
An Introduction to Bioconductor’s ExpressionSet Class

Seth Falcon, Martin Morgan, and Robert Gentleman

6 October, 2006; revised 9 February, 2007

1 Introduction

Biobase is part of the Bioconductor project, and is used by many other packages. Biobase
contains standardized data structures to represent genomic data. The ExpressionSet class is
designed to combine several different sources of information into a single convenient structure.
An ExpressionSet can be manipulated (e.g., subsetted, copied) conveniently, and is the input
or output from many Bioconductor functions.

The data in an ExpressionSet is complicated, consisting of expression data from mi-
croarray experiments (assayData; assayData is used to hint at the methods used to access
different data components, as we will see below), ‘meta-data’ describing samples in the exper-
iment (phenoData), annotations and meta-data about the features on the chip or technology
used for the experiment (featureData, annotation), and a flexible structure to describe the
experiment (experimentData). The ExpressionSet class coordinates all of this data, so that
you do not usually have to worry about the details. However, an ExpressionSet needs to be
created in the first place, and creation can be complicated.

In this introduction we learn how to create and manipulate ExpressionSet objects, and
practice some basic R skills.

2 Preliminaries

2.1 Installing Packages

If you are reading this document and have not yet installed any software on your computer,
visit http://biocondcutor.org and follow the instructions for installing R and Bioconduc-
tor. Once you have installed R and Bioconductor, you are ready to go with this document.
In the future, you might find that you need to install one or more additional packages. The
best way to do this is to start an R session and evaluate commands like

> source("http://bioconductor.org/biocLite.R")

> biocLite(c("Biobase"))

1

http://biocondcutor.org

2.2 Loading Packages

The definition of the ExpressionSet class along with many methods for manipulating Ex-
pressionSet objects are defined in the Biobase package. In general, you need to load class
and method definitions before you use them. When using Bioconductor, this means loading
R packages using library or require.

> library("Biobase")

Exercise 1
What happens when you try to load a package that is not installed?

When using library, you get an error message. With require, the
return value is FALSE and a warning is printed.

3 Building an ExpressionSet From .CEL and other files

Many users have access to .CEL or other files produced by microarray chip manufacturer
hardware. Usually the strategy is to use a Bioconductor package such as affyPLM, affy, oligo,
or limma, to read these files. These Bioconductor packages have functions (e.g., ReadAffy,
expresso, or justRMA in affy) to read CEL files and perform preliminary preprocessing, and
to represent the resulting data as an ExpressionSet or other type of object. Suppose the
result from reading and preprocessing CEL or other files is named object, and object is
different from ExpressionSet ; a good bet is to try, e.g.,

> library(convert)

> as(object, "ExpressionSet")

It might be the case that no converter is available. The path then is to extract relevant data
from object and use this to create an ExpressionSet using the instructions below.

4 Building an ExpressionSet From Scratch

As mentioned in the introduction, the data from many high-throughput genomic experi-
ments, such as microarray experiments, usually consist of several conceptually distinct parts:
assay data, phenotypic meta-data, feature annotations and meta-data, and a description of
the experiment. We’ll construct each of these components, and then assemble them into an
ExpressionSet .

2

4.1 Assay data

One important part of the experiment is a matrix of ‘expression’ values. The values are
usually derived from microarrays of one sort or another, perhaps after initial processing by
manufacturer software or Bioconductor packages. The matrix has F rows and S columns,
where F is the number of features on the chip and S is the number of samples.

A likely scenario is that your assay data is in a ’tab-delimited’ text file (as exported from
a spreadsheet, for instance) with rows corresponding to features and columns to samples.
The strategy is to read this file into R using the read.table command, converting the result
to a matrix . A typical command to read a tab-delimited file that includes column ‘headers’
is

> dataDirectory <- system.file("extdata", package = "Biobase")

> exprsFile <- file.path(dataDirectory, "exprsData.txt")

> exprs <- as.matrix(read.table(exprsFile, header = TRUE,

+ sep = "\t", row.names = 1, as.is = TRUE))

The first two lines create a file path pointing to where the assay data is stored; replace these
with a character string pointing to your own file, e.g,

> exprsFile <- "c:/path/to/exprsData.txt"

(Windows users: note the use of / rather than \; this is because R treats the \ character as
an ‘escape’ sequence to change the meaning of the subsequent character). See the help pages
for read.table for more detail. A common variant is that the character separating columns
is a comma (“comma-separated values”, or “csv” files), in which case the sep argument might
be sep=",".

