
HowTo Render A Graph Using Rgraphviz

Jeff Gentry

November 25, 2003

1 Overview

This article will demonstrate how to easily render a graph from R into various
formats using the Rgraphviz . To do this, first we need to generate a R graph
using the graph package:

> library(Rgraphviz)

Creating a new generic function for "lines" in ".GlobalEnv"
Creating a new generic function for "plot" in ".GlobalEnv"

> set.seed(123)

> V <- letters[1:10]

> M <- 1:4

> g1 <- randomGraph(V, M, 0.2)

> g1

A graph with undirected edges
Number of Nodes = 10
Number of Edges = 16

2 Plotting in R Using Different Layout Methods

It is quite simple to generate a R plot window to display your graph. Once you
have your graph object, simply use the plot method:

1

a

b

c

d

e

f

g

h

i j

The Rgraphviz package allows you to specify varying layout engines, such
as ”dot” (the default), ”neato”, and ”twopi”. This can be done using the call to
plot:

> z <- plot(g1, "neato")

2

a

b

c

d

e
f

g

h

i

j

The ”twopi” layout method requires a graph to be fully connected. To de-
termine if your graph is fully connected:

> isConnected(g1)

[1] FALSE

A working ”twopi” layout can be seen with this graph:

> set.seed(123)

> V <- letters[14:22]

> g2 <- randomEGraph(V, 0.2)

> isConnected(g2)

[1] TRUE

> z <- plot(g2, "twopi")

3

n

o

p

q

r

s

t

u

v

And finally, to demonstrate how the differing layout methods work on this
second graph:

> z <- plot(g2, "dot")

4

no p

qr s

tu

v

> z <- plot(g2, "neato")

5

n

o

p

q

r

s

t

u

v

3 SubGraphs

Rgraphviz supports the ability to define specific clustering of nodes. This will
instruct the layout algorithm to attempt to keep the clustered nodes close to-
gether. To do this, one must first generate the desired set (one or more) of
subgraphs with the graph object.

> sg1 <- subGraph(c("a", "d", "j", "i"), g1)

> sg1

A graph with undirected edges
Number of Nodes = 4
Number of Edges = 1

> sg2 <- subGraph(c("b", "e", "h"), g1)

> sg2

A graph with undirected edges
Number of Nodes = 3
Number of Edges = 3

> sg3 <- subGraph(c("c", "f", "g"), g1)

> sg3

6

A graph with undirected edges
Number of Nodes = 3
Number of Edges = 0

To plot using the subgraphs, one must use the subGList argument which
accepts a list of every subgraph.

> plot(g1, subGList = list(sg1, sg2, sg3))

a

b

cde fg

h

ij

To demonstrate the differences that will appear with different subgraph pat-
terns, another example is provided:

> sg1 <- subGraph(c("a", "c", "d", "e", "j"), g1)

> sg2 <- subGraph(c("f", "h", "i"), g1)

> plot(g1, subGList = list(sg1, sg2))

7

a

b

c

d

ef

g

h

i

j

4 Labels

Users can specify both node and edge labels to the plot. Node labels are provided
using the argument ”nodeLabels” and consist of a character vector which must
be equal in length to the number of nodes in the graph. The first node label
in the vector corresponds to the first node, etc. If no nodeLabels argument is
provided, the graph will simply use the node names as labels.

Edge labels are slightly more complex, and are represented as a list. This
list elements correspond to the ’tail’ (’from’) nodes. Each element contains a
named character vector where the elements of the vector are the edge labels and
the names of said vector are the ’head’ (’to’) node that corresponds with that
edge. As an example:

In both situations, the user can alternatively supply a single value to either
”nodeLabels” or ”edgeLabels”, and in that case that value will be used for all of
the node or edge labels (as appropriate for the parameter).

