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1 Introduction

The simpleaffy package is part of the Bioconductor1 project. It it was written to provide
a starting point for exploring Affymetrix data, and to provide functions for some of the
most common tasks we found ourselves doing over and over again. It is based on the
affy package, which does does most of the hard work.

affy provides a variety of functions for processing Affymetrix data, with many more
in affycomp. Even so, some tasks (such as computing t-tests and fold changes between
replicate groups, plotting scatter-plots and generating tables of annotated ’hits’) require
a bit of coding, and some of the most commonly used functions can be a bit slower than
we would like. This package aims to provide high-level methods to perform these routine
analysis tasks, and many of them have been re-implemented in C for speed.

1http://www.bioconductor.org/
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Since simpleaffy is written over the top of the affy package, a basic understand-
ing of the library and its vignette is a good idea. We also assume that the reader
knows how the Affymetrix system works. If not, a brief introduction can be found
at http://bioinf.picr.man.ac.uk/; a more detailed description is in the Affymetrix MAS
manual at http://www.affymetrix.com.

2 Reading in data and generating expression calls

The first thing you need to do is to get R to use the simpleaffy package by telling it to
load the library:

R> library(simpleaffy) ##the affy package also gets loaded

(NB: The examples in the vignette are hypothetical - we are putting together a data
package containing a complete experimental dataset, when that’s done, we will use these
as the basis for the example code in this document).

Affymetrix data is generated by processing an image of the microarray (stored in a
.DAT file) to produce a .CEL file, which contains, for each probe on the array, a single
number defining its intensity. These are combined for each probeset using an algorithm
such as RMA or MAS 5.0, to generate an expression level call for each transcript repre-
sented on the chip. Both the affy and simpleaffy packages work on the data in .CEL files,
so we need to load them into R. In order to compute means, fold changes and t-tests,
simpleaffy needs to know about the replicates in your experiment, so we must also load
some descriptive data that says which arrays were replicates and also something about
the different experimental conditions you were testing. This means that simpleaffy needs
two things:

1. your .CEL files, and

2. a white-space delimited file describing the samples that went on them.

By default, this file is called covdesc. The first column should have no header, and
contains the names of the .CEL files you want to process. Each remaining column is
used to describe something in the experiment you want to study. For example you might
have a set of chips produced by treating a cell line with two drugs. Your covdesc file
might look like something like this:
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treatment
ctrl1.cel n
ctrl2.cel n
ctrl3.cel n

a1.cel a
a2.cel a
a3.cel a
b1.cel b
b2.cel b
b3.cel b

ab1.cel a.b
ab2.cel a.b

Sooo, the easiest way to get going is it:

1. Create a directory, move all the relevant CEL files to that directory

2. Create a covdesc file and put it in the same directory

3. If using linux/unix, start R in that directory.

4. If using the Rgui for Microsoft Windows make sure your working directory contains
the Cel files (use “File -> Change Dir” menu item).

5. Load the library.

R> library(simpleaffy) ##load the simpleaffy package

##(which loads the affy package too)

6. Read in the data and generate expression calls, (using RMA), for example.

R> library(simpleaffy)

R> raw.data <- read.affy() ##read data in working directory

R> x.rma <- call.exprs(raw.data,"rma")

R> # alternatively, use MAS 5.0: x.mas <- call.exprs(raw.data,"mas5")

Take a look at the help files for a more detailed description of these functions:

R> ?read.affy

R> ?call.exprs

The function justMAS provides a faster implementation of the MAS 5.0 expression
summary algorithm written in C. (described in: Hubbell et al. (2002) Robust Esti-
mators for expression analysis. Bioinformatics 18(12) 1585-1592), and in Affymetrix’s
’Statistical Algorithms Description Document’ that can be found on their website at
http://www.affymetrix.com). As with any implementation of an algorithm, variations
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can occur. The simpleaffy website, http://bioinf.picr.man.ac.uk/simpleaffy, de-
scribes what testing was done: you should be aware of these differences, and if in any
doubt, use MAS5.0 or GCOS to generate your data.

