Description of simpleaffy: easy analysis routines for
Affymetrix data

Crispin J Miller
September 9, 2008

Contents

1__Introduction| 1

2 Reading in data and generating expression calls | 2

3 Quality Control 4

[4 Filtering by expression measures 7
1.1 Paired replicates]o 10

[> Viewing results| 10
.1 Heatmaps| 11
0.2 Printing]o 12
[5.3 Generating a table of results| o000 13
[>.4 Specitying alternate QC configurations| 13

1 Introduction

The simpleaffy package is part of the BioconductOIH project. It it was written to provide
a starting point for exploring Affymetrix data, and to provide functions for some of the
most common tasks we found ourselves doing over and over again. It is based on the
affy package, which does does most of the hard work.

affy provides a variety of functions for processing Affymetrix data, with many more

in affycomp. Even so, some tasks (such as computing t-tests and fold changes between
replicate groups, plotting scatter-plots and generating tables of annotated ’hits’) require
a bit of coding, and some of the most commonly used functions can be a bit slower than

"http://www.bioconductor.org/

http://www.bioconductor.org/

we would like. This package aims to provide high-level methods to perform these routine
analysis tasks, and many of them have been re-implemented in C for speed.

Since simpleaffy is written over the top of the affy package, a basic understand-
ing of the library and its vignette is a good idea. We also assume that the reader
knows how the Affymetrix system works. If not, a brief introduction can be found
at http://bioinf.picr.man.ac.uk/; a more detailed description is in the Affymetrix MAS
manual at http://www.affymetrix.com.

2 Reading in data and generating expression calls

The first thing you need to do is to get R to use the simpleaffy package by telling it to
load the library:

> library(simpleaffy)
> library(affy)

(NB: The examples in the vignette are hypothetical - we are putting together a data
package containing a complete experimental dataset, when that’s done, we will use these
as the basis for the example code in this document).

Affymetrix data is generated by processing an image of the microarray (stored in a
.DAT file) to produce a .CEL file, which contains, for each probe on the array, a single
number defining its intensity. These are combined for each probeset using an algorithm
such as RMA or MAS 5.0, to generate an expression level call for each transcript repre-
sented on the chip. Both the affy and simpleaffy packages work on the data in .CEL files,
so we need to load them into R. In order to compute means, fold changes and t-tests,
simpleaffy needs to know about the replicates in your experiment, so we must also load
some descriptive data that says which arrays were replicates and also something about
the different experimental conditions you were testing. This means that simpleaffy needs
two things:

1. your .CEL files, and
2. a white-space delimited file describing the samples that went on them.

By default, this file is called covdesc. The first column should have no header, and
contains the names of the .CEL files you want to process. Each remaining column is
used to describe something in the experiment you want to study. For example you might
have a set of chips produced by treating a cell line with two drugs. Your covdesc file
might look like something like this:

h
h

treatment
ctrll.cel
ctrl2.cel
ctrl3.cel
al.cel
a2.cel
ad.cel
bl.cel
b2.cel
b3.cel
abl.cel a.b
ab2.cel a.b
So000, the easiest way to get going is it:

T T T o o » BB B

1. Create a directory, move all the relevant CFEL files to that directory
2. Create a covdesc file and put it in the same directory
3. If using linux/unix, start R in that directory.

4. If using the Rgui for Microsoft Windows make sure your working directory contains
the Cel files (use “File -> Change Dir” menu item).

5. Load the library.
> library(simpleaffy)
6. Read in the data and generate expression calls, (using RMA), for example.

R> library(simpleaffy)

R> raw.data <- read.affy() ##read data in working directory

R> x.rma <- call.exprs(raw.data, "rma")

R> # alternatively, use MAS 5.0: x.mas <- call.exprs(raw.data, "mas5")

Take a look at the help files for a more detailed description of these functions (i.e.
?read.affy or ?call.exprs).

The function justMAS provides a faster implementation of the MAS 5.0 expression
summary algorithm written in C. (described in: Hubbell et al. (2002) Robust Esti-
mators for expression analysis. Bioinformatics 18(12) 1585-1592), and in Affymetrix’s
"Statistical Algorithms Description Document’ that can be found on their website at
http://www.affymetrix.com). As with any implementation of an algorithm, variations
can occur. The simpleaffy website, http://bioinf.picr.man.ac.uk/simpleaffy, de-
scribes what testing was done: you should be aware of these differences, and if in any
doubt, use MAS5.0 or GCOS to generate your data.

