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1 Overview of VIPER

Phenotypic changes e�ected by pathophysiological events are now routinely captured by gene expression pro-
�le (GEP) measurements, determining mRNA abundance on a genome-wide scale in a cellular population[8,
9]. In contrast, methods to measure protein abundance on a proteome-wide scale using arrays[11] or mass
spectrometry[10] technologies are far less developed, covering only a fraction of proteins, requiring large
amounts of tissue, and failing to directly capture protein activity. Furthermore, mRNA expression does
not constitute a reliable predictor of protein activity, as it fails to capture a variety of post-transcriptional
and post-translational events that are involved in its modulation. Even reliable measurements of protein
abundance, for instance by low-throughput antibody based methods or by higher-throughput methods such
as mass spectrometry, do not necessarily provide quantitative assessment of functional activity. For instance,
enzymatic activity of signal transduction proteins, such as kinases, ubiquitin ligases, and acetyltransferases,
is frequently modulated by post-translational modi�cation events that do not a�ect total protein abundance.
Similarly, transcription factors may require post-translationally mediated activation, nuclear translocation,
and co-factor availability before they may regulate speci�c repertoires of their transcriptional targets. Fi-
nally, most target-speci�c drugs a�ect the activity of their protein substrates rather than their protein or
mRNA transcript abundance.

The VIPER (Virtual Inference of Protein-activity by Enriched Regulon analysis) algorithm[12] allows
computational inference of protein activity, on an individual sample basis, from gene expression pro�le data.
It uses the expression of genes that are most directly regulated by a given protein, such as the targets of a
transcription factor (TF), as an accurate reporter of its activity.

We have shown that analysis of TF targets inferred by the ARACNe algorithm[1, 13], using the Master
Regulator Inference algorithm (MARINA)[4], is e�ective in identifying drivers of speci�c cellular phenotypes
which could be experimentally validated[4, 6]. While VIPER exploits the same principle as MARINA, it
implements a dedicated algorithm specially formulated to estimate regulon activity, which takes into account
the regulator mode of action, the regulator-target gene interaction con�dence and the pleiotropic nature of
each target gene regulation. In addition, while especially straightforward for TFs, VIPER e�ectively extends
to signal transduction proteins. For this, we extended the concept of regulon to include the transcriptional
targets that are most directly a�ected by the protein's activity, based on maximization of information transfer
over all alternative paths[12].

VIPER is provided in this package in two �avors: a multiple sample version (msVIPER) designed for
gene expression signatures based in multiple samples or expression pro�les, and the single sample version
(VIPER), which estimates relative protein activity on a sample-by-sample basis, thus allowing transformation
of a typical gene expression matrix (i.e. multiple mRNA pro�led across multiple samples) into a protein
activity matrix, representing the relative activity of each protein in each sample.
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Table 1: Regulatory networks described in [12] and available from �gshare.

Title Figshare citation

Human B-cell transcriptional network http://dx.doi.org/10.6084/m9.figshare.680885

Human B-cell transcriptional network http://dx.doi.org/10.6084/m9.figshare.680888

Human glioma transcriptional network http://dx.doi.org/10.6084/m9.figshare.680887

MCF7 human breast carcinoma cell line transcriptional network http://dx.doi.org/10.6084/m9.figshare.680889

Human breast carcinoma signalome network http://dx.doi.org/10.6084/m9.figshare.695962

The viper package implements VIPER and msVIPER algorithms in R. The bcellViper data package pro-
vides some example datasets and a small B-cell context-speci�c transcriptional regulatory network, repre-
senting 172,240 inferred regulatory interactions between 621 TFs and 6,249 target genes. Additional networks
can be obtained from �gshare (Table 1) and from the author's web site (http://wiki.c2b2.columbia.edu/
califanolab/index.php/Software).

2 Citation

Alvarez MJ, Shen Y, Giorgi FM, Lachmann A, Ding BB, Ye BH & Califano, A. Functional characterization
of somatic mutations in cancer using network-based inference of protein activity. Nature Genetics (In press)
(2016).

