A common application of single-cell RNA sequencing (RNA-seq) data is
to identify discrete cell types. To take advantage of the large collection
of well-annotated scRNA-seq datasets, scClassify
package implements
a set of methods to perform accurate cell type classification based on
ensemble learning and sample size calculation.
This vignette will provide an example showing how users can use a pretrained
model of scClassify to predict cell types. A pretrained model is a
scClassifyTrainModel
object returned by train_scClassify()
.
A list of pretrained model can be found in
https://sydneybiox.github.io/scClassify/index.html.
First, install scClassify
, install BiocManager
and use
BiocManager::install
to install scClassify
package.
# installation of scClassify
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("scClassify")
We assume that you have log-transformed (size-factor normalized) matrices as query datasets, where each row refers to a gene and each column a cell. For demonstration purposes, we will take a subset of single-cell pancreas datasets from one independent study (Wang et al.).
library(scClassify)
data("scClassify_example")
wang_cellTypes <- scClassify_example$wang_cellTypes
exprsMat_wang_subset <- scClassify_example$exprsMat_wang_subset
exprsMat_wang_subset <- as(exprsMat_wang_subset, "dgCMatrix")
Here, we load our pretrained model using a subset of the Xin et al. human pancreas dataset as our reference data.
First, let us check basic information relating to our pretrained model.
data("trainClassExample_xin")
trainClassExample_xin
#> Class: scClassifyTrainModel
#> Model name: training
#> Feature selection methods: limma
#> Number of cells in the training data: 674
#> Number of cell types in the training data: 4
In this pretrained model, we have selected the genes based on Differential Expression using limma. To check the genes that are available in the pretrained model:
features(trainClassExample_xin)
#> [1] "limma"
We can also visualise the cell type tree of the reference data.
plotCellTypeTree(cellTypeTree(trainClassExample_xin))
Next, we perform predict_scClassify
with our pretrained model
trainRes = trainClassExample
to predict the cell types of our
query data matrix exprsMat_wang_subset_sparse
. Here,
we used pearson
and spearman
as similarity metrics.
pred_res <- predict_scClassify(exprsMat_test = exprsMat_wang_subset,
trainRes = trainClassExample_xin,
cellTypes_test = wang_cellTypes,
algorithm = "WKNN",
features = c("limma"),
similarity = c("pearson", "spearman"),
prob_threshold = 0.7,
verbose = TRUE)
#> Performing unweighted ensemble learning...
#> Using parameters:
#> similarity algorithm features
#> "pearson" "WKNN" "limma"
#> [1] "Using dynamic correlation cutoff..."
#> [1] "Using dynamic correlation cutoff..."
#> classify_res
#> correct correctly unassigned intermediate
#> 0.704590818 0.239520958 0.000000000
#> incorrectly unassigned error assigned misclassified
#> 0.000000000 0.051896208 0.003992016
#> Using parameters:
#> similarity algorithm features
#> "spearman" "WKNN" "limma"
#> [1] "Using dynamic correlation cutoff..."
#> [1] "Using dynamic correlation cutoff..."
#> classify_res
#> correct correctly unassigned intermediate
#> 0.702594810 0.013972056 0.000000000
#> incorrectly unassigned error assigned misclassified
#> 0.001996008 0.277445110 0.003992016
#> weights for each base method:
#> [1] NA NA
Noted that the cellType_test
is not a required input.
For datasets with unknown labels, users can simply leave it
as cellType_test = NULL
.
