
Family Based Association Tests Using the fbat
package

Weiliang Qiu
email: stwxq@channing.harvard.edu

Ross Lazarus
email: ross.lazarus@channing.harvard.edu

Gregory Warnes
email: warnes@bst.rochester.edu

Nitin Jain
email: nitin.jain@pfizer.com

May 12, 2008

Contents

1 Introduction 2

2 Pedigree data file format 2

3 Data quality control 3

4 Examples 3

A Notation 10

B Genotype coding methods 11

C Trait coding methods 12

1

1 Introduction

The R package fbat can be used to test the following null hypotheses for each marker
based on family pedigrees:

H01 : the marker has no association and no linkage with the trait;

H02 : the marker has no association with the trait in the presence of linkage.

We assume that

� the families are nuclear families

� there are no missing genotypes and phenotypes for children

� markers are bi-allelic.

A more general software FBAT is available as a stand-alone executable with doc-
umentation and example files from http://www.biostat.harvard.edu/~fbat/fbat.

htm. While this R package has some important limitations as present, these will be
addressed in further versions.

2 Pedigree data file format

All fields are separated by whitespace (e.g. one or more spaces).

First line : names of all markers in the sequence of the genotype data. For example,
marker1, marker2, . . ., markerm.

Remaining lines: The remaining lines contain only non-negative integers and have
the same format:

family pid father mother sex affection marker1.1 marker1.2 · · · markerm.1 markerm.2

where

family: family id

pid: patient id

father: father id.

Use 0 (zero) for founders or marry-ins (parents not specified) in a pedigree.
A founder in a pedigree is an individual who is not a child of any individuals
in the pedigree.

2

http://www.biostat.harvard.edu/~fbat/fbat.htm
http://www.biostat.harvard.edu/~fbat/fbat.htm

mother: mother id.

Use 0 (zero) for founders or marry-ins (parents not specified) in a pedigree.
A founder in a pedigree is an individual who is not a child of any individuals
in the pedigree.

sex: 1 – male; 2 – female;

affection: affection status (i.e., trait)

2 – affected; 1 – unaffected; 0 – unknown

markeri.j: allele j of marker i, j = 1, 2; i = 1, 2, . . . ,m.

non-missing Alleles are represented by positive integers. Missing alleles are
represented by zero (0).

3 Data quality control

The R package fbat also provides some basic QC functions.
The function missGFreq checks the completeness of genotypes. This function outputs

counts of missing genotypes per marker and per subject.
The function pedHardyWeinberg checks the assumption of the Hardy-Weinberg equi-

librium for markers.
The function checkMendelian checks the following possible Mendelian-related errors:

1. father id = subject id;

2. mother id = subject id;

3. could not determine if an individual is a parent or a child in a family;

4. inconsistent parental sex in a family;

5. parental genotypes are not compatible with childrens’ genotypes in a family;

6. all childrens’ genotypes are missing in a family;

7. inconsistent sib genotypes in a family.

4 Examples

To call the functions in the R package fbat, we first need to load it into R:
To read the pedigree file CAMP.ped into R, we use the function readGenes in the R

package GeneticsBase:

gSet<-readGenes(gfile="CAMP.ped", gformat="fbat")

3

The function readGenes.ped returns back an object of the R class geneSet .
Before we apply family based association tests, it would be good practice to check

Hardy-Weinberg equilibrium for each marker based on parental data. We can use the
function pedHardyWeinberg to do this.

> data(CAMP)

Reading 8 markers and 2011 subjects from ` CAMP.ped ' ...

generating 'geneSet' object...

Successfully read the pedigree file ` CAMP.ped '.

Number of Markers: 8

Number of Subjects: 2011

Number of Families: 651

Reading 12 vars from `CAMPZ.phe' ... Done.

Number of Phenotype Variables: 12

Number of Observations : 2011

> ch <- pedHardyWeinberg(CAMP)

converting geneSet object to numerical matrix...