3 Installation of viper package

Viper requires the R-system (http://www.r-project.org), themixtools package (http://www.bioconductor.
org), and the (bcellViper) package to run the examples. After installing R, all required components can be
obtained with:

> if (!requireNamespace("BiocManager", quietly=TRUE))

+ install.packages("BiocManager")

> BiocManager::install("mixtools")

> BiocManager::install("bcellViper")

> BiocManager::install("viper")

4 Getting started

As �rst step, we have to load the viper environment with:

> library(viper)

5 Generating the regulon object

As described under `Overview of VIPER' (section 1), msVIPER and VIPER require a gene expression
signature and an appropriate cell context-speci�c regulatory network. This regulatory network is provided in
the format of a class regulon object. Regulon objects can be generated from networks reverse engineered with
the ARACNe algorithm [1]. This is performed by the function aracne2regulon, which takes two arguments
as input: the ARACNe output .adj �le, and the expression data-set used by ARACNe to reverse engineer
the network. As an example, the package bcellViper provides a subset of the ARACNe output �le containing
the network for 20 TF regulators (bcellaracne.adj �le). For convenience, the full network is also provided,
as a regulon class object, together with the gene expression data used to reverse engineer it contained in an
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EpressionSet object. The B-cell expression data contains 211 samples representing several normal and tumor
human B-cell phenotypes pro�led on A�ymetrix H-GU95Av2 (Gene Expression Omnibus series GSE2350)[1].
The provided dataset was generated from custom probe-clusters obtained by the the cleaner algorithm[3]
and MAS5[2] normalization.

The following lines are an example for the use of aracne2regulon function to generate the regulon object
from the ARACNe output data and the expression data:

> data(bcellViper, package="bcellViper")

> adjfile <- system.file("aracne", "bcellaracne.adj", package = "bcellViper")

> regul <- aracne2regulon(adjfile, dset, verbose = FALSE)

> print(regul)

Object of class regulon with 20 regulators, 3758 targets and 6013 interactions

6 Master Regulator Analysis performed by msVIPER

To illustrate this section, we analyze part of the expression data from [1], consitent on 5 naïve human B-cell, 5
memory B-cell, 5 centroblast and 5 centrocyte B-cell samples pro�led on A�ymetrix H-GU95Av2 gene arrays.
The complete dataset is available from Gene Expression Omnibus (GSE2350), and here for convenience, we
have included the `cleaner'[3] processed and MAS5[2] normalized samples in the bcellViper package.

6.1 Generating the gene expression signatures

Lets assume that we are interested in identifying transcriptional regulators associated with the Germinal
Center (GC) reaction. GC are the peripheral lymphoid organs where antigen-driven somatic hypermutation
of the genes encoding the immunoglobulin variable region occurs, and are the main source of memory B
cells and plasma cells that produce high-a�nity antibodies. Centroblast and centrocyte are the main B-
cell phenotypes present in the GCs, they are derived from antigen-stimulated peripheral blood B-cells, and
represent the most proliferative cellular physiologic phenotypes of the adult human body. Thus, we can
obtain a gene expression signature for the GC formation by comparing GC (centroblasts and centrocytes)
against naïve B-cells. The `ExpressionSet' object available from the bcellViper data package contains 5
centroblast samples (CB), 5 centrocyte samples (CC) and 5 naïve peripheral blood B-cell samples (N).

The viper package includes the function rowTtest that e�ciently performs Student's t-test for each row of
a dataset. The rowTtest function conveniently takes an `ExpressionSet' object as argument and produces a
list object containing the Student's t-statistic (statistic) and the test's p-value (p.value), that by default
is estimated by a 2-tail test.

> signature <- rowTtest(dset, "description", c("CB", "CC"), "N")

It can also take two matrixes as arguments, the �rst one containing the `test' samples and the second the
`reference' samples.

