vsclust-package | VSClust provides a powerful method to run variance-sensitive clustering |
artificial_clusters | Synthetic/artificial data comprising 5 clusters |
averageCond | Calculate mean over replicates |
calcBHI | Calculate "biological homogeneity index" |
ClustComp | Function to run clustering with automatic fuzzifier settings (might become obsolete) |
cvalidate.xiebeni | Xie Beni Index of clustering object |
determine_fuzz | Determine individual fuzzifier values |
enrichSTRING_API | Enrichment Analysis via STRING REST API |
estimClust.plot | Plotting results from estimating the cluster number |
estimClustNum | Wrapper for estimation of cluster number |
mfuzz.plot | Plotting vsclust results |
optimalClustNum | Determine optimal cluster number from validity index |
pcaWithVar | Visualize using principal component analysis (both loadings and scoring) including the variance from the replicates |
PrepareForVSClust | Functions for running VSClust analysis |
PrepareSEForVSClust | Wrapper for statistical analysis for SummarizedExperiment object |
protein_expressions | Data from a typical proteomics experiment |
runClustWrapper | Wrapper for running cluster analysis |
runFuncEnrich | Functional Enrichment with STRING |
runVSClustApp | Run VSClust as Shiny app |
SignAnalysis | Unpaired statistical testing |
SignAnalysisPaired | Paired statistical testing |
SwitchOrder | arrange cluster member numbers from largest to smallest |
vsclust | VSClust provides a powerful method to run variance-sensitive clustering |
vsclust_algorithm | Run the vsclust clustering algorithm |