
IPAQ H3000 SERIES EXPANSION PACK

DEVELOPER GUIDE

NOTICE

The information in this document is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WAR-
RANTY OF ANY KIND. THE ENTIRE RISK ARISING OUT OF THE USE OF THIS INFOR-
MATION REMAINS WITH RECIPIENT. IN NO EVENT SHALL COMPAQ BE LIABLE FOR
ANY DIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE OR OTHER DAM-
AGES WHATSOEVER (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF
BUSINESS PROFITS, BUSINESS INTERRUPTION OR LOSS OF BUSINESS IFORMA-
TION), EVEN IF COMPAQ HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES AND WHETHER IN AN ACTION OF CONTRACT OR TORT, INCLUDING
NEGLIGENCE.

The limited warranties for Compaq products are exclusively set forth in the documentation
accompanying such products. Nothing herein should be construed as constituting a further
or additional warranty.

This document contains information protected by copyright. No part of this document may be
photocopied or reproduced in any form without prior written consent from Compaq Computer
Corporation.

© 2000 Compaq Computer Corporation.

Compaq and the Compaq logo Registered in the U.S. Patent and Trademark Office. iPAQ is a
trademark of Compaq Information Technologies Group, L.P. Microsoft, ActiveSync, Outlook,
Pocket Outlook, Expedia, AutoRoute Express, MapPoint, Windows, Windows NT, and the Win-
dows logo are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

Intel and StrongARM are trademarks of Intel Corporation.

Microsoft products are licensed to OEMs by Microsoft Licensing, Inc., a wholly owned subsid-
iary of Microsoft Corporation.

All other product names mentioned herein are may be trademarks and/or registered trademarks of
their respective companies.

iPAQ H3000 Series Expansion Pack Developer Guide

iPAQ H3000 Series Pocket PCs

7/2000.

175591-000

Table of Contents I-1

TABLE OF CONTENTS

Table of Contents___ I-1

Chapter 1: Overview_______________________________________ 1-1

Welcome __ 1-1

Symbols and Conventions__ 1-2

Chapter 2: Reference Documents _____________________________ 2-1

Order of Precedence ___ 2-1

Reference Materials __ 2-1

Software Tools Needed__ 2-2

Definition of Terms___ 2-2

Chapter 3: Electrical Interface________________________________ 3-1

Overview __ 3-1

Signals and Descriptions __ 3-5

Detailed Pin Description ___ 3-8

Summary of Subtle Electrical Points ________________________________ 3-19

DC Characteristics ___ 3-20

AC Characteristics ___ 3-23

Insertion/Removal ___ 3-25

Chapter 4: Software Interface________________________________ 4-1

Overview __ 4-1

EEPROM Data Structure ___ 4-2

Other Software considerations ____________________________________ 4-6

I-2 Table of Contents

Chapter 5: Battery, Power Supply and Charging___________________ 5-1

Overview __ 5-1

Battery and Power Supply__ 5-3

Battery Charger Implementation ___________________________________ 5-4

Extended Battery Implementation __________________________________ 5-6

Chapter 6: Mechanical Interface ______________________________ 6-1

Overview __ 6-1

Interface (Universal) Connector ____________________________________ 6-8

Chapter 7: Reference Schematics_____________________________ 7-1

Chapter 8: Regulatory Requirements and Approvals________________ 8-1

Suggested Agency Approvals _____________________________________ 8-1

Agency Acceptance Testing ______________________________________ 8-2

Chapter 9: Environmental Requirements ________________________ 9-1

Operational Environment __ 9-1

Environmentally Safe Materials ____________________________________ 9-2

Toxic Materials ___ 9-2

Overview 1-1

chapter 1

OVERVIEW

Welcome

This document describes the technical requirements for expansion packs on the Compaq
iPAQ H3000 Series Pocket PCs. The expansion pack includes an interface to the main
unit. Possible expansion packs include wireless communication, extended battery life,
high-end audio playback, PCMCIA/CF interface, GPS, video recorder and many non-
functional expansion packs to personalize the main unit.