It is always important to verify that the data you have read matches your expectations.
At a minimum, check the class and dimensions of geneData and take a peak at the first
several rows

> class(exprs)

[1] "matrix"

> dim(exprs)

[1] 500 26

> colnames(exprs)

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O"

[16] "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

> head(exprs[, 1:5])

3

A B C D E

AFFX-MurIL2_at 192.7420 85.75330 176.7570 135.5750 64.49390

AFFX-MurIL10_at 97.1370 126.19600 77.9216 93.3713 24.39860

AFFX-MurIL4_at 45.8192 8.83135 33.0632 28.7072 5.94492

AFFX-MurFAS_at 22.5445 3.60093 14.6883 12.3397 36.86630

AFFX-BioB-5_at 96.7875 30.43800 46.1271 70.9319 56.17440

AFFX-BioB-M_at 89.0730 25.84610 57.2033 69.9766 49.58220

At this point, we can create a minimal ExpressionSet object:

> minimalSet <- new("ExpressionSet", exprs = exprs)

We’ll get more benefit from expression sets by creating a richer object that coordinates
phenotypic and other data with our expression data, as outlined in the following sections.

4.2 Phenotypic data

Phenotypic data summarizes information about the samples (e.g., sex, age, and treatment
status; referred to as ‘covariates’). The information describing the samples can be represented
as a table with S rows and V columns, where V is the number of covariates. An example of
phenotypic data can be input with

> pDataFile <- file.path(dataDirectory, "pData.txt")

> pData <- read.table(pDataFile, row.names = 1, header = TRUE,

+ sep = "\t")

> dim(pData)

[1] 26 3

> rownames(pData)

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O"

[16] "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

> summary(pData)

gender type score

Female:11 Case :15 Min. :0.1000

Male :15 Control:11 1st Qu.:0.3275

Median :0.4150

Mean :0.5369

3rd Qu.:0.7650

Max. :0.9800

4

There are three columns of data, and 26 rows. Note that the number of rows of phenotypic
data match the number of columns of expression data, and indeed that the row and column
names are identically ordered:

> all(rownames(pData) == colnames(exprs))

[1] TRUE

This is an essential feature of the relationship between the assay and phenotype data; Ex-
pressionSet will complain if these names do not match.

Phenotypic data can take on a number of different forms. For instance, some covariates
might reasonably be represented as numeric values. Other covariates (e.g., gender, tissue
type, or cancer status) might better be represented as factor objects (see the help page
for factor for more information). It is especially important that the phenotypic data are
encoded correctly; the colClasses argument to read.table can be helpful in correctly
inputing (and ignoring, if desired) columns from the file.

Exercise 2
What class does read.table return?

Exercise 3
Determine the column names of pData. Hint: apropos("name").

> names(pData)

[1] "gender" "type" "score"

Exercise 4
Use sapply to determine the classes of each column of pData. Hint: read the help page for
sapply.

> sapply(pData, class)

gender type score

"factor" "factor" "numeric"

Exercise 5
What is the sex and Case/Control status of the 15th and 20th samples? And for the sample(s)
with score greater than 0.8.

5

> pData[c(15, 20), c("gender", "type")]

gender type

O Female Case

T Female Case

> pData[pData$score > 0.8,]

gender type score

E Female Case 0.93

G Male Case 0.96

X Male Control 0.98

Y Female Case 0.94

Investigators often find that the meaning of simple column names does not provide enough
information about the covariate – What is the cryptic name supposed to represent? What
units are the covariates measured in? We can create a data frame containing such meta-data
(or read the information from a file using read.table) with

> metadata <- data.frame(labelDescription = c("Patient gender",

+ "Case/control status", "Tumor progress on XYZ scale"),

+ row.names = c("gender", "type", "score"))

This creates a data.frame object with a single column called labelDescription, and with
row names identical to the column names of the data.frame containing the phenotypic data.
The column labelDescription must be present; other columns are optional.

