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1 Get Your Data

To test for enrichment of gene sets using our package, you only need two basic
items: a gene expression data set and a list of gene sets. Your expression data
must either already be in ratio form, or include reference samples by which to
generate a ratio on the fly. As you will see later in this example, the "reference”
argument will be used because the data is not already in the form of a ratio
(Pexperiment”/"reference”).

Online gene expression data repositories represent a great wealth of knowl-
edge and this example workflow will help guide your own analysis by using
simple Bioconductor tools to exploit data from such a source, like GEO. To
start off we must load the GEOquery library, and then download and parse the
data with the getGEO command.

> library (PGSEA)

> library(GEOquery)

> library(GSEABase)

> gse <- getGEO("GSE7023", GSEMatrix = TRUE)

Found 1 file(s)

GSE7023_series_matrix.txt.gz

File stored at:
E:\biocbld\bbs-2.2-bioc\tmpdir\Rtmp3j7Q3f/GPL4866.s0ft

Next we process the raw data from GEO to generate the phenoData for the
ExpressionSet, an object that holds gene expression data within Bioconductor.
See the GEOquery vignette for more information.

> subtype <- gsub("\\.", "_", gsub("subtype: ", "", phenoData(gsel[[1]])$characteristics_chl,
> pheno <- new("AnnotatedDataFrame", data = data.frame(subtype),

+ varMetadata = data.frame(labelDescription = "subtype"))

> rownames (pheno@data) <- colnames (exprs(gsel[[1]1]))

> eset <- new("ExpressionSet", exprs = exprs(gsel[[1]]), phenoData = pheno)



Next we must load the gene sets to be used, in this case we will use some
included example gene sets that we were able to curate from various publications.
This list of gene sets is by no means an extensive or comprehensive list; it is
merely included for example purposes. Information on the creation of each gene
set has not been included, but may be available upon request.

> data(VAIgsc)
> details(VAIgsc[[1]])

setName: CMYC.1 down

genelds: 27, 101, ..., 377582 (total: 89)
geneldType: EntrezId

collectionType: ExpressionSet

setIdentifier: 185b7a75-038d-4abe-c498-d25297d24c9d
description:

organism:

pubMedIds: 16273092

urls:

contributor: Karl Dykema <karl.dykema@vai.org>
setVersion: 0.0.1

creationDate: Fri Sep 14 12:00:24 2007

2 Run PGSEA
Finally, we are to the point where we can run PGSEA.
> pg <- PGSEA(eset, VAIgsc, ref = which(subtype == "NO"))

The results come back in the form of a matrix. Here is a look at a portion of
it. A result of ’NA” means that the test did not pass the significance threshold.

> pgl5:8, 5:8]

GSM162152 GSM162153 GSM162154 GSM162155

HRAS.1 down NA NA NA NA
HRAS.1 up NA 3.814831 3.045554 NA
SRC.1 down NA NA NA NA
SRC.1 up NA NA NA NA

3 Visualize Results

Next we will want to create an attractive plot so that we can visually interpret
our results. Looking at the range of the results helps us pick a reasonable scale
for the color gradient.

> range(pg, finite = TRUE)



[1] -12.64043 17.89061

> smcPlot(pg, col = .rwb, scale = c(-15, 15))
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Next with the addition of a few different arguments we can make this plot
look much nicer.

> smcPlot(pg, factor(subtype), col = .rwb, scale = c(-15, 15),
+ margins = c(1, 1, 6, 9), show.grid = TRUE, r.cex = 0.75)
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4 Analyze Your Results

One might visually attempt to determine significant differences between our
subtypes, but a computational approach is more robust. One simple way to
further mine these results is to return an unfiltered matrix from PGSEA and
then use a linear modeling approach. In this example we will highlight the
differences between Papillary RCC Type 2b and normal renal tissue.

> pgNF <- PGSEA(eset, VAIgsc, ref = which(subtype == "NO"), p.value = NA)
> library(limma)

> design <- model.matrix(~-1 + factor(subtype))

> colnames(design) <- names (table(subtype))

> fit <- 1mFit(pgNF, design)

> contrast.matrix <- makeContrasts(P2B - NO, levels = design)

> fit <- contrasts.fit(fit, contrast.matrix)

> fit <- eBayes(fit)

> topTable(fit, n = 10)[, c("logFC", "t", "adj.P.Val")]

logFC t adj.P.Val
25 9.242279 7.797634 2.125059e-08
13 5.206364 6.429828 1.181020e-06
11 -3.417913 -6.138576 2.156243e-06



31 -3.310984 -4.910230 1.069416e-04
2 3.681438 4.821095 1.151535e-04
14 -5.053123 -4.352265 4.463288e-04
29 -2.279435 -3.580832 4.228985e-03
36 2.695910 3.466382 5.195338e-03
15 1.170192 2.676237 3.749419e-02

3

33 -3.784797 -2.671271 3.749419e-02

Now that we have figured out the significantly different gene sets, we can
grab the rownames from "topTable” and insert it into our plotting function.