Figure 1 (Main Unit Sliding into an Expansion Pack) illustrates the principle of a main
unit sliding onto an expansion pack (in this case, a CompactFlash expansion pack). The
expansion pack and main unit eventually make electrical connection through their respec-
tive universal connector plug and receptical located near the bottoms of the expansion
pack and the main unit, respectively.

1-2 Overview

FIGURE 1: Main Unit Sliding into an Expansion Pack

The intent of this document is to provide technical guidelines for all expansion packs to
result in a consistent and compatible interface to the end-user. It is not the intent of this
document to dictate all possible specifications and requirements. Specifications are given
throughout the document, but some are omitted to allow flexibility for each expansion
pack.

Symbols and Conventions

Some or all of the following format conventions may be used in this guide to dis-
tinguish elements of text:

• Names of menus, commands and icons are shown in bold type as they appear on the
display, for example, Settings, Power.

NOTE: Text set off in this manner presents commentary, sidelights, or interesting points of infor-
mation.

Text set off in this manner indicates that failure to follow directions could result in

bodily harm or loss of life.

Text set off in this manner indicates that failure to follow directions could result in
damage to equipment or loss of information.

!

Reference Documents 2-1

chapter 2

REFERENCE DOCUMENTS

Order of Precedence

In the event of a conflict between this specification and references cited herein, this speci-
fication shall take precedence.

Reference Materials

Table 1: Reference Materials

Reference Title Location/Author

Intel StrongARM SA-1110
Microprocessor Advanced

Developer’s Manual

Intel Corporation
http://developer.intel.com/design/strong/manuals/

CF+ and CompactFlash Speci-
fication Revision 1.4

http://www.compactflash.org

PC Card Standard
Revision 2.1

http://www.pc-card.com

8-bit AVR® Microcontroller
with 4K Bytes In-System

Programmable Flash

Atmel Corporation
http://www.atmel.com/atmel/products/prod200.htm

Microsoft OEM
Adaptation Kit

Microsoft SDK

Programming Windows CE Douglas Boling

Essential Windows CE
Application Programming

Robert Burdick

http://developer.intel.com/design/strong/manuals/
http://www.compactflash.org
http://www.pc-card.com
http://www.atmel.com/atmel/products/prod200.htm

2-2 Reference Documents

Software Tools Needed

1. Microsoft Embedded Visual C++ (New for Windows CE, Based on Visual Studio 6.0)

2. Microsoft Embedded Visual BASIC (New for Windows CE, Based on Visual Studio
6.0)

3. Microsoft SDK

4. Development Machine including:

• Pentium II processor

• Windows NT SP5 or Windows 2000

• CD-ROM drive

Definition of Terms

This document describes Compaq's iPAQ H3000 series of products and expansion pack
options. The term "main unit" refers to the iPAQ H3000 series product.

This document describes the batteries in the main unit and the expansion pack. The term
main battery refers to the battery in the main unit. The term "extended battery" refers to
the battery in the expansion pack.

In some parts of the text, the terms “EEPROM” and “NVRAM” are used interchangeably.
Although technically not the same type of IC, both terms refer to the EEPROM on the SPI
bus of the expansion pack.

The expansion pack connectors that electrically mate the main unit and the expansion
pack are sometimes referred to as “universal connectors”. The plastic portion of the
expansion pack that wraps around the main unit is called a “sleeve” or “base part”. The
plastic portion of the expansion pack that protrudes from the back is called a “turtle shell”
or “cover part”.

Electrical Interface 3-1

chapter 3

ELECTRICAL INTERFACE

Overview

The 100-pin electrical connection between the main unit and the expansion pack includes
pins for two PCMCIA/CF devices, a 16/32-bit static memory/I/O interface, battery expan-
sion, an SPI serial bus and other miscellaneous functions. The interface leverages the
capability of the processor in the main unit. Figure 2 (Expansion Pack Interface on Main
Unit) and Figure 3 (Expansion Pack Interface on Expansion Pack) show block diagrams of
the interface on the main unit and a possible implementation of an expansion pack, respec-
tively.

