aftyPLM: Fitting Probe Level Models

Contents

Ben Bolstad
bmb@bmbolstad.com
http://bmbolstad. com

May 12, 2008

(1 _Introduction|

2 Fitting Probe Level Models|

|2,1 && ll;!l 1“ !‘! I IQbf: Lf:yf:l I&:[Qd,ﬂl !‘!Il(l && 11;!! l‘{i ;! ILIISQE?I

[2.2 Getting Started with the Default Model

[2.3 Getting Full Control over fitPLM

P31

Pre-processing|.o

P32

Controlling what is Returned in the PLMset|

£.3.3

Controlling how the model 1s fit|

[2.4 Specifying models in £itPLM

P42

RMA Style PLM| .« o oo oo

P43

PLM with chip-level factor and covariate variables|.

P.4.4

Probe intensity covariate PLM|.

P45

PLM with both probe types as response variables

[\

P46

PLM with probe-ettects estimated within levels of a chip-level fac-

tor variablel L.

D47

PLM with probe-eftect estimated within probe.typel

P.4.8

PLM without chip level effects[.

B.4.9

PLM with only probe-eftects|

2410 Constraintd

[3 How long will it take to run the model fitting procedures?|

4 Dealing with the PLMset object]

A MNoeshi on- H , § o5

http://bmbolstad.com

19

1 Introduction

This majority of this document describes the £itPLM function. Other vignettes for affy-
PLM describe quality assessment tools and the threestep function for computing ex-
pression measures. After starting R, the package should be loaded using:

> library(affyPLM)

> require(affydata)

> data(Dilution)

> Dilution = updateObject(Dilution)
> options(width = 36)

this will load affyPLM as well as the affy package and its dependencies. The Dilution
dataset will serve as an example dataset for this document.

2 Fitting Probe Level Models

2.1 What is a Probe Level Model and What is a pLMset?

A probe level model (PLM) is a model that is fit to probe-intensity data. More specifi-
cally, it is where we fit a model with probe level and chip level parameters on a probeset
by probeset basis. It is easy to arrange the probe-intensity data for a probeset so that
the rows are probes and the columns are chips. In this case, our probe level parameters
could be factor variable for each probe. The chip level parameters might be a factor
variable with a level for each array, factor variables grouping the chips into treatment
groups or perhaps some sort of covariate variable (pH, temperature, etc).

A PLMset is an R object that holds the results of a fitted probe level model. Among
the items stored are parameter estimates and corresponding standard errors, weights
and residuals.

2.2 Getting Started with the Default Model

The main function for fitting PLM is the function £itPLM. The easiest way to call the
function is to call it by passing an AffyBatch object without any other arguments, this
will fit a linear model with an effect estimated for each chip and an effect for each probe.
This can be accomplished using:

> Pset <- fitPLM(Dilution)

Once you have a fitted model stored in a PLMset object the chip level parameter esti-
mates and the corresponding standard errors can be examined using the accessor func-
tions coefs and se respectively. For example, to examine the parameter estimates for
the first 5 probesets and their corresponding standard error estimates use:

> coefs(Pset)[1:5,]

20A 20B
100_g_at 7.485385 7.321158
1000_at 7.712294 7.589361
1001_at 5.403364 5.246518
1002_f_at 6.001354 5.842818
1003_s_at 6.682994 6.369082
10A 10B
100_g_at 7.421751 7.369140
1000_at 7.604202 7.553845
1001_at 5.273806 5.361613
1002_f_at 5.875315 5.901890
1003_s_at 6.497949 6.402645
> se(Pset)[1:5,]
20A 20B
100_g_at 0.04237992 0.04176901
1000_at 0.03798884 0.03674159
1001 _at 0.05850398 0.05889818
1002_f_at 0.06684381 0.06552410
1003_s_at 0.06114870 0.05960099
10A 10B
100_g_at 0.04498466 0.04278185
1000_at 0.03947771 0.03526104
1001_at 0.05917896 0.05606087
1002_f_at 0.06373685 0.06468718
1003_s_at 0.06161744 0.06088377

Note that the default model is the RMA expression measure model. Specifically, the
default model is
1Og2 PMkZ’j = ﬁkj + Qg + €kij

where f; is the log, gene expression value on array j for probeset k and oy; are probe
effects. Note that to make the model identifiable the constraint Zfil ag; = 0 is used.
Thus, for this default model, the parameter estimates given are gene expression values.