While we could de�ne the Gene Expression Signature (GES) by using the t-statistic, to be consistent
with the z-score based null model for msVIPER (see section 6.2), we will estimate z-score values for the
GES:

> signature <- (qnorm(signature$p.value/2, lower.tail = FALSE) *

+ sign(signature$statistic))[, 1]

6.2 NULL model by sample permutations

A uniform distribution of the targets on the GES is not a good prior for msVIPER. Given the high degree
of co-regulation in transcriptional networks, the assumption of statistical independence of gene expression
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is unrealistic an can potentially lead to p-value underestimates. To account for the correlation structure
between genes, we de�ne a null model for msVIPER by using a set of signatures obtained after permuting
the samples at random. The function ttestNull performs such process by shu�ing the samples among the
`test' and `reference' sets, according to the re-sampling mode and number of permutations indicated by the
parameters repos and per, respectively.

> nullmodel <- ttestNull(dset, "description", c("CB", "CC"), "N", per = 1000,

+ repos = TRUE, verbose = FALSE)

As output, the ttestNull function produces a numerical matrix of z-scores, with genes/probes in rows and
permutation iterations in columns, than can be used as null model for the msVIPER analysis.

6.3 msVIPER

The last element required by msVIPER that we are still missing is an apropriate cell context-speci�c reg-
ulatory network. We have included a B-cell regulatory network in the bcellViper package, and additional
networks described in [12] for human B-cell, glioma and breast carcinoma can be obtained from �gshare
(Table 1).

> regulon

Object of class regulon with 621 regulators, 6249 targets and 172240 interactions

The msVIPER analysis is performed by the msVIPER function. It requires a GES, regulon object and
null model as arguments, and produces an object of class `msVIPER', containing the GES, regulon and
estimated enrichment, including the Normalized Enrichment Score (NES) and p-value, as output.

> mrs <- msviper(signature, regulon, nullmodel, verbose = FALSE)

The reults can be summarized by the generic function summary, which takes the msviper object and
either the number of top regulators to report or a speci�c set of regulators to list. The default for this
parameter is the top 10 master regulators (MRs).

> summary(mrs)

Regulon Size NES p.value FDR

TCF3 TCF3 298 3.30 0.000962 0.028

BCL6 BCL6 401 3.28 0.001030 0.028

KLF10 KLF10 254 3.25 0.001170 0.028

MYBL2 MYBL2 240 3.22 0.001300 0.028

TSC22D3 TSC22D3 333 -3.17 0.001520 0.028

HES1 HES1 360 -3.18 0.001470 0.028

ZNF32 ZNF32 291 -3.19 0.001420 0.028

ZMYND11 ZMYND11 452 -3.20 0.001380 0.028

ZNF101 ZNF101 301 -3.22 0.001300 0.028

KLF9 KLF9 337 -3.24 0.001190 0.028

A graphics representation of the results (msVIPER plot) can be obtained by the generic function plot

(shown in Fig. 1). It takes the msviper object and either, the number of top di�erentially active regulators,
or the names of the regulators to include in the plot as arguments. The default behavior is to plot the top
10 most di�erentially active MRs.

> plot(mrs, cex = .7)
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6.3.1 Leading-edge analysis

msVIPER infers the relative activity of a regulatory gene based on the enrichment of its most closely-
regulated targets on a given GES, but does not identify which are the target genes enriched in the GES.
Subramanian et al. [14] proposed a method called leading-edge analysis to identify the genes driving the
enrichment of a gene-set on a GES based on Gene Set Enrichment Analysis (GSEA). We implemented the
leading-edge analysis in the ledge function of the viper package. The function only has a `msviper' class
object as argument and generates an updated `msviper' object that now includes a `ledge' slot.