The address, data and control signals from the processor are connected to the expansion
pack through isolation buffers. The isolation buffers are tri-stated when the system is in
idle mode or not accessing the expansion pack. It is recommended that the expansion pack
handle the tri-stating bus without excessive current draw (one recommendation is to
include light pull-down or pull-up resistors on the signals). The address bus, A[25:0] and
data bus, D[31:0], are used for parallel interfacing to PCMCIA/CF, static memory and I/O
devices. The various control signals for PCMICA/CF, static memory and I/O enable dif-
ferent functions on the expansion pack. A portion of the address bus, A[25: 11], is multi-
plexed with most of the upper bytes of the data bus, D[30:16], to provide a 32-bit data bus
interface. The 32-bit interface can perform these accesses only with an 11-bit address. The
32-bit data bus capability provides faster access for expansion packs that require high data
throughput. Typically, the interface accesses 16-bit data with a 26-bit address bus.

The expansion pack interface supports two PCMCIA/CF devices in the expansion pack. If
an expansion pack has two PCMCIA or CF devices, it must include buffers and control
logic to isolate the signals.

3-2 Electrical Interface

The interface also supports static memory and I/O accesses through the separate control
signals. The control signals include chip selects to access different memory banks on the
expansion packs. Each memory bank has specific types of cycles that it supports (i.e.
flash, ROM, I/O, etc.) Figure 4 (Expansion Pack Memory Map) shows the different mem-
ory banks the main unit can access on the expansion pack.

The interface also includes an SPI serial bus that provides serial access for functions on
the expansion pack such as identification, battery monitoring and charge control. Each
expansion pack must include an SPI EEPROM to identify itself and its features to the
main unit.

FIGURE 2: Expansion Pack Interface on Main Unit

The main unit can supply up to 300 mA at 3.3V to an expansion pack. If an expansion
pack requires more than 300 mA peak or requires a voltage other than 3.3V, it must
include its own battery, power supply and/or charging circuit. The interface includes vari-
ous pins to control the charging and power supplies between the main unit and expansion
pack.

Processor

Power Supply/ Battery
& Charging Control

Expansion
Pack

Connection

D [31:0]

A [25:0]

Memory IO
Control

PCMCIA
Control

D [31,15:0]

D[30:16] or A[25:11]

A [10:0]

Memory IO Control

PCMCIA Control

SPI

SPI

Buffer
Control

Control

Logic

UART

Main Unit

Expansion

 Pack

Micro-
controller

Electrical Interface 3-3

The interface also includes audio line-out signals, A_OUTR and A_OUTL, from the main
unit. These signals correspond directly to the audio signals used for the speaker and head-
phone outputs of the main unit. If an expansion pack uses these signals it must amplify
them for an expansion pack audio out function and connect the A_GND signal to the ana-
log ground of the expansion pack.

The following sections in this document and the Intel StrongARM SA-1110 Microproces-
sor Advanced Developer's Manual provide more details on the interface.

FIGURE 3: Expansion Pack Interface on Expansion Pack (possible implementation)

Power Supply/
Battery &

Charging Control

SPI

Expansion
Pack

Connection

Flash or ROM
Memory

I/O or DSP
Device

CF/PCMCIA
Slot

CF/PCMCIA
Slot

Battery
Monitor &
Control

UART (s)

Buttons, etc.

Socket 0

Socket 1

Buffer

A[25:0]

D[15:0]

A[25:0]

Memory Control

D[15:0]

A[25:0]

D[15:0]

To other devices

A[25:0]

D[15:0]

S0_A[25:0]

S0_D[15:0]

S0_Control

S1_A[25:0]

S1_D[15:0]Buffer

EEPROM

S1_Control

Control

Logic Buffer Control

PCMCIA
Control

3-4 Electrical Interface

FIGURE 4: Expansion Pack Memory Map

Electrical Interface 3-5

Signals and Descriptions

The following table defines the signal names and pin out for the electrical interface
between the main unit and any expansion pack.