2.3 Getting Full Control over fitpLM

While the default model is very useful and simple to use, the fitPLM function also
provides the user with a great deal of control. Specifically, the user has the ability to
change the preprocessing, how the model is fitted and what output is returned.

2.3.1 Pre-processing

By default, the £itPLM function will preprocess the data using the RMA preprocessing
steps. In particular, it uses the same background and normalization as the rma function
of the affy package. It is possible to turn off either of these preprocessing steps by speci-
fying that background and/or normalize are FALSE in the call to £itPLM. The arguments
background.method and normalize.method can be used to control which pre-processing
methods are used. The same preprocessing methods, as described in the threestep
vignette, may be used with the £fitPLM function.

2.3.2 Controlling what is Returned in the PLMset

The PLMset that the £itPLM function returns contains a number of different quantities,
some of which are always returned such as parameter estimates and standard error
estimates and others which are more optional. The user can control whether weights,
residuals, variance-covariance matrices and residual standard deviations are returned.
By default, all of these items are returned, but in certain situations a user might find
it useful to exclude certain items to save memory. Control is via the output.param
argument which should be provided as a list. The default settings can be seen by typing

> verify.output.param()

$weights
[1] TRUE

$residuals
[1] TRUE

$varcov
[1] "none"

$resid.SE
[1] TRUE

Control of whether weights, residuals and residual standard deviations are returned is via
logical variables. There are three options varcov = "none", varcov = "chiplevel" and
varcov = "all" for variance covariance matrices. These correspond to, not returning
any variance estimates, only the portion of the variance covariance matrix related to

the chiplevel parameters or the entire variance covariance matrix respectively. When
each probeset has a large number of probes (or there are large numbers of parameters
in the model) the last option will return many large variance covariance matrices. The
following code returns a PLMset with no weights or residuals stored:

> Pset <- fitPLM(Dilution, output.param = list(residuals = FALSE,
+ weights = FALSE))

2.3.3 Controlling how the model is fit

fitPLM implements iteratively re-weighted least squares M-estimation regression. Con-
trol over how £itPLM carries out the model fitting procedure is given by the model.param
argument. This value of this parameter should be a 1ist of settings. In particular, these
settings are the following:

e trans.fn which controls how the response variable is transformed. This value
should be a string. By default trans.fn="1log2", but other possible options include:
"loge" or "1n" to use the natural logarithm, "1og10" for logarithm base 10, "sqrt"
for square root and "cuberoot" to use a cubic root transformation.

e se.type which controls how the variance-covariance matrix is estimated in the M-
estimation procedure. Possible values are 1, 2, 3 or 4. See the Appendix for more
details.

e psi.type is a string which selects how the weights are computed in the robust
regression. By default psi.type="Huber". Other possible options include "fair",
"Cauchy", "Geman-McClure", "Welsch", "Tukey", and "Andrews". More details can
be found in the Appendix.

e psi.k is a numerical tuning constant used by psi.type. The default values are
dependent on the option chosen by psi.type. More details can be found in the
Appendix.

e max.its controls the maximum number of iterations of IRLS that will be used
in the model fitting procedure. By default max.its=20. Note, that this many
iterations may not be needed if convergence occurs.

e init.method controls how the initial parameter estimates are derived. By default
init.method="1s" ordinary least squares is used although "Huber" is also a possi-
bility.

e weights.chip are input weights for each chip in the dataset. This parameter should
be a vector of length number of arrays in the dataset. By default, every chip is
given equal weight.

e weights.probe are input weights for each probe in the dataset. This parameter
should be a vector of length number of probes in dataset (this length depends on
the response variable in the model). By default, every probe has equal weight.

As an example, we use model.param to control the fitting procedure so that it is fit
as a standard linear regression model (ie without robustness). This is accomplished by:

> Pset <- fitPLM(Dilution, model.param = list(max.its = 0))

2.4 Specifying models in fitpLM

Although the default model is very useful, it is by no means the only model that can be
fitted using £itPLM. In this section we describe many, but certainly not all the different
types of models which may be fitted. In the example code presented here we will use
the subset argument to restrict model fitting to the first 100 probesets for speed. In any
real analysis model fitting would be carried out to all probesets on a particular array

type.