By default, this is used justMAS by call.exprs, to use the expresso version specify
’mas5-R’ instead of ’mas5’ when you invoke call.exprs.

justMAS has not been tested on every chip type available - the majority of devel-
opment has been on HGU95A arrays and newer. For more details of what chips it has
been tested on, how the testing was done, and the results of the comparisons, see our
website: http://bioinformatics.picr.man.ac.uk/simpleaffy.

3 Quality Control

One of the nice things about the Affymetrix platform is the collection of QC metrics (and
accompanying guidelines) that are available. These may help flag up arrays that may
have problems, and are described in detail in the Affymetrix Data Analysis Fundamentals
manual, which can be found on their website at http://www.affymetrix.com.

Also look at the document ’QC and simpleaffy’, which accompanies this document. It
discusses QC metrics in significantly more detail than this vignette. A brief introduction
can be found below...

The function qc generates the most commonly used metrics:

1. Average background

2. Scale factor

3. Number of genes called present (see the note on detection p-values) described
below.

4. 3’ to 5’ ratios

All of these stats are parameters computed for/from the MAS 5.0 algorithm. Affy’s
QC requires that the Scale Factor for all chips are within 3-fold of one another, and that
the average background and percent present calls for each chip are ’similar’. Affy chips
also use probes at the 3’ and 5’ ends of the (generally) GAPDH and beta-actin genes
to measure RNA quality, and additional probes spiked in during the latter stages of
the sample preparation process are used to verify hybridisation efficiency. These probes
(BioB,BioC,BioD,and CreX) should be present in increasing intensity.

The function qc produces an object of class ’QCStats’ containing QC metrics for
each array in a project. It takes both processed and raw data, since it makes use of
numbers generated during the mas 5.0 expression calling algorithm. Alternatively, it
can be called with just the raw data, in which case it calls call.exprs(x,"mas5")

internally. For example,
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R> x <- read.affy("covdesc");

R> x.mas5 <- call.exprs(x,"mas5");

R> qc <- qc(x,x.mas5);

Note that we have used call.exprs(x,"mas5") to normalise the data using the mas
5.0 algorithm. This is important because call.exprs stores some additional data in the
AffyBatch object’s description@preprocessing slot:

R> x.mas5@description@preprocessing

sfs is a list of scale factors for each chip, tgt, the target intensity they were scaled
to.

qc returns an object containing scale-factors, % present, average, mininimum, max-
imum and mean background intensities,and bioB, bioC, bioD and creX present calls
(1=present;0=not present). It also stores 3’, 5’ and M values for the QC probes. ra-

tios(qc) generates a table of qc ratios for these probes. See ?qc for more details.
For some arrays, there are more than one probeset that target the gapdh and beta-

actin genes. In this situation, we’ve attempted to make a sensible choice as to which
probeset to use. To find out which probesets are used for your arrays use the methods
getGapdh3, getGapdhM, getGapdh5, getActinb3, getActinbM, getActinb5, getBioB,
getBioC, getBioD, and getCreX.

The qc functions and detection p value code have not been tested on every chip type
available - the majority of development has been on HGU95A arrays and newer. Again,
for more details of what chips it has been tested on, how the testing was done, and the
results of the comparisons, see the simpleaffy website.

R> getGapdh3(cleancdfname(cdfName(x))) #where x is an exprSet object

A plot of qc data can also be obtained by plot(qc). The resultant image takes a bit
of explaining. The three dotted circles represent 3-fold up-regulation, zero change and
three-fold down regulation (labelled +3, 0 and -3) respectively. Each array is represented
by a segment of the image, with circles and triangles representing beta-actin and gapdh
3’/5’ ratios, respectively. High 3’/5’ ratios signal an issue with the labelled RNA – any
ratios greater than 3 are signalled by plotting these values in red.

