
Analysis of genomic arrays using quantile

smoothing

Jan Oosting, Paul Eilers & Renee Menezes

Package quantsmooth.

May 12, 2008

Contents

1 Usage 1

2 Session Information 8

Introduction

Genomic arrays give a detailed picture of deletions and amplifications along
chromosomes. If changes in copy numbers occur, we expect these to be visible
in segments that cover multiple probes, because fragments of chromosomes are
generally affected. The spatial information can be used to reduce noise and
increase the reliability of detecting changes.

Using spatial information means that some form of smoothing is being ap-
plied. But classical methods are not very helpful here: they blur the jumps
that occur at the sudden changes of copy numbers and they round, rather than
flatten the segments between the jumps.

One alternative approach is to model the data explicitly as a series of seg-
ments, with unknown boundaries and unknown heights. These have to be esti-
mated from the data.

We emphasize visualization instead of breakpoint detection and present a
smoothing method inspired by penalized least squares (Eilers, 2003). We use
the L1 norm, the sum of absolute values, both in the measure of fit and in the
roughness penalty. This leads to a large but sparse linear program, which can
be solved efficiently with an interior point algorithm. When combined with 0/1
weights, the penalty makes smooth interpolation of left-out observations trivial,
allowing elegant and efficient cross-validation.

1 Usage

Throughout the examples the same example data are used. Genomic profiles of
two tumors were examined using Affymetrix 10K SNP genechip arrays, Illumina
Golden Gate Linkage Panel IV SNP arrays, and home spotted 1 mb spaced BAC

1



arrays. Chromosome 14 was selected to demonstrate the package on an affected
chromosome.

A simple way to show the effect of the smoother is to plot the raw data
together with the smoothed line.

> library(quantsmooth)

Package SparseM (0.77) loaded. To cite, see citation("SparseM")

> data(chr14)

> plot(affy.cn[, 1], pch = ".")

> lines(quantsmooth(affy.cn[, 1]), lwd = 2)

0 50 100 150 200 250 300 350

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Index

af
fy

.c
n[

, 1
]

To compare the 3 methods the data can be plotted using the vectors with
the chromosomal positions of the probes

> plot(affy.pos, affy.cn[, 1], ylab = "copy number", xlab = "position",

+ pch = ".")

> lines(affy.pos, quantsmooth(affy.cn[, 1]), lwd = 2)

> points(bac.pos, bac.cn[, 1], col = "red", pch = ".")

> lines(bac.pos, quantsmooth(bac.cn[, 1]), col = "red", lwd = 2)

> points(ill.pos, ill.cn[, 1], col = "blue", pch = ".")

> lines(ill.pos, quantsmooth(ill.cn[, 1]), col = "blue", lwd = 2)

> legend("topleft", legend = c("affymetrix", "illumina", "BAC"),

+ col = c("black", "red", "blue"), lty = 1)

2



2e+07 4e+07 6e+07 8e+07 1e+08

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

position

co
py

 n
um

be
r

affymetrix
illumina
BAC

Inspection of this plots shows that the behaviour of the 3 smoothed lines is
quite different, i.e. the line for affymetrix is more erratic than for the other two.
This can be caused by a difference in the number of probes for this chromo-
some, or the fact that the variability for the raw affymetrix data is higher. To
compensate for the first factor it is possible to adapt the smoothing parameter
to the number of probes under investigation.

> lambda.divisor <- 50

> plot(affy.pos, affy.cn[, 1], ylab = "copy number", xlab = "position",

+ pch = ".")

> lines(affy.pos, quantsmooth(affy.cn[, 1], smooth.lambda = length(affy.pos)/lambda.divisor),

+ lwd = 2)

> points(bac.pos, bac.cn[, 1], col = "red", pch = ".")

> lines(bac.pos, quantsmooth(bac.cn[, 1], smooth.lambda = length(bac.pos)/lambda.divisor),

+ col = "red", lwd = 2)

> points(ill.pos, ill.cn[, 1], col = "blue", pch = ".")

> lines(ill.pos, quantsmooth(ill.cn[, 1], smooth.lambda = length(ill.pos)/lambda.divisor),

+ col = "blue", lwd = 2)

> legend("topleft", legend = c("affymetrix", "illumina", "BAC"),

+ col = c("black", "red", "blue"), lty = 1)

3



2e+07 4e+07 6e+07 8e+07 1e+08

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

position

co
py

 n
um

be
r

affymetrix
illumina
BAC

Another method to determine the smoothing parameter is to use cross vali-
dation

> lambdas <- 2^seq(from = -2, to = 5, by = 0.25)

> lambda.res <- rep(NA, length(lambdas))

> for (lambda in 1:length(lambdas)) lambda.res[lambda] <- quantsmooth.cv(bac.cn[,

+ 1], lambdas[lambda])

> plot(lambdas, lambda.res, type = "l")

> abline(v = lambdas[which.min(lambda.res)])

4



0 5 10 15 20 25 30

4
5

6
7

8
9

10

lambdas

la
m

bd
a.

re
s

Quantile smoothing can show the variability of the data by also plotting
other quantiles besides the median

> plot(bac.pos, quantsmooth(bac.cn[, 1], smooth.lambda = length(bac.pos)/lambda.divisor),

+ col = "red", type = "l", lwd = 2)

> lines(bac.pos, quantsmooth(bac.cn[, 1], smooth.lambda = length(bac.pos)/lambda.divisor,

+ tau = 0.25), col = "red", lty = 2)

> lines(bac.pos, quantsmooth(bac.cn[, 1], smooth.lambda = length(bac.pos)/lambda.divisor,

+ tau = 0.75), col = "red", lty = 2)

5



2e+07 4e+07 6e+07 8e+07 1e+08

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

bac.posqu
an

ts
m

oo
th

(b
ac

.c
n[

, 1
], 

sm
oo

th
.la

m
bd

a 
=

 le
ng

th
(b

ac
.p

os
)/

la
m

bd
a.

di
vi

so
r)

The function plotSmoothed can be used to do this all with 1 command

> plotSmoothed(bac.cn, bac.pos, ylim = c(1, 2.5), normalized.to = 2,

+ smooth.lambda = length(bac.pos)/lambda.divisor)

6



2e+07 4e+07 6e+07 8e+07 1e+08

1.
0

1.
5

2.
0

2.
5

position

in
te

ns
ity

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

To identify genomic regions that contain losses or gains also these functions
can be used.

> plotSmoothed(ill.cn[, 1], ill.pos, ylim = c(1, 2.5), normalized.to = 2,

+ smooth.lambda = length(ill.pos)/lambda.divisor)

> res <- getChangedRegions(ill.cn[, 1], ill.pos, normalized.to = 2,

+ interval = 0.5)

> segments(res[, "start"], 1, res[, "end"], 1, col = 2, lwd = 2)

7



2e+07 4e+07 6e+07 8e+07 1e+08

1.
0

1.
5

2.
0

2.
5

position

in
te

ns
ity

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 Session Information

The version number of R and packages loaded for generating the vignette were:

� R version 2.7.0 (2008-04-22), i386-pc-mingw32

� Locale: LC_COLLATE=English_United States.1252;LC_CTYPE=English_United States.1252;LC_MONETARY=English_United States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252

� Base packages: base, datasets, graphics, grDevices, grid, methods, stats,
tools, utils

� Other packages: lodplot 1.1, quantreg 4.17, quantsmooth 1.6.0, SparseM 0.77

8