2.4.1 Notation

i Index for probes i =1,...,1;

Ji Index for arrays j =1,...,J

k Index for probeset k =1,..., K

l Index for probe type [= 1,2 where 1 is PM and 2 is MM.

m Index for level of primary treatment factor variable m =1,..., M
Qi probe effect parameter for probe i

Included in the model by using probes

arim probe effect parameter for probe ¢ estimated only for arrays where
primary treatment factor variable is level m
Included in the model by using treatment:probes

arig probe effect parameter for probe ¢ estimated only for probes of
type [
Included in the model by using probe.type:probes

ariam probe effect parameter for probe ¢ estimated only for probes of
type [where primary treatment factor variable is level m
Included in the model by using treatment:probe.type:probes

Br; array (chip) effect.
Included in the model by using samples

Ol probe-type effect
Included in the model by using probe.types

Oum probe-type effect for probe type [estimated only for arrays where
primary treatment factor variable is level m
Included in the model by using treatment:probe.types

¢r; probe-type effect for probe type [estimated only for array j
Included in the model by using samples:probe.types

0 a vector of chip-level parameters

ke an intercept parameter

Vi a slope parameter

Yriji @ processed probe-intensity. Typically on log, scale.

€kijl an error term

xj measurements of chip-level factor and covariate variables for chip j

In the model descriptions below we will use treatment, trt.cov for these terms.
In practice these would be replaced with names of variables in the current
R environment or the phenoData of the supplied AffyBatch.

Since we are focusing on models that are fitted in a probeset by probeset manner for
brevity the subscript k& will be omitted from further discussion. Note the terms probes,
samples and probe.types are considered reserved words when specifying a model to
fitPLM.

2.4.2 RMA style PLM

These are variations of the RMA model each consisting of models with chip and probe-
effects . The first, PM ~ -1 + samples + probes, is the default model used when no
model is specified in the £itPLM call.

Model fitPLM syntax

Yij1 = Bj + o + €5 PM ~ -1 + samples + probes
Yij1 = 4+ Bj +a; +¢€; PM ~ samples + probes

Yijl = ﬁj + €5 PM ~ -1 + samples

Yij1 = P+ B + € PM ~ samples

Yijo = Bj + o + €5 MM ~ -1 + samples + probes
Yij2 = 1+ ﬂj +a; +€¢; MM ~ samples + probes

Yijo = ﬁj + €5 MM ~ -1 + samples

Yijo = W+ B + € MM ~ samples

2.4.3 PLM with chip-level factor and covariate variables

These models use treatment variables as an alternative to sample effects for the chip
level factors.

Model fitPLM syntax

Yij1 = 270+ +€; PM ~ -1 + treatment + trt.cov + probes
Yij1l = o5 0 + €5 PM ~ -1 + treatment + trt.cov

Yijo = ;0 + o; +€; MM ~ -1 + treatment + trt.cov + probes
Yij2 =250 + € MM ~ -1 + treatment + trt.cov

For example to fit, a model with effects for both liver tissue concentration and scan-
ner along with probe effects with MM as the response variable to the first 100 probesets
of the Dilution dataset the following code would be used:

> Pset <- fitPLM(Dilution, MM ~
+ -1 + liver + scanner + probes,
+ subset = genelNames(Dilution) [1:100])

Examining the fitted chip-level parameter estimates for the first probeset via:

> coefs(Pset)[1,]

liver_10 liver_20 scanner_2
6.89473332 6.84583436 -0.02337941

shows that the treatment effect for scanner was constrained to make the model identifi-
able. £itPLM always leaves the first factor variable unconstrained if there is no intercept
term. All other chip level factor variables are constrained. The parameter estimates for
the probe effects can be examined as follows:

> coefs.probe(Pset) [1]

$°100_g_at"

Overall
probe_1 -1.5470711
probe_2 0.7607280
probe_3 2.3779775
probe_4 0.3419946
probe_5 0.2152194
probe_6 -1.3043006
probe_7 4.1467741
probe_8 0.3005571

probe_9 -1.4515179
probe_10 -1.4356008
probe_11 1.4777004
probe_12 0.1935216
probe_13 -1.8293730
probe_14 1.5690645
probe_15 -1.3893063

To make a treat a variable as a covariate rather than a factor variable the vari-
able.type argument may be used. For example, to fit a model with the logarithm of
liver concentration treated as a covariate we could do the following:

> logliver <- log2(c(20, 20, 10,

+ 10))

> Pset <- fitPLM(Dilution, model = PM ~

+ -1 + probes + logliver +

+ scanner, variable.type = c(logliver = "covariate"),
+ subset = genelNames(Dilution) [1:100])

Warning: No default variable type so assuming 'factor'
> coefs(Pset)[1,]

logliver scanner_1l scanner_2
-0.01340544 7.44008342 7.37540612

2.4.4 Probe intensity covariate PLM

This class of models allows the inclusion of PM or MM probe intensities as covariate
variables in the model. Note that the fitting methods currently used by £fitPLM are ro-
bust, but not resistant (ie outliers in the response variable are dealt with, but outliers
in explanatory variables are not).