By default, justMAS is used by the call.exprs to generate the MAS5 calls, to use
the expresso version specify 'mas5-R’ instead of 'mash’ when you invoke call.exprs.

http://www.affymetrix.com
http://bioinf.picr.man.ac.uk/simpleaffy

justMAS has not been tested on every chip type available - the majority of devel-
opment has been on HGU95A arrays and newer. For more details of what chips it has
been tested on, how the testing was done, and the results of the comparisons, see our
website: http://bioinformatics.picr.man.ac.uk/simpleaffy.

3 Quality Control

One of the nice things about the Affymetrix platform is the collection of QC metrics (and
accompanying guidelines) that are available. These may help flag up arrays that may
have problems, and are described in detail in the Affymetrix Data Analysis Fundamentals
manual, which can be found on their website at http://www.affymetrix.com.

Also look at the document 'QC and simpleaffy’, which accompanies this one. It
discusses QC metrics in significantly more detail than this vignette. A brief introduction
can be found below...

The function qc generates the most commonly used metrics:

1. Average background
2. Scale factor

3. Number of genes called present (see the note on detection p-values) described
below.

4. 3’ to 5’ ratios

All of these stats are parameters computed for/from the MAS 5.0 algorithm. Affy’s
QC requires that the Scale Factor for all chips are within 3-fold of one another, and that
the average background and percent present calls for each chip are ’similar’. Affy chips
also use probes at the 3" and 5’ ends of the (generally) GAPDH and beta-actin genes
to measure RNA quality, and additional probes spiked in during the latter stages of
the sample preparation process are used to verify hybridisation efficiency. These probes
(BioB,BioC,BioD,and CreX) should be present in increasing intensity.

The function qc produces an object of class ’QCStats’ containing QC metrics for
each array in a project. It takes both processed and raw data, since it makes use of
numbers generated during the mas 5.0 expression calling algorithm. Alternatively, it
can be called with just the raw data, in which case it calls call.exprs(x,"mas5")
internally. For example,

R> x <- read.affy("covdesc");
R> x.masb5 <- call.exprs(x,"mas5");
R> qcs <- qc(x,x.masb);

Note that we have used call.exprs(x,"mas5") to normalise the data using the mas
5.0 algorithm. This is important because call.exprs stores some additional data in the
AffyBatch object’s description@preprocessing slot:

4

http://bioinformatics.picr.man.ac.uk/simpleaffy
h

R> x.masb@description@preprocessing

qc returns an object containing scale-factors, % present, average, mininimum, max-
imum and mean background intensities,and bioB, bioC, bioD and creX present calls
(1=present;0=not present). It also stores 3’, 5" and M values for the QC probes. ra-
tios(qc) generates a table of qc ratios for these probes. See 7qc for more details.

For some arrays, there are more than one probeset that target the gapdh and beta-
actin genes. In this situation, we’ve attempted to make a sensible choice as to which
probeset to use. To find out which probesets are used for your arrays use the methods
qc.get.ratios, qc.get.probes and qc.get.spikes.

The data file qcs contains an example QQCStats object for a 25 array project com-
paring different protocols for processing MCF7 and MCF10A data. This dataset is
interesting because some of the arrays have poor qc.

> data(qcs)

The QCStats object (returned by qc), or what we just loaded with data, has a
number of accessor functions to get at its values:

ratios(qcs)
avbg(qgcs)

maxbg (qcs)
minbg(qcs)
spikeInProbes (qcs)
gcProbes (qcs)
percent.present (qcs)
plot(qgcs)

sfs(qcs)

target (qcs)
ratios(qcs)

VVVVVVVVVVYV

Many of these also have ’set” methods - see section for more details.

The qc functions and detection p value code have not been tested on every chip type
available - the majority of development has been on HGU95A arrays and newer. Again,
for more details of what chips it has been tested on, how the testing was done, and the
results of the comparisons, see the simpleaffy website.

A plot of qc data can also be obtained by plot(qc).