> edgeLabs <- vector(length = length(nodes(g1)), mode = "list")

> names(edgeLabs) <- names(edges(g1))

> for (i in 1:10) edgeLabs[[i]] <- vector(mode = "character")

> aLabs <- c("test", "foo", "blah", "hmmm")

> names(aLabs) <- c("b", "d", "e", "h")

8

> edgeLabs$a <- aLabs

> edgeLabs$a

b d e h
"test" "foo" "blah" "hmmm"

This set up the initial empty list and then filled in labels for each edge
connecting to node ’a’ in this graph. These labels can then be used in the plot:

> plot(g1, edgeLabels = edgeLabs)

test

foo

blah

hmmm

a

b

c

d

e

f

g

h

i j

For users who wish to use the edge weights as the labels, there is a conve-
nience method weightLabels provided which will provide the same information
as edgeWeights but in the appropriate format for the edgeLabels parameter.
As an example:

> plot(g1, edgeLabels = weightLabels(g1))

9

1

1

1

1

1

1

1

2

1

1

1

1

11

1

1

a

b

c

d

e

f

g

h

i j

5 Adding Some Color

Many aspects of the plotted graph can be colorized to help highlight certain
features. Nodes, node labels and edges can all have special coloring within a
plot. In all three cases there is a default color provided by the system, and a
user can specifically note deviations from that default. The default colors are
defined by the arguments ”defNodeCol”, ”defTextCol” and ”defEdgeCol”. Any
color can be specified to any of these, although suitable defaults are chosen if
nothing is specified.

Specifying deviations from the default color is also easy. The respective
arguments here are ”nodeCols”, ”textCols” and ”edgeCols”. In the former two
cases, the system takes a named vector - and any element whose name matches
the name of a node will have the specified color used for that node. Edges are a
bit more complex, and are represented as a list of node names (the tail nodes),
each of which contain a list of node names (the head nodes) which contain a
color. For every edge, if an element in the list exist xtailhead, that color will be
used for the edge.

> nodeCols <- c("red", "blue", "green")

> names(nodeCols) <- c("c", "d", "i")

> textCols <- c("yellow", "orange", "violet")

10

> names(textCols) <- c("a", "b", "d")

> edgeCols <- list()

> edgeColsab <- "red"

> edgeColsfh <- "blue"

> edgeColsbh <- "green"

> edgeColsbf <- "orange"

> plot(g1, nodeCols = nodeCols, textCols = textCols, edgeCols = edgeCols)

a

b

c

d

e

f

g

h

i j

6 The Attributes List

There are many visualization options in Graphviz that can be set beyond those
which are given explicit options using Rgraphviz. The user can manually specify
values for any of these by specificing an attribute list which will get passed down
to Graphviz. An example of an attribute that users would commonly want to
specify is ”dir” which notes the direction of a directed edge - for instance the
default is ”forward”, but one could set ”backwards”, ”none” (ie it is visually undi-
rected) or even ”both” (so one can represent an edge in each direction between
two nodes using only one actual edge and not two). A list of all available at-
tributes is accessible online at: http://www.research.att.com/ erg/graphviz/info/attrs.html.
(note that not all of these will have a visible effect in Rgraphviz)

To manually specify attributes, one must first create an attributes list, which

11

is a list of length three with the names ”graph”, ”node”, and ”edge” (correspond-
ing to graph attributes, node attributes and edge attributes respectively). Each
one of these list elements is itself a list of the appropriate attributes. For in-
stance, to define the ”dir” attribute to be ”both” as mentioned above:

> attrs <- vector(length = 3, mode = "list")

> names(attrs) <- c("graph", "node", "edge")

> attrs$edge$dir <- "both"

> attrs

$graph
NULL

$node
NULL

$edge
$edge$dir
[1] "both"

7 Example Graphs

Here are some other examples of graphs that can be drawn:
Unix history, using ”dot” and ”neato” layouts ...