> mrs <- ledge(mrs)

> summary(mrs)

Regulon Size NES p.value FDR

TCF3 TCF3 298 3.30 0.000962 0.028

BCL6 BCL6 401 3.28 0.001030 0.028

KLF10 KLF10 254 3.25 0.001170 0.028

MYBL2 MYBL2 240 3.22 0.001300 0.028

TSC22D3 TSC22D3 333 -3.17 0.001520 0.028

HES1 HES1 360 -3.18 0.001470 0.028

ZNF32 ZNF32 291 -3.19 0.001420 0.028

ZMYND11 ZMYND11 452 -3.20 0.001380 0.028

ZNF101 ZNF101 301 -3.22 0.001300 0.028

KLF9 KLF9 337 -3.24 0.001190 0.028

Ledge

TCF3 SMARCA4, MCM7, TRAF3IP3, NDC80, + 110 genes

BCL6 KIF14, BUB1, DLGAP4, GINS1, + 217 genes

KLF10 TRIP13, NDC80, AHNAK, KIF2C, + 99 genes

MYBL2 SMARCA4, MCM7, TRIP13, GINS1, + 138 genes

TSC22D3 NOTCH2, RAD1, RBM19, MLEC, + 190 genes

HES1 CDK4, SHC1, STX7, MAN1A1, + 104 genes

ZNF32 GNA12, PLAG1, PSMB1, CARM1, + 145 genes

ZMYND11 ANKRD26, EXTL2, IGFBP4, CTSC, + 234 genes

ZNF101 SLC46A3, GCLM, TCEA2, HMOX2, + 128 genes

KLF9 IFIT1, LPAR1, NID1, STOM, + 158 genes

7 Beyond msVIPER

7.1 Bootstrap msVIPER

The e�ect of outlier samples on the gene expression signature can be reduced by the use of resampling
techniques. msVIPER is capable of performing the analysis with bootstrap if a matrix of bootstraped
signatures, instead of a vector, is given as signature argument. We implemened the function bootstrapTtest

in the viper package to generate this kind of bootstraped GES matrixes from the `test' and `reference'
datasets. The function produces 100 bootstrap interactions by default.

> signature <- bootstrapTtest(dset, "description", c("CB", "CC"), "N", verbose = FALSE)

> mrs <- msviper(signature, regulon, nullmodel, verbose = FALSE)

By default, msviper integrates the regulator activity results across all bootstraped iteration using the
average, but this can be easily modi�ed to use the median or mode values by the bootstrapmsviper function:

> mrs <- bootstrapmsviper(mrs, "mode")

Bootstraped msviper results can be displayed in the same way as non-bootstraped results (Fig. 2):

> plot(mrs, cex = .7)
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7.2 Shadow analysis

A regulator may appear to be signi�cantly activated based on its regulon's analysis, simply because several
of its targets may also be regulated by a bona �de activated TF (shadow e�ect)[4, 5]. This constitutes a sig-
ni�cant confounding issue, since transcriptional regulation is highly pleotropic, with individual targets being
regulated by many TFs. msVIPER and VIPER (section 8) address this issue by penalizig the contribution
of the pleotropically regulated targets to the enrichment score. However, a post-hoc shadow analysis, as
described in [4] can still be applied to the msVIPER results with the function shadow. This function takes
a class `msviper' object, and performs a shadow analysis on a selected number of top MRs indicated by the
argument regulators, which can be used to indicate either the enrichment p-value cuto�, the number of top
MRs, or the names of the MRs to consider in the analysis.

> mrshadow <- shadow(mrs, regulators = 25, verbose = FALSE)

As output, the shadow function produces an updated `msviper' object. The summary of it, generated by
the summary function, lists now not only the top MRs, but also the shadow pairs, in the form: MR1− >
MR2, indicating that part of the inferred MR2 ativity is due to co-regulation of MR2 target genes by MR1.