HWE test...

nInfoInd nGenotype nHET nHOM nAllele nMissing chi2 df p-value

m709 1269 3 4 1265 2 34 0.003 1 0.955

m654 1259 3 558 701 2 44 1.080 1 0.299

m47 1244 3 582 662 2 59 0.005 1 0.944

p46 1253 3 596 657 2 50 0.029 1 0.864

p79 1244 3 580 664 2 59 0.030 1 0.862

p252 1184 3 410 774 2 119 0.685 1 0.408

p491 1263 3 27 1236 2 40 0.147 1 0.701

p523 1271 3 405 866 2 32 0.082 1 0.775

The column nInfoInd means the number of informative individuals, i.e. individu-
als whose genotypes contain no missing alleles for the specified marker; the column
nGenotype means number of possible genotypes; the column nHET means number of
heterozygous genotypes; the column nHOM means number of homozygous genotypes; the
column nAllele means number of alleles; the column nMissing means number of miss-
ing alleles; the column chi2 means chi square test statistic; the column means df means
degree of freedom of the chi square test statistic under the null hypothesis that Hardy-
Weinberg condition holds; and the column p-value means pvalue of the test.

4

To view the statistics for individual markers, we can use the function viewHW. For
example,

> viewHW(ch, "p79")

number of possible genotypes for marker p79 >>

[1] 3

genotype frequency >>

p79.1 p79.2 freq

[1,] 1 1 488

[2,] 1 2 580

[3,] 2 2 176

allele frequency >>

1 2

0.625 0.375

nInfoInd nGenotype nHET nHOM nAllele nMissing chi2 df

1244.000 3.000 580.000 664.000 2.000 59.000 0.030 1.000

p-value

0.862

To check Mendelian-realted errors, we can use the function checkMendelian. For
example,

> tmp <- checkMendelian(CAMP, quiet = TRUE)

> cat("For each marker, how many families contains mendelian errors?\n")

For each marker, how many families contains mendelian errors?

> print(tmp$nMerrMarker)

m709 m654 m47 p46 p79 p252 p491 p523

19 129 128 131 134 140 25 101

> cat("For each family, how many markers contains mendelian errors?\n")

For each family, how many markers contains mendelian errors?

> cat("tmp$nMerrFamily[1:10]>>\n")

tmp$nMerrFamily[1:10]>>

> print(tmp$nMerrFamily[1:10])

family1 family2 family3 family4 family5 family6 family7 family8

0 1 0 0 1 0 0 0

family9 family10

0 0

5

> cat("For each family, how many times\n")

For each family, how many times

> cat("'father id = subject id' or 'mother id = subejct id'?\n")

'father id = subject id' or 'mother id = subejct id'?

> cat("tmp$nErrFamilySample[1:10]>>\n")

tmp$nErrFamilySample[1:10]>>

> print(tmp$nErrFamilySample[1:10])

family1 family2 family3 family4 family5 family6 family7 family8

0 0 0 0 0 0 0 0

family9 family10

0 0

To count the number of missing genotypes for a marker or for a subject, we can use
the function missGFreq. For example,

> res <- missGFreq(CAMP, founderOnly = FALSE, quiet = TRUE)

> cat("The number of missing genotypes for markers>>")

The number of missing genotypes for markers>>

> print(res$nMissMarkers)

00 0* *0

m709 55 0 0

m654 60 0 0

m47 89 0 0

p46 68 0 0

p79 90 0 0

p252 188 0 0

p491 57 0 0

p523 53 0 0

> cat("The number of missing genotypes for the first 10 subjects>>")

The number of missing genotypes for the first 10 subjects>>

> print(res$nMissSubjects[1:10,])

6

00 0* *0

subject1 0 0 0

subject2 0 0 0

subject3 0 0 0

subject4 0 0 0

subject5 0 0 0

subject6 1 0 0

subject7 0 0 0

subject8 0 0 0

subject9 0 0 0

subject10 0 0 0

To get the family based association test statistics, we use the function fbat:

> res <- fbat(CAMP)

The usage of the function fbat is

fbat(geneSetObject, model="a", traitMethod=3, traitOffset=0, quiet=TRUE)

The function argument model specifies the genotype codings.
By default, we use the additive model (model=“a”). Other available models include

dominant (model=“d”), recessive (model=“r”), and genotype (model=“g”) models.
The function argument traitMethod indicates the trait coding method. If traitMethod

is equal to 1, then the trait is represented by trait-offset where trait is the sixth
column (i.e., affection status) of the pedigree matrix and the value of offset is pro-
vided by the argument traitOffset. If the argument traitMethod takes value other
than 1, then the trait is set to be 1 if the sixth column of the pedigree matrix takes value
2 and the trait is set to be 0 if the sixth column of the pedigree matrix takes value 1.