> z <- new("graphNEL", nodes = c("5th Edition", "6th Edition",

+ "Interdata", "7th Edition", "V7M", "8th Edition", "1 BSD",

+ "2 BSD", "2.8 BSD", "32V", "3 BSD", "4 BSD", "4.1 BSD", "4.2 BSD",

+ "PWB 1.0", "USG 1.0", "CB Unix 1", "CB Unix 2", "CB Unix 3",

+ "USG 2.0", "USG 3.0", "PWB 2.0", "Unix/TS 1.0", "Unix/TS 3.0",

+ "Unix/TS++", "TS 4.0", "System V.0", "System V.2", "LSX",

+ "Mini Unix", "Wollongong", "Ultrix-11", "Xenix", "UniPlus+",

+ "9th Edition", "2.9 BSD", "Ultrix-32", "PDP-11 Sys V", "System V.3",

+ "4.3 BSD", "PWB 1.2"), edgeL = list("5th Edition" = list(edges = c(2,

+ 15)), "6th Edition" = list(edges = c(29, 7, 30, 31, 3)),

+ Interdata = list(edges = c(24, 22, 4)), "7th Edition" = list(edges = c(6,

+ 10, 5, 32, 33, 34)), V7M = list(edges = 32), "8th Edition" = list(edges = 35),

+ "1 BSD" = list(edges = 8), "2 BSD" = list(edges = 9), "2.8 BSD" = list(edges = c(32,

+ 36)), "32V" = list(edges = 11), "3 BSD" = list(edges = 12),

+ "4 BSD" = list(edges = 13), "4.1 BSD" = list(edges = c(14,

+ 9, 6)), "4.2 BSD" = list(edges = c(40, 37)), "PWB 1.0" = list(edges = c(41,

+ 16)), "PWB 1.2" = list(edges = 22), "USG 1.0" = list(edges = c(17,

+ 20)), "CB Unix 1" = list(edges = 18), "CB Unix 2" = list(edges = 19),

+ "CB Unix 3" = list(edges = c(25, 38)), "USG 2.0" = list(edges = 21),

+ "USG 3.0" = list(edges = 24), "PWB 2.0" = list(edges = 24),

+ "Unix/TS 1.0" = list(edges = 24), "Unix/TS 3.0" = list(edges = 26),

12

+ "Unix/TS++" = list(edges = 26), "TS 4.0" = list(edges = 27),

+ "System V.0" = list(edges = 28), "System V.2" = list(edges = 39),

+ LSX = character(), "Mini Unix" = character(), Wollongong = character(),

+ "Ultrix-11" = character(), Xenix = character(), "UniPlus+" = character(),

+ "9th Edition" = character(), "2.9 BSD" = character(), "Ultrix-32" = character(),

+ "PDP-11 Sys V" = character(), "System V.3" = character(),

+ "4.3 BSD" = character()), edgemode = "directed")

> a <- plot(z, nodeCols = c("orange", "yellow"))

> a <- plot(z, "neato", nodeCols = c("lightblue", "yellow", "lightgreen",

+ "orange"))

5th Edition

6th Edition

Interdata

7th Edition

V7M

8th Edition

1 BSD

2 BSD

2.8 BSD

32V

3 BSD

4 BSD

4.1 BSD

4.2 BSD

PWB 1.0

USG 1.0

CB Unix 1

CB Unix 2

CB Unix 3

USG 2.0

USG 3.0

PWB 2.0

Unix/TS 1.0

Unix/TS 3.0

Unix/TS++

TS 4.0

System V.0

System V.2

LSXMini Unix Wollongong

Ultrix−11

Xenix UniPlus+

9th Edition 2.9 BSDUltrix−32

PDP−11 Sys V

System V.3

4.3 BSD

PWB 1.2

OS process map, using ”twopi”layout ... z<- new(”graphNEL”, nodes=c(”run”,”intr”,”runbl”,”kernel”,”zombie”,”sleep”,”runmem”,”swap”,”runswap”,”new”),
edgeL=list(”run”=list(edges=c(2,3,4)),”intr”=list(edges=c(1,3)), ”runbl”=list(edges=c(1,2)),
”kernel”=list(edges=c(1,5,6,7)), ”zombie”=list(edges=4), ”sleep”=list(edges=c(4,7,8)),
”runmem”=list(edges=c(4,6,9,10)), ”swap”=list(edges=c(6,9)), ”runswap”=list(edges=c(7,8,10)),
”new”=list(edges=c(7,9)))) a <- plot(z, ”twopi”)

13

	Overview
	Plotting in R Using Different Layout Methods
	SubGraphs
	Labels
	Adding Some Color
	The Attributes List
	Example Graphs