Model

fitPLM syntax

Yij1 = Vij2 + B + i + €
Yijt = VYig2 + o+ B + i + €5
Yij1 = YWij2 + Bj + €ij

Yijl = VYij2 + @+ B + €

Yijz = YWij1 + 55 + o + €5
Yijz = VYij1 + 1+ B + i + €5
Yij2 = YYij1 + Bj + €j

Yij2 = VYij1 + p+ B + €ij

Yijt =] 0+ Yyije + i + €
Yij1 = ;0 + VYij2 + €5

Yije = x5 0 + vyij1 + i + €5
Yij2 = ;0 + Yy + €ij

PM ~ -1
PM MM
PM -1
PM MM
MM -1
MM PM
MM -1
MM PM
PM MM
PM MM
MM PM
MM PM

+

+ + + + + + o+ o+ o+ o+

MM + samples + probes
samples + probes

MM +samples

samples

PM + samples + probes
samples + probes

PM +samples

samples

treatment + trt.cov + probes
treatment + trt.cov
treatment + trt.cov + probes
treatment + trt.cov

To fit a model with an intercept term, MM covariate variable, sample and probe ef-

fects use the following code:

> Pset <- fitPLM(Dilution, PM ~

+ MM + samples + probes, subset = geneNames(Dilution)[1:100])

We can examine the various parameter estimates for the model fit to the first probeset

using:
> coefs(Pset)[1,]

20B 10A

> coefs.const(Pset)[1,]

Intercept MM
6.0192030 0.2032069

> coefs.probe(Pset) [1]

$°100_g_at"

Overall
probe_1 -0.8364048
probe_2 1.1502090
probe_3 1.6239088
probe_4 -1.8408843
probe_5 0.7334505
probe_6 -1.9505552
probe_7 1.7185392
probe_8 0.6929887

10B
-0.10071600 -0.05355776 -0.07452209

10

probe_9 -0.5038822
probe_10 -0.6445614
probe_11 0.1556237
probe_12 0.7443165
probe_13 -0.9375591
probe_14 0.7951355
probe_15 1.9329788

As can be seen by this example code intercept and covariate parameters are accessed
using coefs.const.

2.4.5 PLM with both probe types as response variables

It is possible to fit a model that uses both PM and MM intensities as the response
variable. This is done by specifying PMMM as the response term in the model. When
both PM and MM intensities are used as the response, there is a special reserved term
probe.type which may (optionally) be used as part of the model specification. This term
designates that a probe type effect (ie whether PM or MM) should be included in the
model.

Model fitPLM syntax

yﬁlzzﬁg—%¢g—%cu—%eml PMMM ~ -1 + samples + probe.type + probes

Yiji = p+ Bj + ¢; + a; + €5, PMMM ~ samples + probe.type + probes

Yiji = Bj + ¢j + €5 PMMM ~ -1 + samples+ probe.type

Yiji = p+ Bj + o5 + €t PMMM ~ samples+ probe.type

Yijl = xiﬁ + ¢j + o + €51 PMMM ~ treatment + trt.cov + probe.type + probes
Yijl = :U%-ﬁ + qu + €51 PMMM ~ treatment + trt.cov + probe.types

Yiji = x%ﬂ + (;5j + a5 + €51 PMMM ~ treatment + trt.cov + probe.type + probes
yﬁl::xjﬁ—%¢g—%eﬁl PMMM ~ treatment + trt.cov + probe.type

For example to fit such a model with factor variables for liver RNA concentration, probe
type and probe effects use:

> Pset <- fitPLM(Dilution, PMMM ~
+ liver + probe.type + probes,
+ subset = geneNames(Dilution) [1:100])

Examining the parameter estimates:

> coefs(Pset)[1,]
[1] -0.05141184

> coefs.const(Pset)[1,]

11

Intercept probe.type_MM

7.3357755

> coefs.probe(Pset) [1]

$°100_g_at"

Overall
probe_1 -1.3181940
probe_2 1.0521928
probe_3 2.2619856
probe_4 -0.9595112
probe_5 0.5156337
probe_6 -1.7679152
probe_7 3.4232431
probe_8 0.5271538
probe_9 -1.1465813
probe_10 -1.1015433
probe_11 0.9862332
probe_12 0.4896713
probe_13 -1.5278630
probe_14 1.3515933
probe_15 0.1257186

-0.4446907

shows that probe type estimates are also accessed by using coefs.const.