> plot(qcs)

A actin3/actinb QC StatS

o gapdh3/gapdh5

(H18_H_alOOMCF10A_r3.CEL %5:33%° | — SN
(H17_H_al00MCF10A_r2.CEL 5937 e PN
(H13_H_al00MCF10A_r1.CEL 533" : — o A
_YH34_H_alOMCF10A_r4.CEL g548% | i PN
4_alOMCF10A _r3 rescan.CEL ﬂgﬁ/" \] o A
_YH22_H_alOMCF10A_r2.CEL 554" ! — d A
_YH21_H_alOMCF10A_r1.CEL gz §5” ! ’ s A
3_YH40_H_alMCF10A_r3.CEL 54357 : —— ¢ 2
(H39_H_alMCF10A_r2_2.CEL 93:83” : — . a
}_YH38_H_alMCF10A_rL.CEL g1s” | 1 o ia
203_YH27_H_MCF10A_r3.CEL 538" L T !
203_YH26_H_MCF10A_r2.CEL 253" : —ala !
203_YH11_H_MCF10A_rL.CEL 2353”7 L !
3_YH16_H_alOOMCF7_r3.CEL 5937 e N
3_YH15_H_alOOMCF7_r2.CEL 3§54 e A
3_YH12_H_alOOMCF7_r1.CEL 27337 o . A
)3_YH20_H_alOMCF7_r3.CEL 58337 : — RN
)3_YH19_H_alOMCF7_r2.CEL 58937 o= o &
)3_YH14_H_alOMCF7_rL.CEL 59787 o
3_YH37_H_alMCF7_r3 2.CEL 33937 i — Lo N
103_YH36_H_alMCF7_r2.CEL 31427 ! — A
3_YH35_H_alMCF7_r1_2.CEL 554" | — ! A
0203_YH25_H_MCF7_r3.CEL 233" S !
0203_YH24_H_MCF7_r2.CEL 23iL Y !
0203_YH10_H_MCF7_rL.CEL 2/§°" '\ =h !
3-2-10 1 2 3

Each array is represented by a seperate line in the figure. The central vertical line
corresponds to 0 fold change, the dotted lines on either side correspond to up and down
regulation. The blue bar represents the region in which all arrays have scale factors
within, by default, three-fold of each other. Its position is found by calculating the
mean scale factor for all chips and placing the center of the region such that the borders
are -1.5 fold up or down from the mean value.

Each array is plotted as a line from the 0-fold line to the point that corresponds to
its scale factor. If the ends of all of the lines are in the blue region, their scale-factors
are compatible. The lines are coloured blue if OK, red if not.)

The figure also shows (for most arrays) GAPDH and beta-actin 3/5fatios. These are
represented as a pair of points for each chip. Affy state that beta actin should be within
3, gapdh around 1. Any that fall outside these thresholds (1.25 for gapdh) are coloured
red; the rest are blue.

Written along the left hand side of the figure are the number of genes called present
on each array and the average background. These will vary according to the samples
being processed, and Affy’s QC suggests simply that they should be similar. If any
chips have significantly different values this is flagged in red, otherwise the numbers are

displayed in blue. By default, ’significant’ means that %-present are within 10% of each
other; background intensity, 20 units. These last numbers are somewhat arbitrary and
may need some tweaking to find values that suit the samples you're dealing with, and
the overall nature of your setup.

Finally, if BioB is not present on a chip, this will be flagged by printing 'BioB’ in
red.

In short, everything in the figure should be blue - red highlights a problem!

4 Filtering by expression measures

When R loaded the .CEL files, it also used the data in the covdesc file to define which
experimental groups the chips belonged to. The get.array.subset function makes it
easy to select a subest of arrays from the experiment. For example,

R> get.array.subset (x.rma, "treatment",c("a","n"))

will return an ExpressionSet containing just the chips corresponding to treatment
with drug ’a’ or or with no drug at all.

The function pairwise.comparison allows you to take a subset of chips and perform
the following analyses on it:

1. find means of the data,
2. compute log2 fold changes between the means,
3. compute a t-test between the groups,

4. possibly compute MAS5.0 style detection p values and Present/Marginal /Absent
calls.

it returns a 'PairComp’ object containing the results of the analysis:

R> results <- pairwise.comparison(

X.rma, ## processed data
"treatment", ## the factor in covdesc

to use to group arrays
c("n","a"), ## groups to compare
raw.data ## for PMA calls

)

This function is implemented in C for speed - and does everything in one go. There
are no individual functions for fold-change and p-value, because it works out quicker
simply to get everything and to discard the stuff you don’t need.