Table 2: Expansion Pack Pin Out

Pin # Name Type Description

1 CC_ETM P/G Trickle charge current pin

2 PCM_RESET I PCMCIA Reset

3 VS_EBAT O Extended battery sense

4 RD/WR# I Memory&I/O Read/Write#

5 GND P/G Main unit ground

6 RDY O Variable Latency I/O ready signal

7 CEN_ETM OC Charge current enable

8 RESET I GP reset for expansion pack

9 INT_OP O Expansion Pack Interrupt

10 CD_SCKT0# O PCMCIA 1st sckt detect

11 PSKTSEL I PCMCIA Socket Select

12 PCM_CE2# I PCMCIA card enable

13 PCM_IORD# I PCMCIA IO Read

14 PCM_IOWR# I PCMCIA IO Write

15 D11 I/O PCMCIA/Memory Data

16 D12 I/O PCMCIA/Memory Data

17 D13 I/O PCMCIA/Memory Data

18 D14 I/O PCMCIA/Memory Data

19 D15 I/O PCMCIA/Memory Data

20 A17/D22 I/O PCM/Mem Address/Data

21 GND P/G Main unit ground

22 A18/D23 I/O PCM/Mem Address/Data

23 A19/D23 I/O PCM/Mem Address/Data

24 A20/D25 I/O PCM/Mem Address/Data

25 A21/D26 I/O PCM/Mem Address/Data

26 A22/D27 I/O PCM/Mem Address/Data

27 A23/D28 I/O PCM/Mem Address/Data

28 A24/D29 I/O PCM/Mem Address/Data

3-6 Electrical Interface

29 A25/D30 I/O PCM/Mem Address/Data

30 D08 I/O PCMCIA/Memory Data

31 GND P/G Main unit ground

32 D09 I/O PCMCIA/Memory Data

33 D10 I/O PCMCIA/Memory Data

34 D00 I/O PCMCIA/Memory Data

35 D01 I/O PCMCIA/Memory Data

36 D02 I/O PCMCIA/Memory Data

37 D31 I/O PCMCIA/Memory Data

38 PCM_REG# I PCMCIA IO cycle

39 PCM_WAIT# O PCMCIA Wait

40 SPI_DI I SPI Data In to expansion pack

41 SPI_CS# I SPI Chip Select

42 MCS2# I Memory Chip Select

43 MWE# I Memory Write Enable

44 MOE# I Memory Output Enable

45 GND P/G Main unit ground

46 EBAT_ON O Ext. battery power OK

47 OPT_ON I Expansion pack enable

48 V_ADP P/G Positive of AC adapter

49 V_EBAT P/G Positive of ext. battery

50 ODET2# O Expansion pack detect

51 ODET1# O Expansion pack detect

52 Reserved

53 DQM3 I Memory & I/O byte enable

54 DQM0 I Memory & I/O byte enable

55 VDD P/G Main unit 3.3V power

56 DQM1 I Memory & I/O byte enable

57 BATT_FLT O Extended battery fault

58 PCM_IRQ#0 O PCMCIA sckt 0 RDY/IRQ#

59 PCM_CE1# I PCMCIA card enable

Table 2: Expansion Pack Pin Out

Pin # Name Type Description

Electrical Interface 3-7

60 PCM_OE# I CF Output enable pin

61 PCM_WE# I PCMCIA write enable

62 CD_SCKT1# O PCMCIA sckt 1 detect

63 PCM_IRQ#1 O PCMCIA sckt 1 RDY/IRQ#

64 D03 I/O PCMCIA/Memory Data

65 D04 I/O PCMCIA/Memory Data

66 GND P/G Main unit ground

67 D05 I/O PCMCIA/Memory Data

68 D06 I/O PCMCIA/Memory Data

69 D07 I/O PCMCIA/Memory Data

70 A10 I PCMCIA/Memory Address

71 A11/D16 I/O PCM/Mem Address/Data

72 A09 I PCMCIA/Memory Address

73 A08 I PCMCIA/Memory Address

74 A13/D18 I/O PCM/Mem Address/Data

