Adaptive Dropout Imputer (ADImpute)


[Up] [Top]

Documentation for package ‘ADImpute’ version 1.19.0

Help Pages

ArrangeData Data trimming
CenterData Data centering
CheckArguments_Impute Argument check to Impute()
ChooseMethod Method choice per gene
Combine Combine imputation methods
ComputeMSEGenewise Computation of MSE per gene
CreateArgCheck Argument check
CreateTrainData Preparation of training data for method evaluation
DataCheck_Matrix Data check (matrix)
DataCheck_Network Data check (network)
DataCheck_SingleCellExperiment Data check (SingleCellExperiment)
DataCheck_TrLength Data check (transcript length)
demo_data Small dataset for example purposes
demo_net Small regulatory network for example purposes
demo_sce Small dataset for example purposes
EvaluateMethods Imputation method evaluation on training set
GetDropoutProbabilities Get dropout probabilities
HandleBiologicalZeros Get dropout probabilities
Impute Dropout imputation using different methods
ImputeBaseline Impute using average expression across all cells
ImputeDrImpute Use DrImpute
ImputeNetParallel Network-based parallel imputation
ImputeNetwork Network-based imputation
ImputeNPDropouts Helper function to PseudoInverseSolution_percell
ImputePredictiveDropouts Helper function to PseudoInverseSolution_percell
ImputeSAVER Use SAVER
MaskData Masking of entries for performance evaluation
MaskerPerGene Helper mask function
network.coefficients Transcriptome wide gene regulatory network
NormalizeRPM RPM normalization
NormalizeTPM TPM normalization
PseudoInverseSolution_percell Network-based parallel imputation - Moore-Penrose pseudoinversion
ReadData Data read
ReturnChoice Wrapper for return of EvaluateMethods()
ReturnOut Wrapper for return of Impute()
SetBiologicalZeros Set biological zeros
SplitData Selection of samples for training
transcript_length Table for transcript length calculations
WriteCSV Write csv file
WriteTXT Write txt file