2.4.6 PLM with probe-effects estimated within levels of a chip-level factor
variable

It is also possible to estimate separate probe-effects for each level of a chip-level factor

variable.

Model

fitPLM syntax

T
Yij1 = x; 0 + cim + €51

Yijl = Yij2y + xJTH + Qim + €51
Yiji = 1 0+ bj + qim + €1

PM ~ treatment:probes + treatment + trt.cov
PM ~ MM + treatment + treatment:probes + trt.cov
PMMM ~ treatment + trt.cov + treatment:probes

Fitting such a model with probe effects estimated within the levels of the liver vari-
able is done with:

> Pset <- fitPLM(Dilution, PM ~
+ -1 + liver + liver:probes,
+ subset = geneNames(Dilution) [1:100])

Examining the estimated probe-effects for the first probeset can be done via:

12

> coefs.probe(Pset) [1]

$°100_g_at"

liver_10: 1liver_20:
probe_1 -0.9482876 -1.2959448
probe_2 1.2977887 1.3334877
probe_3 2.1397659 2.0961826
probe_4 -1.9643798 -1.6998292
probe_5 0.6912122 0.8848448
probe_6 -2.0584672 -2.4959521
probe_7 2.5266458 2.6174269
probe_8 0.5508511 0.9657275
probe_9 -0.8175456 -0.8471498
probe_10 -0.6359297 -1.0412153
probe_11 0.5274181 0.4060750
probe_12 0.7551887 0.8190649
probe_13 -1.5205326 -1.1813253
probe_14 1.1776476 1.0345574
probe_15 1.5904612 1.6949012

2.4.7 PLM with probe-effect estimated within probe.type

Probe effects can also be estimated within probe type or within probe type for each level
of the primary treatment factor variable.

Model fitPLM syntax

yﬁl::xT9+—au—+eM1 PMMM ~ treatment + trt.cov + probe.type:probes
yml=:$j9'+<%hn‘F€M1 PMMM ~ treatment + trt.cov + treatment:probe.type:probes

As an example, use the following code to fit such models and then examine the pos-
sible

> Pset <- fitPLM(Dilution, PMMM ~

+ -1 + liver + probe.type:probes,

+ subset = geneNames(Dilution) [1:100])
> coefs.probe(Pset) [1]

> Pset <- fitPLM(Dilution, PMMM ~

+ -1 + liver + liver:probe.type:probes,
+ subset = genelNames(Dilution) [1:100])
> coefs.probe(Pset) [1]

13

2.4.8 PLM without chip level effects

It is possible to fit models which do not have any chip-level variables at all. If this is the
case, then the probe type effect takes precedence over any probe effects in the model.
That is it will be unconstrained.

Model fitPLM syntax

Yijl = o + ¢j1 + €51 PMMM ~ -1 + probe.type + probes

Yijl = B+ Qi + oy + €5 PMMM ~ probe.type + probes

Yijl = Q1+ Qim + €451 PMMM ~ -1 + probe.type + treatment:probes
Yijl = B+ o1+ aim + €ijl PMMM ~ probe.type + treatment:probes

Yijl = P+ Qrj + Qim + €41 PMMM ~ samples:probe.type + treatment:probes
Yijl = Wb+ Qi + im + €5 PMMM ~ treatment:probe.type + treatment:probes

2.4.9 PLM with only probe-effects

It is also possible to fit models where only probe effects alone are estimated.