> summary(mrshadow)

$msviper.results

Regulon Size NES p.value FDR

BCL6 BCL6 401 3.18 0.00146 0.0709

MYBL2 MYBL2 240 3.12 0.00184 0.0709

WHSC1 WHSC1 257 3.07 0.00213 0.0709

TOP2A TOP2A 749 3.06 0.00222 0.0709

MYBL1 MYBL1 225 3.04 0.00239 0.0709

PTTG1 PTTG1 471 3.00 0.00273 0.0709

NR1D2 NR1D2 259 -3.00 0.00266 0.0709

TSC22D3 TSC22D3 313 -3.02 0.00255 0.0709

ZNF274 ZNF274 160 -3.04 0.00235 0.0709

ZMYND11 ZMYND11 452 -3.06 0.00220 0.0709

$Shadow.pairs

[1] "BCL6 -> TCF3" "BCL6 -> HES1" "MYBL2 -> ZNF32"

[4] "MYBL2 -> HES1" "MYBL2 -> ZNF23" "MYBL2 -> MEIS2"

[7] "KLF10 -> ZNF101" "KLF10 -> HES1" "KLF9 -> HES1"

[10] "ZNF32 -> HES1" "WHSC1 -> TSC22D3" "WHSC1 -> ZNF101"

[13] "WHSC1 -> IRF5" "WHSC1 -> KDM1A" "WHSC1 -> E2F2"

[16] "TSC22D3 -> HES1" "TSC22D3 -> ZNF23" "TOP2A -> CREB3L2"

[19] "TOP2A -> E2F2" "TOP2A -> HES1" "TOP2A -> HMGB2"

[22] "TOP2A -> MEIS2" "ZMYND11 -> IRF5" "ZMYND11 -> E2F2"

[25] "ZMYND11 -> HES1" "ZMYND11 -> MEIS2" "CREB3L2 -> E2F2"

[28] "PRKDC -> HES1" "IRF5 -> HES1" "PTTG1 -> E2F2"

[31] "ZNF274 -> E2F2" "ZNF274 -> ZNF23" "ZNF274 -> MEIS2"

[34] "NR1D2 -> HES1" "NR1D2 -> HMGB2" "HES1 -> HMGB2"

[37] "WHSC1 -> KLF10" "TSC22D3 -> KLF10" "PRKDC -> KLF10"

[40] "ZNF274 -> KLF10" "KDM1A -> KLF10" "ZNF23 -> KLF10"

[43] "HMGB2 -> KLF10" "MEIS2 -> KLF10" "ZNF32 -> KLF9"

[46] "PRKDC -> KLF9" "MYBL1 -> KLF9" "IRF5 -> KLF9"

[49] "ZNF274 -> KLF9" "WHSC1 -> ZNF32" "TSC22D3 -> ZNF32"

[52] "KDM1A -> ZNF32" "HMGB2 -> ZNF32" "PRKDC -> TCF3"

[55] "MYBL1 -> TCF3" "IRF5 -> TCF3" "PTTG1 -> TCF3"

[58] "KDM1A -> TCF3" "HMGB2 -> TCF3" "TOP2A -> ZNF101"
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[61] "PRKDC -> ZNF101" "MYBL1 -> ZNF101" "PTTG1 -> ZNF101"

[64] "ZNF274 -> ZNF101" "NR1D2 -> ZNF101" "PTTG1 -> CREB3L2"

[67] "ZNF274 -> CREB3L2" "HMGB2 -> CREB3L2" "MYBL1 -> PRKDC"

[70] "HMGB2 -> MYBL1" "ZNF274 -> PTTG1" "HMGB2 -> KDM1A"

[73] "NR1D2 -> E2F2"

7.3 Synergy analysis

To predict synergistic interactions between regulators we �rst compute the enrichment of co-regulons, de�ned
as the intersection between regulons. We expect that a combination of regulators will synergistically regulate
a gene expression signature if their co-regulon show a signi�cantly higher enrichment on the signature than
the union of the corresponding regulons[6]. Co-regulon analysis is implemented in the viper package by the
msviperCombinatorial function. It takes a `msviper' object as argument and computes the enrichment of all
co-regulons, generated from a selected number of MRs (indicated by the regulators parameter), on the GES.
As an example, we compute the enrichment of the co-regulons for the top 25 regulators,

> mrs <- msviperCombinatorial(mrs, regulators = 25, verbose = FALSE)

The comparison between the enrichment of the co-regulon versus the union of the corresponding regulons
(synergy analysis) is implemented by the function msviperSynergy, which requires only a `msviper' object
generated by msviperCombinatorial and the number of permutations used to compute the p-values, which
default is 1,000:

> mrs <- msviperSynergy(mrs, verbose = FALSE)

The output of msviperSynergy is un updated object of class `msviper' with plot (Fig. 3) and summary

methods. The output of summary will include in this case the enrichment results for the co-regulons and
the p-value for the predicted synergistic e�ect.