Bioconductor’s Biobase package provides a class called AnnotatedDataFrame that con-
veniently stores and manipulates the phenotypic data and its metadata in a coordinated
fashion. Create and view an AnnotatedDataFrame instance with:

> phenoData <- new("AnnotatedDataFrame", data = pData,

+ varMetadata = metadata)

> phenoData

An object of class "AnnotatedDataFrame"

rowNames: A, B, ..., Z (26 total)

varLabels and varMetadata description:

gender: Patient gender

type: Case/control status

score: Tumor progress on XYZ scale

Some useful operations on an AnnotatedDataFrame include sampleNames , pData (to extract
the original pData data.frame), and varMetadata. In addition, AnnotatedDataFrame objects
can be subset much like a data.frame:

6

> head(pData(phenoData))

gender type score

A Female Control 0.75

B Male Case 0.40

C Male Control 0.73

D Male Case 0.42

E Female Case 0.93

F Male Control 0.22

> phenoData[c("A", "Z"), "gender"]

An object of class "AnnotatedDataFrame"

rowNames: A, Z

varLabels and varMetadata description:

gender: Patient gender

> pData(phenoData[phenoData$score > 0.8,])

gender type score

E Female Case 0.93

G Male Case 0.96

X Male Control 0.98

Y Female Case 0.94

4.3 Annotations and feature data

Meta-data on features is as important as meta-data on samples, and can be very large and
diverse. A single chip design (i.e., collection of features) is likely to be used in many different
experiments, and it would be inefficient to repeatedly collect and coordinate the same meta-
data for each ExpressionSet instance. Instead, the ideas is to construct specialized meta-data
packages for each type of chip or instrument. Many of these packages are available from the
Bioconductor web site. These packages contain information such as the gene name, symbol
and chromosomal location. There are other meta-data packages that contain the information
that is provided by other initiatives such as GO and KEGG. The annotate package provides
basic data manipulation tools for the meta-data packages.

The appropriate way to create annotation data for features is very straight-forward: we
provide a character string identifying the type of chip used in the experiment. For instance,
the data we are using is from the Affymetrix hgu95av2 chip:

> annotation <- "hgu95av2"

It is also possible to record information about features that are unique to the experiment
(e.g., flagging particularly relevant features). This is done by creating or modifying an An-

notatedDataFrame like that for phenoData but with row names of the AnnotatedDataFrame
matching rows of the assay data.

7

4.4 Experiment description

Basic description about the experiment (e.g., the investigator or lab where the experiment
was done, an overall title, and other notes) can be recorded by creating a MIAME object.
One way to create a MIAME object is to use the new function:

> experimentData <- new("MIAME", name = "Pierre Fermat",

+ lab = "Francis Galton Lab", contact = "pfermat@lab.not.exist",

+ title = "Smoking-Cancer Experiment", abstract = "An example ExpressionSet",

+ url = "www.lab.not.exist", other = list(notes = "Created from text files"))

Usually, new takes as arguments the class name and pairs of names and values corresponding
to different slots in the class; consult the help page for MIAME for details of available slots.

4.5 Assembling an ExpressionSet

An ExpressionSet object is created by assembling its component parts, and after all this
work the final assembly is disappointingly easy:

> exampleSet <- new("ExpressionSet", exprs = exprs,

+ phenoData = phenoData, experimentData = experimentData,

+ annotation = "hgu95av2")

Note that the names on the right of each equal sign can refer to any object of appropriate
class for the argument. See the help page for ExpressionSet for more information.

We created a rich data object to coordinate diverse sources of information. Less rich
objects can be created by providing less information. As mentioned earlier, a minimal
expression set can be created with

> minimalSet <- new("ExpressionSet", exprs = exprs)

Of course this object has no information about phenotypic or feature data, or about the chip
used for the assay.