75 A14/D19 I/O PCM/Mem Address/Data

76 GND P/G Main unit ground

77 A16/D21 I/O PCM/Memory Address/Data

78 A15/D20 I/O PCM/Mem Address Data

79 A12/D17 I/O PCM/Mem Address/Data

80 A07 I PCMCIA/Memory Address

81 A06 I PCMCIA/Memory Address

82 A05 I PCMCIA/Memory Address

83 A04 I PCMCIA/Memory Address

84 A03 I PCMCIA/Memory Address

85 A02 I PCMCIA/Memory Address

86 GND P/G Main unit ground

87 A01 I PCMCIA/Memory Address

88 A00 I PCMCIA/Memory Address

89 PCM_WP O PCMCIA WP/IOIS16#

90 A_OUTR I Right audio channel

Table 2: Expansion Pack Pin Out

Pin # Name Type Description

3-8 Electrical Interface

Detailed Pin Description

91 A_OUTL I Left audio channel

92 A_GND P/G Analog GND for audio ONLY

93 Reserved

94 MCS4# I Memory chip select

95 VDD P/G Main unit 3.3V power

96 SPI_SCK I SPI Clock Signal

97 MCHG_EN I Main battery recharging

98 V_ADP P/G Positive of AC adapter

99 V_EBAT P/G Positive of ext. battery

100 SPI_DO O SPI Data Out from expansion pack

NOTE: Signal type referenced to expansion pack. I = Input; O = Output; I/O = Bidirectional; P/G = Power, ground, bat-
tery or charging; OC = Open Collector. The “#” symbol denotes active low signal.

Table 3: PCMCIA/CF/Memory Pin Description

Signal Name DIR Pin # Description

A10 - A00 (CF mode) I See above PCMCIA/CF/Memory address pins used to address card or
expansion pack in Memory, I/O and True IDE.

A25 - A11
 (PCMCIA/Memory mode)

PCMCIA or memory address pins used to access devices
in the expansion pack. These pins are shared with
D31:D16.

D15 - D00 (16-bit mode) I/O See above Data pins used for 16-bit accesses in standard CF/PCM-
CIA, memory or I/O modes.

D31 - D16 (32-bit mode) I/O See above Data pins for special accesses 32-bit read and write
accesses in PCMCIA or I/O modes. These pins are shared
with A25:A11.

PCM_CE1#, PCM_CE2# I 59, 12 PCMCIA/CF card enable for 8 or 16-bit select in memory
and I/O mode. Functions as CS0# and CS1# in IDE mode.

CD_SCKT0#,
CD_SCKT1#

O 10, 62 PCMCIA/CF card detects pins for devices/slots 0 and 1.
CD_SCKT0# represents logical OR of CD1# and CD2# of
PCMCIA/CF pins for device/slot 0.

PCM_IORD# I 13 PCMCIA/CF pin used in I/O and IDE modes as a read
strobe.

PCM_IOWR# I 14 PCMCIA/CF pin used in I/O and IDE modes as a write
strobe.

Table 2: Expansion Pack Pin Out

Pin # Name Type Description

Electrical Interface 3-9

PCM_OE# I 60 PCMCIA/CF pin used as an output-enable strobe.

PCM_IRQ#0, PCM_IRQ#1 O 58, 63 PCMCIA/CF pins used in memory mode to determine the
card status for transfers. Used as an interrupt signal in I/O
and IDE modes. IRQ#0 is for device/slot 0.

PCM_RESET I 2 PCMCIA/CF reset pin.