> smcPlot (pglas.numeric (rownames (topTable(fit, n = 10))), ], factor(subtype,
+ levels = c("P1", "P2B")), col = .rwb, scale = c(-15, 15),
+ margins = c(1, 1, 6, 19), show.grid = TRUE, r.cex = 0.75)
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Biological interpretation of these results is tricky, and can only end up as
“good” as the gene sets and gene expression data used. We have some confidence
in most of these signatures, and in this case, a few of the results are worth of
note.

The "FH.1” gene sets were created from gene expression data generated
from fumarate-hydratase (gene symbol: "FH”) deficient uterine fibroids (PMID:
16319128). Using these signatures in PGSEA attempted to detect the same



pattern of altered expression as was seen in the fibroids. "FH” is known to be
involved with aggressive renal papillary cancers (PMIDs: 17895761, 173927165
17270241, etc.) so this result is expected. While the involvement of "FH” and
renal cancer was already well-established, the association with "c-MYC” was un-
reported, so it was an interesting research topic for us. For more information see:
"Detection of DNA copy number changes and oncogenic signaling abnormalities
from gene expression data reveals MYC activation in high-grade papillary renal
cell carcinoma.” (Cancer Res. 2007 Apr 1;67(7):3171-6. PMID: 17409424)

5 Using Large Databases of GeneSets with PGSEA

Instead of using our included example gene sets, one may wish to go another
route and use a large database such as "GO”. We have included a helper function
to quickly generate gene sets from this database.

> gos <- go2smc()

> pg <- PGSEA(eset, gos, ref = which(subtype == "N0O"))

> pgNF <- PGSEA(eset, gos, ref = which(subtype == "NO"), p.value = NA)
> design <- model.matrix("-1 + factor(subtype))

> colnames(design) <- names(table(subtype))

> fit <- 1lmFit(pgNF, design)

> contrast.matrix <- makeContrasts(P2B - P1, levels = design)

> fit <- contrasts.fit(fit, contrast.matrix)

> fit <- eBayes(fit)

The linear model approach above will highlight the differences between sub-
types P2B and P1 for all go terms. Below, we plot the results and restrict the
subtypes shown to those two that we are currently interested in.

> smcPlot (pglas.numeric (rownames (topTable(fit, n = 30, resort.by = "logFC"))),

+ ], factor(subtype, levels = c("P1", "P2B")), col = .rwb,
+ scale = c(-15, 15), margins = c(1, 1, 6, 19), show.grid = TRUE,
+ r.cex = 0.75)



G0:0000776 kinetochore

G0:0007093 mitotic cell cycle checkpoint

G0:0007088 regulation of mitosis

G0:0006270 DNA replication initiation

G0:0000082 G1/S transition of mitotic cell cycle
G0:0006383 transcription from RNA polymerase Il promoter
G0:0007173 epidermal growth factor receptor signaling pathway
G0:0016363 nuclear matrix

G0:0004114 3',5'-cyclic-nucleotide phosphodiesterase activity
G0:0004112 cyclic-nucleotide phosphodiesterase activity
GO0:0003684 damaged DNA binding

G0:0051348 negative regulation of transferase activity
G0:0044450 microtubule organizing center part
GO0:0006469 negative regulation of protein kinase activity
G0:0033673 negative regulation of kinase activity
G0:0035258 steroid hormone receptor binding

GO0:0000079 regulation of cyclin-dependent protein kinase activity
G0:0031570 DNA integrity checkpoint

G0:0032313 regulation of Rab GTPase activity

GO0:0009411 response to UV

G0:0005884 actin filament

G0:0030326 embryonic limb morphogenesis

GO0:0035113 embryonic appendage morphogenesis
G0:0030286 dynein complex

G0:0030855 epithelial cell differentiation

G0:0019861 flagellum

G0:0005548 phospholipid transporter activity

G0:0016540 protein autoprocessing

G0:0046777 protein amino acid autophosphorylation
G0:0001764 neuron migration
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