Prediction results for pearson as the similarity metric:
table(pred_res$pearson_WKNN_limma$predRes, wang_cellTypes)
#> wang_cellTypes
#> acinar alpha beta delta ductal gamma stellate
#> alpha 0 206 0 0 0 2 0
#> beta 0 0 118 0 1 0 0
#> beta_delta_gamma 0 0 0 0 25 0 0
#> delta 0 0 0 10 0 0 0
#> gamma 0 0 0 0 0 19 0
#> unassigned 5 0 0 0 70 0 45
Prediction results for spearman as the similarity metric:
table(pred_res$spearman_WKNN_limma$predRes, wang_cellTypes)
#> wang_cellTypes
#> acinar alpha beta delta ductal gamma stellate
#> alpha 0 206 0 0 0 2 2
#> beta 2 0 118 0 29 0 6
#> beta_delta_gamma 1 0 0 0 66 0 31
#> delta 0 0 0 10 0 0 2
#> gamma 0 0 0 0 0 18 0
#> unassigned 2 0 0 0 1 1 4
sessionInfo()
#> R version 4.5.0 beta (2025-04-02 r88102)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.2 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] scClassify_1.21.0 BiocStyle_2.37.0
#>
#> loaded via a namespace (and not attached):
#> [1] gridExtra_2.3 rlang_1.1.6
#> [3] magrittr_2.0.3 matrixStats_1.5.0
#> [5] compiler_4.5.0 mgcv_1.9-3
#> [7] DelayedMatrixStats_1.31.0 vctrs_0.6.5
#> [9] reshape2_1.4.4 stringr_1.5.1
#> [11] pkgconfig_2.0.3 crayon_1.5.3
#> [13] fastmap_1.2.0 magick_2.8.6
#> [15] XVector_0.49.0 labeling_0.4.3
#> [17] ggraph_2.2.1 rmarkdown_2.29
#> [19] UCSC.utils_1.5.0 tinytex_0.57
#> [21] purrr_1.0.4 xfun_0.52
#> [23] cachem_1.1.0 GenomeInfoDb_1.45.0
#> [25] jsonlite_2.0.0 rhdf5filters_1.21.0
#> [27] DelayedArray_0.35.0 Rhdf5lib_1.31.0
#> [29] BiocParallel_1.43.0 tweenr_2.0.3
#> [31] parallel_4.5.0 cluster_2.1.8.1
#> [33] R6_2.6.1 bslib_0.9.0
#> [35] stringi_1.8.7 limma_3.65.0
#> [37] diptest_0.77-1 GenomicRanges_1.61.0
#> [39] jquerylib_0.1.4 Rcpp_1.0.14
#> [41] bookdown_0.43 SummarizedExperiment_1.39.0
#> [43] knitr_1.50 mixtools_2.0.0.1
#> [45] IRanges_2.43.0 Matrix_1.7-3
#> [47] splines_4.5.0 igraph_2.1.4
#> [49] tidyselect_1.2.1 abind_1.4-8
#> [51] yaml_2.3.10 hopach_2.69.0
#> [53] viridis_0.6.5 codetools_0.2-20
#> [55] minpack.lm_1.2-4 Cepo_1.15.0
#> [57] lattice_0.22-7 tibble_3.2.1
#> [59] plyr_1.8.9 Biobase_2.69.0
#> [61] withr_3.0.2 evaluate_1.0.3
#> [63] survival_3.8-3 proxy_0.4-27
#> [65] polyclip_1.10-7 kernlab_0.9-33
#> [67] pillar_1.10.2 BiocManager_1.30.25
#> [69] MatrixGenerics_1.21.0 stats4_4.5.0
#> [71] plotly_4.10.4 generics_0.1.3
#> [73] S4Vectors_0.47.0 ggplot2_3.5.2
#> [75] sparseMatrixStats_1.21.0 munsell_0.5.1
#> [77] scales_1.3.0 glue_1.8.0
#> [79] lazyeval_0.2.2 proxyC_0.4.1
#> [81] tools_4.5.0 data.table_1.17.0
#> [83] graphlayouts_1.2.2 tidygraph_1.3.1
#> [85] rhdf5_2.53.0 grid_4.5.0
#> [87] tidyr_1.3.1 colorspace_2.1-1
#> [89] SingleCellExperiment_1.31.0 nlme_3.1-168
#> [91] GenomeInfoDbData_1.2.14 patchwork_1.3.0
#> [93] ggforce_0.4.2 HDF5Array_1.37.0
#> [95] cli_3.6.4 segmented_2.1-4
#> [97] S4Arrays_1.9.0 viridisLite_0.4.2
#> [99] dplyr_1.1.4 gtable_0.3.6
#> [101] sass_0.4.10 digest_0.6.37
#> [103] BiocGenerics_0.55.0 SparseArray_1.9.0
#> [105] ggrepel_0.9.6 htmlwidgets_1.6.4
#> [107] farver_2.1.2 memoise_2.0.1
#> [109] htmltools_0.5.8.1 lifecycle_1.0.4
#> [111] h5mread_1.1.0 httr_1.4.7
#> [113] statmod_1.5.0 MASS_7.3-65