The function fbat returns a list. To summarize the values, degrees of freedom, and
p-values of the test statistics for the markers, we can use the function summaryPvalue:

> summaryPvalue(res)

chisq rank pvalue

m709 1.0000000 1 3.173105e-01

m654 1.3677298 1 2.422023e-01

m47 16.5161290 1 4.823799e-05

p46 0.1130742 1 7.366710e-01

p79 11.1838235 1 8.251356e-04

p252 37.7790698 1 7.922726e-10

p491 18.2413793 1 1.946047e-05

p523 45.7821782 1 1.321609e-11

7

To adjust multiple comparisons, we can use the function p.adjust in the R package
base to adjust the p-values. For example,

> pvals <- res$statPvalue[, 3]

> p.adjust.M <- p.adjust.methods

> p.adj <- sapply(p.adjust.M, function(meth) p.adjust(pvals, meth))

> noquote(apply(p.adj, 2, format.pval, digits = 3))

holm hochberg hommel bonferroni BH BY fdr none

[1,] 0.726607 0.634621 0.634621 1.000000 0.36264 0.985605 0.36264 0.317311

[2,] 0.726607 0.634621 0.484405 1.000000 0.32294 0.877695 0.32294 0.242202

[3,] 0.000241 0.000241 0.000241 0.000386 9.65e-05 0.000262 9.65e-05 4.82e-05

[4,] 0.736671 0.736671 0.736671 1.000000 0.73667 1.000000 0.73667 0.736671

[5,] 0.003301 0.003301 0.003301 0.006601 0.00132 0.003588 0.00132 0.000825

[6,] 5.55e-09 5.55e-09 5.55e-09 6.34e-09 3.17e-09 8.61e-09 3.17e-09 7.92e-10

[7,] 0.000117 0.000117 0.000117 0.000156 5.19e-05 0.000141 5.19e-05 1.95e-05

[8,] 1.06e-10 1.06e-10 1.06e-10 1.06e-10 1.06e-10 2.87e-10 1.06e-10 1.32e-11

To view summary statistics of individual marker, we can use the function viewstat.
For example,

> viewstat(res, "p79")

651 pedigree 2011 persons

359 informative families at marker p79

The alleles of marker p79 >>

[1] 1 2

Score for marker p79 >>

[1] 471 301

Expected score for marker p79 >>

[1] 432 340

Covariance matrix of the score for marker p79 >>

[,1] [,2]

[1,] 136 -136

[2,] -136 136

Moore-Penrose generalized inverse of covariance matrix

[,1] [,2]

[1,] 0.001838235 -0.001838235

[2,] -0.001838235 0.001838235

test statistics for marker p79 >>

chisq rank pvalue

1.118382e+01 1.000000e+00 8.251356e-04

8

Note that if the covariance matrix of the S score vector is singular, the Moore-Penrose
generalized inverse is used.

Sometimes the user might want to know if a genotype a homozygous or heterozygous.
The function pedFlagHomo can provide those information. For example,

> res.f <- pedFlagHomo(CAMP)

converting geneSet object to numerical matrix...

flag homozygotes and heterozygotes...

dim(flagHomoMat)= 1303 8

length(ped[,2])= 1303

numHomo -- number of homozygous genotypes

numHetero -- number of homozygous genotypes

numMiss1 -- number of genotypes containing one missing allele

numMiss2 -- number of genotypes containing two missing alleles

counts>>>

numHomo numHetero numMiss1 numMiss2

m709 1265 4 0 34

m654 701 558 0 44

m47 662 582 0 59

p46 657 596 0 50

p79 664 580 0 59

p252 774 410 0 119

p491 1236 27 0 40

p523 866 405 0 32

The function pedGFreq gets genotype frequencies and percentages. For example,

> res <- pedGFreq(CAMP)

converting geneSet object to numerical matrix...

counting genotype frequencies...

genotype counts>>>

1/1 1/2 2/2

m709 1265 4 0

m654 536 558 165

m47 171 582 491

p46 197 596 460

p79 488 580 176

p252 68 410 706

p491 1236 27 0

p523 813 405 53

The function pedAFreq gets allele frequencies and percentages. For example,

9

> res <- pedAFreq(CAMP)

converting geneSet object to numerical matrix...

count allele frequencies...

allele frequencies and percentages>>>

1 2 1 2

m709 2534 4 0.998 0.002

m654 1630 888 0.647 0.353

m47 924 1564 0.371 0.629

p46 990 1516 0.395 0.605

p79 1556 932 0.625 0.375

p252 546 1822 0.231 0.769

p491 2499 27 0.989 0.011

p523 2031 511 0.799 0.201

The functions fbat, pedHardyWeinberg, pedFlagHomo, pedGFreq, and pedAFreq

have default forms (fbat.default, pedHardyWeinberg.default, pedFlagHomo.default,
pedGFreq.default, and pedAFreq.default) that use a pedigree matrix as input.