Model fitPLM syntax

Yij1 = oy + €51 PM ~ -1 + probes

Yijl = 1+ a; + €51 PM ~ probes

Yij1 = alpha;y, + €ij1 PM ~ -1 + treatment:probes
Yijl = 1+ (Qa)imj + €51 PM ~ treatment:probes

Yij2 = o + €52 MM ~ -1 + probes

Yija = b+ o + €552 MM ~ probes

Yij2 = Qim + €352 MM ~ -1 + treatment:probes
Yijo = Wb+ Qym + €52 MM ~ treatment:probes

Yiji = O + €51 PMMM ~ -1 + probes

Yijl = W+ o + €51 PMMM ~ probes

Yiji = Qim + €51 PMMM ~ -1 + treatment:probes
Yijl = 1+ Qim + €5 PMMM ~ treatment:probes

2.4.10 Constraints

These are the constraints that will be imposed to make the models identifiable (when

needed):

14

Parameter Constraints Default

Bi ZZ:O/BZ':OOT/BIZO 61=0

o Y1 b1 =00r ¢1 =0 $1=0

buj S ¢y =0o0r ¢r; =0 $1; =0

i Sl Gim =00 G =0 G =0

o Zf:o a;=0o0ra; =0 Zfzo o; =0
Qim Zf:o Qim = 0 or a1, =0 ZLO Qi =0
il S0 =0o0ray =0 Yo =0
Aijlm, ZZ‘I:O Qi = 0 Or Qg =0 ZZ!:O Qi = 0

In general, there is a general hierarchy by which items are left unconstrained:
intercept > treatment > sample > probe.type > probes

the highest term in this hierarchy that is in a particular model is always left un-
constrained, everything else will be constrained. So for example a model containing
probe.type and probe effects will have the probe.type effects unconstrained and the
probe effects constrained.

Constraints are controlled using the constraint.type argument which is a vector
with named items should be either "contr.sum" or "contr.treatment". The names for
this vector should be names of items in the model.

> data(Dilution)

> Dilution = updateObject(Dilution)

> Pset <- fitPLM(Dilution, model = PM ~

+ probes + samples, constraint.type = c(samples = "contr.sum"),
+ subset = geneNames(Dilution) [1:100])

Warning: No default constraint specified. Assuming 'contr.treatment'.
> coefs.const(Pset) [1:2]

[1] 7.355977 7.576212

> coefs(Pset)[1:2,]

20A 20B
100_g_at 0.03476993 -0.045356385
1000_at 0.03496940 0.008864674
10A
100_g_at 0.028454952
1000_at -0.001171587

15

3 How long will it take to run the model fitting pro-
cedures?

It may take considerable time to run the £itPLM function. The length of time it is going
to take to run the model fitting procedure will depend on a number of factors including;:

1. CPU speed

2. Memory size of the machine (RAM and VM)
3. Array type

4. Number of arrays

5. Number of parameters in model

It is recommended that you run the £itPLM function only on machines with large
amounts of RAM. If you have a large number of arrays the number of parameters in
your model will have the greatest effect on runtime.

4 Dealing with the ruiset object

As previously mentioned, the results of a call to fitPLM are stored in a PLMset object.
There are a number of accessor functions that can be used to access values stored in a
PLMset including:

e coefs and se: access chip-level factor/covariate parameter and standard error
estimates.

e coefs.probe and se.probe: access probe effect parameter and standard error esti-
mates.

e coefs.const and se.const: access intercept, MM covariate and probe type effect
parameter and standard error estimates.

e weights: access final weights from M-estimation procedure. Note that you may
optionally supply a vector of probeset names as a second parameter to get weights
for only a subset of probes.

e resids: access residuals. Note that you may optionally supply a vector of probeset
names as a second parameter to get residuals for only a subset of probes.

® varcov: access variance matrices.

16

A M-estimation: How ritriv fits models

Suppose we wish to fit the following model
yi = f(x:i,0) + & (1)

where y; is a response variable, x; is a vector of explanatory variables, and 6 is a vector
of parameters to be estimated. An estimator of is given by

ming Z f(x;,0)2 (2)

which is the known least squares estimator. In some situations, outliers in the response
variable can have significant effect on the estimates of the parameters. To deal with
potential problem we need a robust method of fitting the model. One such method is
known as M-estimation. An M-estimator for this regression, taking into account scale,

is the solution of
ming Z (f (i, 9)) (3)

where p is a suitable function. Reasonable properties for p include symmetry p(x) =
p(—x), a minimum at p(0) = 0, positive p(x) > 0 Va and increasing as the absolute value
of x increases, i.e. p(z;) > p(z;) if |x;| > |z;|. Furthermore, there the need to estimate
s, where s is a scale estimate. One approach is to estimate both s and 6 using a system
of equations. The approach that we use is to estimate s using the median absolute
deviation (MAD) which provides a robust estimate of scale. The above equation leads

to solving

where ¢ is the derivative of p. Note that strictly speaking, for robustness v should
be bounded. Now define r; = %(19) and a weight function w (r;) = w ") Then the
previous equation can be rewritten as