PCM_REG# I 38 PCMCIA/CF pin used to distinguish between common and
register memory in memory mode.

PCM_WAIT# O 39 PCMCIA/CF pin to insert wait states in memory and I/O
mode. Used as IORDY in True IDE mode. If there are two
sockets in an expansion pack, the expansion pack must
logically OR the WAIT# signals from each socket.

PCM_WE# I 61 PCMCIA/CF pin used for write strobing into the CF card
in memory and I/O modes.

PCM_WP O 89 PCMCIA/CF pin used as a write protect in memory mode.
Used as IOIS16# in I/O and IDE modes for 16-bit opera-
tion. If there are two sockets in an expansion pack, the
expansion pack must logically OR the WP/IOIS16# sig-
nals from each socket.

RDY O 6 Ready signal for slow expansion pack devices to insert
wait states on the variable latency I/O port.

RD/WR# I 4 Read/Write pin for the variable latency I/O port.

MCS[4,2] I 94, 42 Memory bank chip select from the processor to use
address and data pins for memory or I/O cycles.

DQM[3,1:0] I 53, 56, 54 Byte enables for the 32-bit data bus of the static memory
and variable latency I/O port.

MOE# I 44 Memory bank output enable from the processor to use
address and data pins for high bandwidth across the expan-
sion pack.

MWE# I 43 Memory bank write enable from the processor to use
address and data pins for high bandwidth across the expan-
sion pack.

Table 4: Serial Bus Interface Pin Description

Signal Name DIR Pin # Description

SPI_SCK I 96 Clock pin for the SPI interface.

SPI_DI I 40 Data input for the SPI interface. The pin is driven by the
main unit for data written to the expansion pack.

SPI_DO O 100 Data output pin for the SPI interface. the pin is driven by
the expansion pack for data written to the main unit.

SPI_CS# I 41 Chip select pin for the SPI interface.

Table 3: PCMCIA/CF/Memory Pin Description

Signal Name DIR Pin # Description

3-10 Electrical Interface

Table 5: Miscellaneous Signal Pin Descriptions

Signal Name DIR Pin # Description

ODET1#, ODET2# O 51, 50 Expansion pack detect signals. These signals generate
an interrupt when the expansion pack is inserted or
removed.

BATT_FLT O 57 Active-high signal that notifies the main unit that the
expansion pack battery is below its critical low level.

INT_OP O 9 Expansion pack general-purpose interrupt used for
various functions such as FIFO maintenance, polling,
etc.

V_ADP P/G 48, 98 Positive DC voltage from the AC adapter. Power can
come from the main unit or expansion pack.

V_EBAT P/G 49, 99 Positive battery voltage from the expansion pack to
the main unit.

VS_EBAT O 3 Positive terminal sense line for the extended battery.

OPT_ON I 47 Notifies the expansion pack that it can run at full
power.

MCHG_EN I 97 Notifies the expansion pack battery charger to limit its
current.

EBAT_ON O 46 Notifies the main unit that the extended battery has
sufficient energy to run the main unit.

CC_ETM P/G 1 Charge current source from the expansion pack
extended battery to trickle charge the main battery.

CEN_ETM OC 7 Signal from the expansion pack that enables the
extended battery to trickle charge the main battery.

RESET I 8 General purpose reset for the expansion pack.

PSKTSEL I 11 PCMCIA/CF socket select pin for expansion packs
with two sockets.

A_OUTR, A_OUTL I 90, 91 Line out right and left channels from the main unit
audio output.

Reserved TBD 52, 93 Reserved for future use.

Electrical Interface 3-11

PCMCIA/CF Signals

The interface includes PCMCIA support for up to two PCMCIA/CF sockets or devices.
This 16-bit interface supports 8- and 16-bit PC cards and handles common memory, I/O
and attribute memory accesses. The processor does not support the PCMCIA DMA proto-
col or CardBus.

The PCMCIA memory space (Figure 5) is divided into eight partitions, the four for each
card slot are common memory, I/O, attribute memory and a reserved space.