Affymetrix’s QC procedures state that scale factors for array should be within 3-fold
of each other if the chips are to be comparable.Scale factor for each array is plotted
as a line from the zero-fold line to a point representing its scale factor. The blue ring
represents the region where scale factors are within this 3-fold limit (centered around
the mean scale factor for all chips). Any scale-factor lines that fall outside this ring
represent arrays that have a scale factor that is more than 3-fold different from its peers.
If this happens the lines are coloured red.

Around the outside of the figure percentage present and background levels are shown.
These should in general be consistant with one another. If there is large variation these
values are shown in red. In short if anything in the figure shows up red, it is worthy of
further investigation!
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4 Filtering by expression measures

When R loaded the .CEL files, it also used the data in the covdesc file to define which
experimental groups the chips belonged to. The get.array.subset function makes it
easy to select a subest of arrays from the experiment. For example,

R> get.array.subset(x.rma,"treatment",c("a","n"))

will return an exprSet containing just the chips corresponding to treatment with
drug ’a’ or or with no drug at all.

The function pairwise.comparison allows you to take a subset of chips and perform
the following analyses on it:

1. find means of the data,

2. compute log2 fold changes between the means,

3. compute a t-test between the groups,

4. possibly compute MAS5.0 style detection p values and Present/Marginal/Absent
calls.

it returns a ’PairComp’ object containing the results of the analysis:

R> results <- pairwise.comparison(

x.rma, ## processed data

"treatment", ## the factor in covdesc

## to use to group arrays

c("n","a"), ## groups to compare

raw.data ## for PMA calls

)

This function is implemented in C for speed - and does everything in one go. There
are no individual functions for fold-change and p-value, because it works out quicker
simply to get everything and to discard the stuff you don’t need.

Note that detection p values are computed using the function detection.p.val.
This makes use of two parameters (alpha1 and alpha2) that are, like the control probes
described above, dependent on the array type you’re analysing. Use getAlpha1 and
getAlpha2 to find out what values are being used for your array.

If you only have two groups of replicates - a simple control v. treatment experiment,
for example, things are even easier, you do not have to specify the members to compare
since the function can work it out from the group:
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R> results <- pairwise.comparison(

x.rma, ## processed data

"treatment", ## the factor in covdesc

spots=raw.data ## for PMA calls

)

R> ## Find the 100 most changing genes

R> sort(abs(fc(results)),decreasing=TRUE)[1:100]

Since call.exprs always returns logged data, pairwise.comparison expects logged
data by default – this can be changed with the logged parameter.

Averages can be calculated 3 ways:

1. From the unlogged values – i.e. log2(mean(replicates)).

2. From the logged values – i.e. mean(log2(replicates)).

3. From the median – i.e log2(median(replicates))

..and then the log2(fold change) values are simply worked out from these.
By default, unlogged values are used, but the parameter, method, allows you to

change this by specifying method=’unlogged’,’logged’ or ’median’.
Note that if you have no replicates in one or both of your experimental groups - so

that you have only one control or treatment chip, for example, the function returns a
p-score of 0.0 for each t-test comparison rather than generating an error complaining
that there are not enough observations.

The function pairwise.filter takes the output of pairwise.comparison and filters
it for significantly changing genes:

R> # find genes expressed with an intensity

R> # greater than 10 on at least 6 chips,

R> # that show a fold change greater than 1.5

R> # and are significantly different

R> # between groups with a t-test p.value

R> # of 0.001 or better

R> significant <- pairwise.filter(

results,

min.exp=log2(10),

min.exp.no=6, fc=log2(1.5),

tt= 0.001)

If the pairwise comparison object was created from MAS 5.0 data, it can be filtered
by Present Marginal Absent calls. Each gene is tested to see how many arrays it is
called present on and this value used to decide whether the transcript passes the filter.
Two ways of doing this are possible: the first simply sees if the transcript is Present
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on more than min.present.no arrays in the experiment. To do this, the parameter
present.by.group must be set to FALSE.