Note that detection p values are computed using the function detection.p.val.
This makes use of two parameters (alphal and alpha2) that are, like the control probes
described above, dependent on the array type you're analysing. Use getAlphal and
getAlpha? to find out what values are being used for your array.

If you only have two groups of replicates - a simple control v. treatment experiment,
for example, things are even easier, you do not have to specify the members to compare
since the function can work it out from the group:

R> results <- pairwise.comparison(

X.rma, ## processed data
"treatment", ## the factor in covdesc
spots=raw.data ## for PMA calls

)

R> ## Find the 100 most changing genes
R> sort(abs(fc(results)),decreasing=TRUE) [1:100]

Since call.exprs always returns logged data, pairwise.comparison expects logged
data by default — this can be changed with the logged parameter.
Averages can be calculated 3 ways:

1. From the unlogged values — i.e. log2(mean(replicates)).
2. From the logged values — i.e. mean(log2(replicates)).
3. From the median — i.e log2(median(replicates))

..and then the log2(fold change) values are simply worked out from these.

By default, unlogged values are used, but the parameter, method, allows you to
change this by specifying method="unlogged’,’logged’ or 'median’.

Note that if you have no replicates in one or both of your experimental groups - so
that you have only one control or treatment chip, for example, the function returns a
p-score of 0.0 for each t-test comparison rather than generating an error complaining
that there are not enough observations.

The function pairwise.filter takes the output of pairwise.comparison and filters
it for significantly changing genes:

R> # find genes expressed with an intensity
R> # greater than 10 on at least 6 chips,
R> # that show a fold change greater than 1.5
R> # and are significantly different
R> # between groups with a t-test p.value
R> # of 0.001 or better
R> significant <- pairwise.filter(
results,

min.exp=log2(10),
min.exp.no=6, fc=log2(1.5),
tt= 0.001)

If the pairwise comparison object was created from MAS 5.0 data, it can be filtered
by Present Marginal Absent calls. Each gene is tested to see how many arrays it is
called present on and this value used to decide whether the transcript passes the filter.
Two ways of doing this are possible: the first simply sees if the transcript is Present
on more than min.present.no arrays in the experiment. To do this, the parameter
present.by.group must be set to FALSE.

The second makes use of the replicate groups used to calculate the pairwise.comparison
object. In this case, the transcript must be present by more than min.present.no ar-
rays in at least one of the two experimental groups. For this present.by.group must
be TRUE. This is useful because it provides a way of trying to identify transcripts that
have gone from ’off’ to ’on’, i.e. from being called Absent in one set to Present in the
other, as well as those that are Present on all arrays.

For both methods of filtering, if min.present.no="all" is specified instead of a
number , the transcript must be present in ”all” arrays of a replicate group (or the whole
experiment, depending on present.by.group).

For example:

R> # find genes present on all chips,
R> # that show a fold change greater than 1.5
R> # and are significantly different
R> # between groups with a t-test p.value
R> # of 0.001 or better
R> significant <- pairwise.filter(
results,
min.present.no="all",
present.by.group=F, fc=log2(1.5),

tt= 0.001)
R> # find genes present on all chips in at least one replicate group,
R> # that show a fold change greater than 1.5
R> # and are significantly different
R> # between groups with a t-test p.value
R> # of 0.001 or better

R> significant <- pairwise.filter(
results,
min.present.no="all",
present.by.group=T, fc=log2(1.5),
tt= 0.001)

4.1 Paired replicates

In the above example, we simply lumped all the replicates together when we calculated
the t-tests. Ideally, we would like to design experiments so that each treatment is
matched by a control sample that mirrors the protocols and processes it was subjected
to as closely as possible.

This is particularly important if we are going to be processing replicates on separate
days, or perhaps with different operators. A protocol that requires incubation on the
bench for a couple of hours, say, might behave differently on a hot day and we would
like the control samples to pick this sort of thing up.

The pairwise.comparison function lets us do a t-test with paired replicates, by
specifying the ordering of replicates within groups.

R> results <- pairwise.comparison(

x.rma, ## processed data
"treatment", c("n","a"),## groups to compare
raw.data,

a.order=c(1,3,2), ## a.l1 matches b.1
b.order=c(1,2,3)) ## a.3 matches b.2 etc...

