guaranteeing essential services, often utilizing redundant
components when possible, or preempting resources from other functions when

necessary. The next step is to extend these capabilities to large, complex systems, where

not all capabilities can be guaranteed, but where the objective is to optimize the overall
system—to utilize the resources available to produce the most valuable results. This is a
goal common to both commercial systems and military systems.

A characteristic of large, complex, distributed systems is that one can not expect all of it
to be up simultaneously. At almost any point in time, some portions will be down, due to
planned maintenance or component failures. It is highly unlikely that these outages will
occur in such a manner as to maintain system optimality. Traditionally, the issue of fault
recovery has been addressed during the system design phase: system engineers would
select fault-tolerant components for particularly critical subsystems, build in fall-back
strategies for less important functions, and allow other functions to simply fail. The result
Is that run-time configuration choices are limited and certain resources may be reserved
and therefore unavailable for more valuable activities.

Our goal for resource management should be to select the overall best configuration
based on the current situation and environment. This requires system-wide analysis of
objectives and resources, including dynamic consideration of faulty components. We
propose to incorporate fault management into these systems by utilizing QoS
characteristics such as integrity, availability, and reliability, within a hierarchical resource
management architecture.



Overview

QoS-based fault management, the systematic handling of faults and failures within a
system, necessarily incorporates traditional concepts of failure detection, identification,
analysis and prediction. In addition, it must include functions for analyzing component
dependencies and for distributing failure and fault data to interested parties, including
resource managers and information visualizers.

Large, complex systems comprise multiple applications with disparate time scales. QoS-
based fault handling must accommodate these differences. Real-time subsystems must
respond under tight time constraints. Resources needed for recovery must be available
immediately and will often need to be pre-reserved. Other activities might allow timein
which to dynamically consider alternative strategies. A run-time resource manager must
bal ance these requirements by determining which resources are best utilized by holding
them in reserve for the time-constrained subsystems.

Relationship to CORBA and ACE/TAO

CORBA—and ACE/TAO—yprovide an effective framework in which to address the
problems of constructing large, complex, distributed systems. It provides a common
typing system and a standard mechanism for invoking services. There is a common
application namespace and Common Facilities includes many necessary general
capabilities. In addition, its applicability to real-time systems has been proven.

At the same time, CORBA's strength, object orientation (OO), interferes with the
effective provision of end-to-end properties. OO enforces opaqueness in order to
encourage reuse—a component is only obligated to do what its documentation says it
must do. Thus, a component that does a function is good; a fault-tolerant version of that
component is better; but there is no insight into the internal behavior of a commodity
component.

Quorum fostered the development of translucent layers. In order to allow the effective
use of component reliability into run-time resource management, we must identify fault-
related QoS metrics and characterize reusable, translucent object components. In much
the same way that BBN's Quality of Objects (QuO) project identified performance
characteristics and incorporated them into wrapper objects, we must make fault-related
information available to resource management.

An Initial Experiment

We have been working with the Naval Surface Warfare Center (NSWC) on a prototype
battle defense system built from distributed components. A fundamental problem with
such a system is that in order for the overall application to meet its time deadlines in the
presence of failures, subtasks must operate with much shorter time constraints. In
particular, the use of group communication techniques for scalability and fault tolerance
requires detection of failed members an order of magnitude faster than the end-to-end
application specifications. Rather than require that the entire application be written to



these tighter requirements, we have isolated the node failure detector into a separate
component that can satisfy the more stringent time constraints. Written using real-time
programming techniques and utilizing reserved CPU resources, this fast failure detector
(FFD) employs a heartbeat with deadline function to reliably detect host failures in sub-
second time frames even in the presence of competing CPU loads.

The FFD notifies applications about node failures and provides regular reports to the
resource manager on host status. The FFD can also provide additional metrics, such as
whether a host isin danger of missing its heartbeat deadline, which would cause a false
positive failure indication.

Note that the FFD does not actually detect group member failures. That would require
that the special real-time programming techniques be applied to the overall application.
Instead, each FFD actually detects failure of other FFD components on other nodes. Use
of the dependency tree information mentioned earlier then allows us to reason about the
effect on the overall system. In this case, failure of the FFD is highly correlated to failure
of the node upon which it operates. A mission-critical application will have been
extensively reviewed and tested. So, the most likely cause of its failure will be dueto a
problem in the underlying node, which in the most relevant context will most probably be
due to battle damage, the intrusion of an foreign object into the host hardware. Finaly,
we retain the original failure detection capability of the group communication system,
which continues to detect failures of group members—now due to less likely causes and
with a much lower probability of occurrence.

Conclusion

Our initial investigation, including the FFD experiment, has supported our belief that
knowledge about faults can be effectively incorporated into resource allocation decisions
and that the use of this information can improve the coordination between applications
relative to resource sharing. We are in the process of building a real-time group
communication product that uses the FFD, and we hope to extend the concepts with
further research in applying hierarchical resource management in large, complex systems
built using CORBA (and ACE/TAO) technology.

—end —