Appendix

A Notation

For a given marker,

� Yij — Observed trait of the j-th offspring in family i.

� Tij — A function of Yij.
Tij = T (Yij).

For example
Tij = T (Yij) = Yij − µij,

where µij is an offset.

� gij — Genotype of the j-th offspring in family i;

� Xij — A function of gij.
Xij = X(gij).

� S score:
S =

∑
ij

TijXij =
∑
ij

T (Yij)X(gij).

10

� test statistic:
U = S − E[S|H0, C],

where C is a condition set. When parental genotypes are complete, the condition
set C = T ∪ G, where T is the observed traits in all family members and G is
the parental genotypes. When parental genotypes are incomplete, the condition
set C = T ∪ G∗ ∪ Goffspring, G∗ is the partially observed parental genotypes and

Goffspring is the set of offspring genotypes (i.e., the offspring genotype configura-

tion).

� V – variance or covariance matrix of U under the null hypothesis H0. I.e.,

V = Cov(U |H0, C) = Cov (S|H0, C).

� For the univariate case,

Z =
U√
V

∣∣∣∣H0, C
·→ N (0, 1).

� For the multivariate case,

χ2 = U ′V −1U
∣∣H0, C

·→ χ2
r,

where r = rank (V).

B Genotype coding methods

Denote K as the number of all possible different alleles for the locus and X as the vector
of genotype coding.

GEN X is a vector with length equal to the number of genotypes that are possible
given the parental genotypes in the sample, a maximum of K(K+1)/2 genotypes,
and with elements equal to 1 or 0 to indicate which of the possible genotypes is
equal to the genotype g.

GDOM codes the jth element of the vector X as xj = 1 if genotype g has one or two
alleles of type j, otherwise xj = 0. X is a vector of length K.

GREC codes the jth element of the vector X as xj = 1 if genotype g has two alleles of
type j, otherwise xj = 0. X is a vector of length K.

GTDT scores the number of alleles of a particular type by coding xj equal to the
number of alleles of type j in the genotype g (i.e., xj = 0, 1, or 2 if g has 0, 1 or 2
alleles of type j). X is a vector of length K.

11

2-allele case

Example of different marker codings for a marker with K = 2 alleles, see Schaid
(1996)

genotype X(g)
g GEN GDOM GREC GTDT

(A, a) (A, a) (A, a)
AA (0,0,0) (1,0) (1,0) (2,0)
Aa (1,0,0) (1,1) (0,0) (1,1)
aa (0,1,0) (0,1) (0,1) (0,2)

3-allele case

Example of different marker codings for a marker with K = 3 alleles, see Schaid
(1996) (This table is Table 4 of Horvath et al.’s report for FBAT software)

genotype X(g)
g GEN GDOM GREC GTDT

(A, B, C) (A, B, C) (A, B, C)
AA (0,0,0,0,0) (1,0,0) (1,0,0) (2,0,0)
AB (1,0,0,0,0) (1,1,0) (0,0,0) (1,1,0)
AC (0,1,0,0,0) (1,0,1) (0,0,0) (1,0,1)
BB (0,0,1,0,0) (0,1,0) (0,1,0) (0,2,0)
BC (0,0,0,1,0) (0,1,1) (0,0,0) (0,1,1)
CC (0,0,0,0,1) (0,0,1) (0,0,1) (0,0,2)

C Trait coding methods

Denote Yij as the trait of the j-th child of the ith nuclear family. Yij can be dichotomous,
measured (i.e., continuous?), time-to-onset (i.e., censored?)

The trait coding methods (Tij = T (Yij)) are listed below:

� Tij = 1 if the jth child is affected; Tij = 0 otherwise.

� Tij = Yij − µij, where µij is an offset.

� Tij = Yij − µij(x
′β), where E (Yij|x) = µij(x

′β), and x are design matrix of
covariates, β are unknown parameters.

12

	Introduction
	Pedigree data file format
	Data quality control
	Examples
	Notation
	Genotype coding methods
	Trait coding methods