R> ## Find the 100 most changing genes
R> sort(abs(fc(results)),decreasing=TRUE) [1:100]

Here, we have specified the order the replicate samples should be compared to each
other - so that replicate 3 in group a is compared to replicate 2 in group b, and so on.

Again, the help pages for these functions explain more about them and the values
they return.

5 Viewing results

The function trad.scatter.plot does a scatter plot between a pair of vectors:

R> trad.scatter.plot(exprs(x.rma)[,1],exprs(x.rma)[,3],
fc.line.col="1lightblue",col="blue");
R> trad.scatter.plot(exprs(x.rma)[,2],exprs(x.rma) [,4],
add=T,col="red");
R> legend(2,12,c("Control v. treatment rep 1","Control v. treatment rep 2"),
col=c("blue", "red"),pch=20)

Generic plot functions also exist for pairwise.comparison objects.
plot(pairwise.comparison) will do a straight scatter plot of the means of the two
replicate groups. In addition the parameter type can be used:

R> plot(results,type="scatter") #scatter plot
R> plot(results,type="ma") #M v A plot
R> plot(results,type="volcano") #volcano plot

10

If PMA calls are available, the function will colour the points as follows:
1. Red — all present

2. Orange — all present in one group or the other

3. Yellow — all that remain

If a second pairwise.comparison object is supplied, then these points are drawn
(by default) as blue circles. This allows the results of a pairwise.filter to be identified on
the graph - eg.:

R> # find genes present on all chips in at least one replicate group,
R> # that show a fold change greater than 1.5

R> # and are significantly different

R> # between groups with a t-test p.value

R> # of 0.001 or better

R> results <- pairwise.comparison(

X.rma, ## processed data

"treatment", c("n","a"),## groups to compare

raw.data,

a.order=c(1,3,2), ## a.l1 matches b.1

b.order=c(1,2,3)) ## a.3 matches b.2 etc...
R> significant <- pairwise.filter(

results,

min.present.no="all",
present.by.group=T, fc=log2(1.5),
tt= 0.001)

R> plot(results,significant)

5.1 Heatmaps

Simpleaffy also has a pair of functions for plotting simple heatmaps, hmap.eset and
hmap.pc for AffyBatch and PairComp objects, respectively. The simplest use is as
follows:

R> #generate a heatmap of the first 100 genes in an expression set.
R> eset <- read.affy()

R> eset.rma <- call.exprs(eset)

R> hmap.eset(eset.rma,1:100)

You can specify colours using the 'col’” parameter either by giving the function a
vector of colors (e.g. rainbow(21)) or by the following strings:

1. “bwr” — from blue to red via white

11

2. “rbg” — from red to green via black

3. “ryw” — from red to white via yellow

By default, colouring is such that the colours are scaled so that all the data in the
heatmap fits in the colour range supplied. Alternatively, minimum and maximum values
for the colour range can be specified. Clustering functions or trees generated by hclust
or dendrogram can also be provided — by default 1-Pearson correlation is used. See
?hmap.eset for more details.

If you have the results of a pairwise.filter, you can use this to select the samples and
probesets to plot:

R> #generate a heatmap of the first 100 probesets in an expression set.
R> eset <- read.affy()

R> eset.rma <- call.exprs(eset)

R> pc <- pairwise.comparison(eset.rma,''group'’',c(*a'',"''b"'"'))

R> pc.f <- pairwise.filter(pc,tt=0.001,fc=1)

R> hmap.pc(pc.f,eset.rma)

By default, this scales the colouring for each probeset in terms of its standard devi-
ation. This is done as follows:

1. The replicate groups used for the pairwise comparison are found. The s.d. for
each probeset is calculated for each group, and the results averaged to give a mean
standard deviation for each probeset.

2. Data are clustered as before

3. Each probeset is scaled by it standard deviation, and coloured according to how
many s.d.s it is from its mean.

4. The samples used for the pariwise comparison are plotted (by default)

The parameter ’scale’ can be used to turn this scaling off, and spread defines how
many standard deviations above and below the mean should be shown. see Thmap.pc
for more details.

5.2 Printing

Another thing that can sometimes be tricky is producing figures for papers and presenta-
tions. Two utility functions, journalpng and screenpng make it easy to generate .png
files at 300dpi (huge) and 72dpi. Most journals accept .pngs, and they can be converted
into other formats using a decent graphics package.