The second makes use of the replicate groups used to calculate the pairwise.comparison
object. In this case, the transcript must be present by more than min.present.no ar-
rays in at least one of the two experimental groups. For this present.by.group must
be TRUE. This is useful because it provides a way of trying to identify transcripts that
have gone from ’off’ to ’on’, i.e. from being called Absent in one set to Present in the
other, as well as those that are Present on all arrays.

For both methods of filtering, if min.present.no="all" is specified instead of a
number , the transcript must be present in ”all” arrays of a replicate group (or the whole
experiment, depending on present.by.group).

For example:

R> # find genes present on all chips,

R> # that show a fold change greater than 1.5

R> # and are significantly different

R> # between groups with a t-test p.value

R> # of 0.001 or better

R> significant <- pairwise.filter(

results,

min.present.no="all",

present.by.group=F, fc=log2(1.5),

tt= 0.001)

R> # find genes present on all chips in at least one replicate group,

R> # that show a fold change greater than 1.5

R> # and are significantly different

R> # between groups with a t-test p.value

R> # of 0.001 or better

R> significant <- pairwise.filter(

results,

min.present.no="all",

present.by.group=T, fc=log2(1.5),

tt= 0.001)

4.1 Paired replicates

In the above example, we simply lumped all the replicates together when we calculated
the t-tests. Ideally, we would like to design experiments so that each treatment is
matched by a control sample that mirrors the protocols and processes it was subjected
to as closely as possible.

This is particularly important if we are going to be processing replicates on separate
days, or perhaps with different operators. A protocol that requires incubation on the
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bench for a couple of hours, say, might behave differently on a hot day and we would
like the control samples to pick this sort of thing up.

The pairwise.comparison function lets us do a t-test with paired replicates, by
specifying the ordering of replicates within groups.

R> results <- pairwise.comparison(

x.rma, ## processed data

"treatment", c("n","a"),## groups to compare

raw.data,

a.order=c(1,3,2), ## a.1 matches b.1

b.order=c(1,2,3)) ## a.3 matches b.2 etc...

R> ## Find the 100 most changing genes

R> sort(abs(fc(results)),decreasing=TRUE)[1:100]

Here, we have specified the order the replicate samples should be compared to each
other - so that replicate 3 in group a is compared to replicate 2 in group b, and so on.

Again, the help pages for these functions explain more about them and the values
they return.

5 Viewing results

The function trad.scatter.plot does a scatter plot between a pair of vectors:

R> trad.scatter.plot(exprs(x.rma)[,1],exprs(x.rma)[,3],

fc.line.col="lightblue",col="blue");

R> trad.scatter.plot(exprs(x.rma)[,2],exprs(x.rma)[,4],

add=T,col="red");

R> legend(2,12,c("Control v. treatment rep 1","Control v. treatment rep 2"),

col=c("blue","red"),pch=20)

Generic plot functions also exist for pairwise.comparison objects.
plot(pairwise.comparison) will do a straight scatter plot of the means of the two

replicate groups. In addition the parameter type can be used:

R> plot(results,type="scatter") #scatter plot

R> plot(results,type="ma") #M v A plot

R> plot(results,type="volcano") #volcano plot

If PMA calls are available, the function will colour the points as follows:

1. Red – all present

2. Orange – all present in one group or the other
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3. Yellow – all that remain

If a second pairwise.comparison object is supplied, then these points are drawn
(by default) as blue circles. This allows the results of a pairwise.filter to be identified on
the graph - eg.:

R> # find genes present on all chips in at least one replicate group,

R> # that show a fold change greater than 1.5

R> # and are significantly different

R> # between groups with a t-test p.value

R> # of 0.001 or better

R> results <- pairwise.comparison(

x.rma, ## processed data

"treatment", c("n","a"),## groups to compare

raw.data,

a.order=c(1,3,2), ## a.1 matches b.1

b.order=c(1,2,3)) ## a.3 matches b.2 etc...