> summary(mrs)

Regulon Size NES p.value FDR Synergy

ZNF32--PRKDC ZNF32--PRKDC 30 4.74 2.17e-06 0.00138 1.48e-06

ZMYND11--PRKDC ZMYND11--PRKDC 38 4.46 8.22e-06 0.00138 6.55e-05

MYBL2--CREB3L2 MYBL2--CREB3L2 37 4.45 8.44e-06 0.00138 5.30e-06

MYBL2--TSC22D3 MYBL2--TSC22D3 35 4.45 8.52e-06 0.00138 7.21e-06

BCL6--ZNF32 BCL6--ZNF32 35 4.44 9.13e-06 0.00138 1.79e-05

ZNF32--CREB3L2 ZNF32--CREB3L2 27 4.34 1.45e-05 0.00146 4.83e-07

PRKDC--NR1D2 PRKDC--NR1D2 42 4.30 1.71e-05 0.00146 7.19e-07

KLF9--HES1 KLF9--HES1 41 4.28 1.87e-05 0.00146 1.43e-03

BCL6--TOP2A BCL6--TOP2A 104 4.27 1.99e-05 0.00146 1.12e-06

TCF3--ZMYND11 TCF3--ZMYND11 31 4.26 2.03e-05 0.00146 3.95e-04

> plot(mrs, 25, cex = .7)

8 Virtual Inference of Protein-activity by Enriched Regulon anal-
ysis (VIPER)

VIPER is the extension of msVIPER to single sample-based analysis. It e�ectively transforms a gene
expression matrix to a regulatory protein activity matrix. The simplest implementation of VIPER is based
on single-sample gene expression signatures obtained by scaling the probes or genes � subtracting the mean
and dividing by the standard devition of each row. A gene expression matrix or `ExpressionSet' object and
appropriate regulatory network are the minimum set of parameters required to perform a VIPER analysis
with the viper function.
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> vpres <- viper(dset, regulon, verbose = FALSE)

The viper function generates a matrix � or `ExpressionSet' object in case an `ExpressionSet' object is
given as input � of regulator's activity, containing 621 regulators x 211 samples in our example.

> dim(vpres)

Features Samples

621 211

The di�erential activity of regulatory proteins between groups of samples, for example between germinal
center B-cell and Naïve B-cells, can be obtained by any hypothesis testing statistical method, like for example
the Student's t-test:

> tmp <- rowTtest(vpres, "description", c("CB", "CC"), "N")

> data.frame(Gene = rownames(tmp$p.value), t = round(tmp$statistic, 2),

+ "p-value" = signif(tmp$p.value, 3))[order(tmp$p.value)[1:10], ]

Gene t p.value

TOP2A TOP2A 20.77 2.35e-11

WHSC1 WHSC1 17.44 2.13e-10

MYBL2 MYBL2 16.85 3.25e-10

ZNF274 ZNF274 -16.59 3.96e-10

BCL6 BCL6 16.46 4.36e-10

ZNF23 ZNF23 -16.43 4.47e-10

ZNF32 ZNF32 -16.36 4.70e-10

MORC2 MORC2 16.27 5.03e-10

ZNF101 ZNF101 -16.07 5.87e-10

MYB MYB 15.96 6.40e-10

8.1 Running VIPER with a null model

VIPER computes the normalized enrichment score (NES) analytically, based on the assumption that in the
null situation, the target genes are uniformly distributed on the gene expression signature. Because the
extensive co-regulation of gene expression taking place in the cell, this assumption never holds true, and
this is the reason why a null model based on sample permutations is used in msVIPER to estimate NES.
The same approach can also be used for VIPER, given that a set of samples is used as reference for the
analysis. We can generate a set of GESs based on a set of reference samples, and the corresponding null
model based on sample permutations, with the function viperSignature. It takes two matrixes as arguments,
the �rst one containing the expression data for all the `test' samples, and the second corresponding to the
`reference' samples. If an `ExpressionSet' object is used as input, the `reference' samples should be indicated
and the function will consider all the remaining samples as `test' ones. The number of permutations for the
null model can be de�ned by the per argument, whose default value is 1,000.