5 ExpressionSet Basics

Now that you have an ExpressionSet instance, let’s explore some of the basic operations.
You can get an overview of the structure and available methods for ExpressionSet objects
by reading the help page:

> help("ExpressionSet-class")

When you print an ExpressionSet object, a brief summary of the contents of the object
is displayed (displaying the entire object would fill your screen with numbers):

> exampleSet

8

ExpressionSet (storageMode: lockedEnvironment)

assayData: 500 features, 26 samples

element names: exprs

phenoData

sampleNames: A, B, ..., Z (26 total)

varLabels and varMetadata description:

gender: Patient gender

type: Case/control status

score: Tumor progress on XYZ scale

featureData

featureNames: AFFX-MurIL2_at, AFFX-MurIL10_at, ..., 31739_at (500 total)

fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'

Annotation: hgu95av2

5.1 Accessing Data Elements

A number of accessor functions are available to extract data from an ExpressionSet instance.
You can access the columns of the phenotype data (an AnnotatedDataFrame instance) using
$:

> exampleSet$gender[1:5]

[1] Female Male Male Male Female

Levels: Female Male

> exampleSet$gender[1:5] == "Female"

[1] TRUE FALSE FALSE FALSE TRUE

You can retrieve the names of the features using featureNames. For many microarray
datasets, the feature names are the probe set identifiers.

> featureNames(exampleSet)[1:5]

[1] "AFFX-MurIL2_at" "AFFX-MurIL10_at" "AFFX-MurIL4_at"

[4] "AFFX-MurFAS_at" "AFFX-BioB-5_at"

The unique identifiers of the samples in the data set are available via the sampleNames

method. The varLabels method lists the column names of the phenotype data:

> sampleNames(exampleSet)[1:5]

[1] "A" "B" "C" "D" "E"

9

> varLabels(exampleSet)

[1] "gender" "type" "score"

Extract the expression matrix and the AnnotatedDataFrame of sample information using
exprs and phenoData, respectively:

> mat <- exprs(exampleSet)

> dim(mat)

[1] 500 26

> adf <- phenoData(exampleSet)

> adf

An object of class "AnnotatedDataFrame"

sampleNames: A, B, ..., Z (26 total)

varLabels and varMetadata description:

gender: Patient gender

type: Case/control status

score: Tumor progress on XYZ scale

5.1.1 Subsetting

Probably the most useful operation to perform on ExpressionSet objects is subsetting. Sub-
setting an ExpressionSet is very similar to subsetting the expression matrix that is contained
within the ExpressionSet , the first argument subsets the features and the second argument
subsets the samples. Here are some examples: Create a new ExpressionSet consisting of the
5 features and the first 3 samples:

> vv <- exampleSet[1:5, 1:3]

> dim(vv)

Features Samples

5 3

> featureNames(vv)

[1] "AFFX-MurIL2_at" "AFFX-MurIL10_at" "AFFX-MurIL4_at"

[4] "AFFX-MurFAS_at" "AFFX-BioB-5_at"

> sampleNames(vv)

[1] "A" "B" "C"

Create a subset consisting of only the male samples:

10

> males <- exampleSet[, exampleSet$gender == "Male"]

> males

ExpressionSet (storageMode: lockedEnvironment)

assayData: 500 features, 15 samples

element names: exprs

phenoData

sampleNames: B, C, ..., X (15 total)

varLabels and varMetadata description:

gender: Patient gender

type: Case/control status

score: Tumor progress on XYZ scale

featureData

featureNames: AFFX-MurIL2_at, AFFX-MurIL10_at, ..., 31739_at (500 total)

fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'

Annotation: hgu95av2

6 What was used to create this document

The version number of R and the packages and their versions that were used to generate this
document are listed below.

� R version 2.7.0 (2008-04-22), i386-pc-mingw32

� Locale: LC_COLLATE=English_United States.1252;LC_CTYPE=English_United States.1252;LC_MONETARY=English_United States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

� Other packages: Biobase 2.0.1

11

	Introduction
	Preliminaries
	Installing Packages
	Loading Packages

	Building an ExpressionSet From .CEL and other files
	Building an ExpressionSet From Scratch
	Assay data
	Phenotypic data
	Annotations and feature data
	Experiment description
	Assembling an ExpressionSet

	ExpressionSet Basics
	Accessing Data Elements
	Subsetting

	What was used to create this document