Zw (ri)ri=0 (5)

which is the same as the set of equations that would be obtained if we were solving the
iteratively re-weighted least squares problem

mmz (r) o Q

where the superscript (n) represents the iteration number. More details about M-
estimation can be found in [Huber| (1981). Tables [I| and [2| describe the various different
weight functions and associated default constants provided by f£itPLM.

17

Hub if |z|< k z2/2 x 1
uber
it > k (|z]—k/2) ksgn(z) il
fair ? (% — log (1 + |5E\)> H_I\r\ 1+1m
c? T ’
Cauchy 5 log (1:‘ (x/C)Q) 1+(z/c)? 1+(001/C)2
z“/2 x
Geman-McClure H{Dz (+a2)? (Hinz)Q
2
Welsch S (1 — exp (— (%)2>) zexp (—(z/c)?) exp (—(z/c)?)
Tukey {1 11= ¢ T 0-@e’) fe @) {(1 ~ (/)
if [2]> ¢ < 0 0

if |o|< kr K2(1 — cos(a/k)) ksin(z/k) e
Andrews

if |x|> k7 2k? 0 0

Table 1: p, 1 and weight functions for some common M-estimators.

Method Tuning Constant

Huber 1.345
fair 1.3998
Cauchy 2.3849
Welsch 2.9846
Tukey 4.6851
Andrews 1.339

Table 2: Default tuning constants (k or ¢) for M-estimation p, ¥ and weight functions.

18

B Variance Matrix and Standard error estimates for

fitPLM

Huber| (1981) gives three forms of asymptotic estimators for the variance-covariance
matrix of parameter estimates b.

(0= D)
ey Y g

Z@/JQ/(”_]?) -1
e

13 0? Tyy -
En_pvl(x x)v! (9)
where Var (/)
- p var
V=X"0X (11)

and VU’ is a diagonal matrix of v’ values. When using fitPLM these are selected using
se.type=1, se.type=2, or se.type=3 respectively. Treating the regression as a weighted
least squares problem would give

—E:ETQT? (xTwx)™ (12)

as the estimator for variance covariance matrix, where I is a diagonal matrix of weight
values. This option is selected by using se.type=4.

References

B. M. Bolstad. Low Level Analysis of High-Density Oligonucleotide Data: Background,
Normalization and Summarization. PhD thesis, University of California, Berkeley,
2004.

B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed. A comparison of normaliza-
tion methods for high density oligonucleotide array data based on variance and bias.
Bioinformatics, 19(2):185-193, Jan 2003.

P. J. Huber. Robust statistics. John Wiley & Sons, Inc, New York, New York, 1981.

R. A. Irizarry, B. M. Bolstad, F. Collin, L. M. Cope, B. Hobbs, and T. P. Speed.
Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res, 31(4):el5,
Feb 2003a.

19

R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, U. Scherf,
and T. P. Speed. Exploration, normalization, and summaries of high density
oligonucleot ide array probe level data. Biostat, 4(2):249-264, 2003b. URL http:
//biostatistics.oupjournals.org/cgi/content/abstract/4/2/249.

20

http://biostatistics.oupjournals.org/cgi/content/abstract/4/2/249
http://biostatistics.oupjournals.org/cgi/content/abstract/4/2/249

	Introduction
	Fitting Probe Level Models
	What is a Probe Level Model and What is a PLMset?
	Getting Started with the Default Model
	Getting Full Control over fitPLM
	Pre-processing
	Controlling what is Returned in the PLMset
	Controlling how the model is fit

	Specifying models in fitPLM
	Notation
	RMA style PLM
	PLM with chip-level factor and covariate variables
	Probe intensity covariate PLM
	PLM with both probe types as response variables
	PLM with probe-effects estimated within levels of a chip-level factor variable
	PLM with probe-effect estimated within probe.type
	PLM without chip level effects
	PLM with only probe-effects
	Constraints

	How long will it take to run the model fitting procedures?
	Dealing with the PLMset object
	M-estimation: How fitPLM fits models
	Variance Matrix and Standard error estimates for fitPLM