R uses the concept of a device to deal with graphics. When you start to plot a graph,
it looks for a graphics device to print it on. If it can’t find one that’s already there, it

12

opens a new one, which by default corresponds to a window on the screen. In order to
generate a file (rather than a window) containing our figure, we can use journalpng and
screenpng to create a new graphics device that R can use instead. This device results
in our graph being plotted to a file on disk - when you type something like:

R> journalpng(file="results/figurel.png");
R> trad.scatter.plot(exprs(x.rma)[,1],exprs(x.rma)[,3],fc.1line.col="1ightblue");
R> dev.off();

a new png file is created, the scatterplot is printed into that file and then, when
dev.off() is called, the data is saved. Note that because R is plotting to our journalpng
device rather than the screen, we won’t see any pictures (or anything happen at all).

5.3 Generating a table of results

It would also be nice to know what our changing genes actually do. The function
get.annotation takes a list of probe set names along with a string specifying the type
of array we are looking at, and uses these to look up annotation for our data. The
resulting dataframe, when saved as a tab delimited .XLS file, loads into excel, with
hyperlinks to the NCBI’s Unigene and LocusLink databases.

Two functions results.summary and write.annotation are also useful - the former
generates a summary table with expression data and associated annotation, the latter
spits it out in tab delimited format (see ?get.annotation for more details):

R> x <- read.affy()

R> x.rma <- call.exprs(x,"rma")

R> pw <- pairwise.comparison(x.rma, "drug",c("formulaX", "nothing"))
R> pw.filtered <- pairwise.filter (pw)

R> summary <- results.summary(pw.filtered, "hgui33a")

R> write.annotation(file="spreadsheet.x1ls",summary)

5.4 Specifying alternate QC configurations

If when running qc, one of the other qc functions, or detection.p.val, you get an error
because simpleaffy doesn’t recgnize the type of array in your project, or because, for
example, you are using custom arrays, you need to specify your own QC parameters.
These include alphal and alpha2 values for the array, the name of the spike control
probesets and the pairs of probesets used to calculate the 5’/3" ratios. These can be
then specified in a config file. This, for example, is the configuration for the hgul33
plus2 array:

array hgul33plus2cdf
alphal 0.05

13

alpha2 0.065

spk bioB AFFX-r2-Ec-bioB-3_at

spk bioC AFFX-r2-Ec-bioC-3_at

spk bioD AFFX-r2-Ec-bioD-3_at

spk creX AFFX-r2-Pl-cre-3_at

ratio actin3/actin5 AFFX-HSAC07/X00351_3_at AFFX-HSAC07/X00351_5_at
ratio actin3/actinM AFFX-HSAC07/X00351_3_at AFFX-HSAC07/X00351_M_at
ratio gapdh3/gapdh5 AFFX-HUMGAPDH/M33197_3_at AFFX-HUMGAPDH/M33197_5_at
ratio gapdh3/gapdhM AFFX-HUMGAPDH/M33197_3_at AFFX-HUMGAPDH/M33197_M_at

The file must be called <cdfname>.qcdef, where cdfname is the ’'clean’ cdfname
produced by calling cleancdfname on the cdfName of the appropriate AffyBatch object.
For example:

R> n <- cdfName (eset)
R> cleancdfname (n)

[1] "hgul133plus2cdf"

The first token on each line specfies what the rest of the line describes. Allowable
tokens are: ’array’ (array name), 'alphal’, 'alpha2’ (alpha values), spk’ (the name of a
spike probeset — must be followed by one of 'bioB’,’bioC’, ’bioD’ or ’creX’), or 'ratio’ (to
specify pairs to comput 3’/5 or 3’/M metrics). 'ratio’ must be followed by the name
of the ratio, which must be of the form 'namel/name2’, where namel and name2 are
textual identifiers suitable for displaying in the qc plot, for example. This must then be
followed by two probeset ids.

Once the file is created, the QC environment can be set up with a call to setQCEnvi-
ronment (array,path) specifying the appropriate cdfname and the path to the directory
containing the file.

MORE on changes to follow...

14

	Introduction
	Reading in data and generating expression calls
	Quality Control
	Filtering by expression measures
	Paired replicates

	Viewing results
	Heatmaps
	Printing
	Generating a table of results
	 Specifying alternate QC configurations