R> significant <- pairwise.filter(

results,

min.present.no="all",

present.by.group=T, fc=log2(1.5),

tt= 0.001)

R> plot(results,significant)

5.1 Heatmaps

Simpleaffy also has a pair of functions for plotting simple heatmaps, hmap.eset and
hmap.pc for AffyBatch and PairComp objects, respectively. The simplest use is as
follows:

R> #generate a heatmap of the first 100 genes in an expression set.

R> eset <- read.affy()

R> eset.rma <- call.exprs(eset)

R> hmap.eset(eset.rma,1:100)

You can specify colours using the ’col’ parameter either by giving the function a
vector of colors (e.g. rainbow(21)) or by the following strings:

1. “bwr” – from blue to red via white

2. “rbg” – from red to green via black

3. “ryw” – from red to white via yellow
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By default, colouring is such that the colours are scaled so that all the data in the
heatmap fits in the colour range supplied. Alternatively, minimum and maximum values
for the colour range can be specified. Clustering functions or trees generated by hclust
or dendrogram can also be provided – by default 1-Pearson correlation is used. See
?hmap.eset for more details.

If you have the results of a pairwise.filter, you can use this to select the samples and
probesets to plot:

R> #generate a heatmap of the first 100 probesets in an expression set.

R> eset <- read.affy()

R> eset.rma <- call.exprs(eset)

R> pc <- pairwise.comparison(eset.rma,''group'',c(``a'',''b''))

R> pc.f <- pairwise.filter(pc,tt=0.001,fc=1)

R> hmap.pc(pc.f,eset.rma)

By default, this scales the colouring for each probeset in terms of its standard devi-
ation. This is done as follows:

1. The replicate groups used for the pairwise comparison are found. The s.d. for
each probeset is calculated for each group, and the results averaged to give a mean
standard deviation for each probeset.

2. Data are clustered as before

3. Each probeset is scaled by it standard deviation, and coloured according to how
many s.d.s it is from its mean.

4. The samples used for the pariwise comparison are plotted (by default)

The parameter ’scale’ can be used to turn this scaling off, and spread defines how
many standard deviations above and below the mean should be shown. see ?hmap.pc
for more details.

5.2 Printing

Another thing that can sometimes be tricky is producing figures for papers and presenta-
tions. Two utility functions, journalpng and screenpng make it easy to generate .png
files at 300dpi (huge) and 72dpi. Most journals accept .pngs, and they can be converted
into other formats using a decent graphics package.

R uses the concept of a device to deal with graphics. When you start to plot a graph,
it looks for a graphics device to print it on. If it can’t find one that’s already there, it
opens a new one, which by default corresponds to a window on the screen. In order to
generate a file (rather than a window) containing our figure, we can use journalpng and
screenpng to create a new graphics device that R can use instead. This device results
in our graph being plotted to a file on disk - when you type something like:
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R> journalpng(file="results/figure1.png");

R> trad.scatter.plot(exprs(x.rma)[,1],exprs(x.rma)[,3],fc.line.col="lightblue");

R> dev.off();

a new png file is created, the scatterplot is printed into that file and then, when
dev.off() is called, the data is saved. Note that because R is plotting to our journalpng
device rather than the screen, we won’t see any pictures (or anything happen at all).

5.3 Generating a table of results

It would also be nice to know what our changing genes actually do. The function
get.annotation takes a list of probe set names along with a string specifying the type
of array we are looking at, and uses these to look up annotation for our data. The
resulting dataframe, when saved as a tab delimited .XLS file, loads into excel, with
hyperlinks to the NCBI’s Unigene and LocusLink databases.

Two functions results.summary and write.annotation are also useful - the former
generates a summary table with expression data and associated annotation, the latter
spits it out in tab delimited format (see ?get.annotation for more details):

R> x <- read.affy()

R> x.rma <- call.exprs(x,"rma")

R> pw <- pairwise.comparison(x.rma,"drug",c("formulaX","nothing"))

R> pw.filtered <- pairwise.filter(pw)

R> summary <- results.summary(pw.filtered,"hgu133a")

R> write.annotation(file="spreadsheet.xls",summary)
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