> vpsig <- viperSignature(dset, "description", "N", verbose = FALSE)

> vpres <- viper(vpsig, regulon, verbose = FALSE)

Because VIPER expresses activity for all the regulatory proteins in the same scale � normalized enrich-
ment score �, euclidean distance is an appropriate measure of similarity between samples and we can, for
example, perform an unsupervised hierarchical cluster analysis of the samples in a similar way we would do
it in the case of gene expression data (Fig. 4):

> pos <- pData(vpres)[["description"]] %in% c("M", "CB", "CC")

> d1 <- exprs(vpres)[, pos]

> colnames(d1) <- pData(vpres)[["description"]][pos]

> dd <- dist(t(d1), method = "euclidean")

> heatmap(as.matrix(dd), Rowv = as.dendrogram(hclust(dd, method = "average")), symm = T)
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We have developed, and included in the viper package, a function to compute the similarity between the
columns of a gene expression or VIPER-predicted activity matrix. It follows the same concept as the two-tail
Gene Set Enrichment Analysis (GSEA)[7], but it is based on the aREA algorithm[12]. The viperSimilarity

function takes an expression or activity matrix as input, and generates a matrix of similarity scores between
sample pairs, in the form of a `similarityDistance' class object.

> dd <- viperSimilarity(d1)

We can use the generic function scale to `scale' the similary matrix in the rage [-1; 1], and the resulting
matrix will be analogous to a correlation matrix. In this case, identical signatures will produce a similarity
score equal to 1, while perfectly reversed signatures will produce similarity scores equal to -1. Orthogonal
signatures will be characterized by similarity scores close to zero. As for other matrixes of similarity, the
`signatureDistance' class object can be transformed into a `distance' class object with the method as.dist,
which in turn can be used to perform, for example, cluster analysis of the samples (Fig. 5).

> heatmap(as.matrix(as.dist(dd)), Rowv = as.dendrogram(hclust(as.dist(dd),

+ method = "average")), symm = T)
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Figure 1: VIPER plot showing the projection of the negative (repressed, shown in blue color) and positive
(activated, shown in red color) targets for each TF, as inferred by ARACNe and correlation analysis when
reverse engineering the regulatory network (vertical lines resembling a bar-code), on the GES (x-axis), where
the genes in the GES were rank-sorted from the one most down-regulated to the one most upregulated in the
`test' vs `reference' conditions. The optional two-columns heatmap displayed on the right side of the �gure
shows the inferred di�erential activity (�rst column) and di�erential expression (second column), with the
rank of the displayed genes in the GES (shown all the way to the right).
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Figure 2: msVIPER plot showing the enrichment of transcription factor regulons on the germinal center
reaction gene expression signature using 100 bootstrap iterations.
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Figure 3: msVIPER plot showing the results for the enrichment of co-regulons on the germinal center reaction
gene expression signature.
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Figure 4: Heatmap showing the similarity between the samples (red indicated highly-similar samples) as
measured by euclidean distance between the VIPER-inferred transcriptional regulator's activity pro�les.
The samples (M: memory B-cells, CB: centroblasts, CC: centrocytes) were arranged according to average-
linkage hierarchical cluster analysis.
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Figure 5: Heatmap showing the similarity between the samples (red indicated highly-similar samples) as mea-
sured by viperSimilarity between the VIPER-inferred regulatory protein activity pro�les. The samples (M:
memory B-cells, CB: centroblasts, CC: centrocytes) were arranged according to average-linkage hierarchical
cluster analysis.
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