The expansion pack interface does not include the VS[1:0]#, VPP[2:1], BVD[2:1] and
INPACK# signals. If an expansion pack requires these signals it must implement them on
the expansion pack. The VS[1:0]# and VPP[2:1] signals are used by the expansion pack
power supply to control the power supplied to the PCMCIA/CF socket(s). There is no pro-
vision on implementing BVD[2:1] or INPACK# on the expansion pack due to the lack of
support on the processor.

Embedded inside the PCMCIA interface are the CompactFlash (CF) signals. Similar to the
PCMCIA support, the CF implementation does not include VS[1:0]# and INPACK#. It
also does not support CSEL# which is unique to CF. Again, if an expansion pack requires
these signals it must implement them on the expansion pack.

The buffers between the processor on the main unit and the electrical components on the
expansion pack are tri-stated during idle mode. If buffers are required to isolate a PCM-
CIA or CF slot from other component on the expansion pack, it is recommended that the
buffers are disabled when the slot is not accessed to minimize power consumption. One
possibility is to enable the buffers to the slot with the PCM_CE[2:1]# from the processor
and the CD[2:1]# signals from the PCMCIA or CF slot.

3-12 Electrical Interface

FIGURE 5: PCMCIA Memory Space

If an expansion pack includes more than one PCMCIA or CF socket, additional logic is
required on the expansion pack for certain signals (please refer to the Intel StrongARM
1110 Microprocessor Advanced Developer's Manual). The signals PCM_WAIT# and
PCM_WP are outputs from each PCMCIA/CF socket and are logically connected to form
one signal for the expansion pack interface. In similar fashion, the CD[2:1]# signals from
each socket are logically connected to form one CD signal, CD_SCKT0# and
CD_SCKT1#, for each socket on the expansion pack interface. The interface includes the
PSKTSEL signal from the processor to determine which PCMCIA/CF socket is accessed.

The processor and the expansion pack interface also support a 32-bit version of the PCM-
CIA interface (not CardBus) that is not in the PC card specification. Since the 32-bit ver-
sion of PCMCIA is outside the scope of the PC card specification, it is only intended for
use with custom-designed logic. During the 32-bit operation, if any read or write is per-
formed, the entire 32-bit bus is read or written. The 32-bit accesses must align with "16-
bit" address space as opposed to "8-bit" address space. Due to a limited number of pins on
the expansion pack, the 32-bit operation only has an 11-bit address bus.

All programming registers and other information about the PCMCIA/CF interface are
found in the Intel StrongARM 1110 Microprocessor Advanced Developer's Manual.

Socket 0 I/O Space

Socket 0 Attribute Space

Socket 0 Memory Space

Socket 1 I/O Space

Socket 1 Attribute Space

Socket 1 Memory Space

Reserved

Reserved

0h2000 0000

0h2400 0000

0h2800 0000

0h2C00 0000

0h3000 0000

0h3400 0000

0h3800 0000

0h3C00 0000

Electrical Interface 3-13

Memory and I/O Signals

The expansion pack interface includes a static memory and I/O interface that uses the
same address and data buses as PCMCIA/CF. The static memory and I/O control signals
differentiate the accesses from PCMCIA/CF with chip select signals. The chip select sig-
nals, MCS[4,2]#, correspond directly to the signals from the processor. MCS[4,2]# sup-
port ROM or flash memory, with MCS4# also supporting variable latency I/O. The data
bus is 16-bit maximum for memory cycles and 32-bit maximum for variable latency I/O.
In 16-bit designs, address bit 0 (A[0]) is not used and in 32-bit designs, address bits 1 and
0 (A[1:0]) are not used.

The variable latency I/O interface differs from static memory in that it allows the use of
the data ready input signal, RDY, to insert a variable number of wait states. The variable
latency I/O interface uses DQM[3,1:0] as byte enables, where DQM[3] corresponds to the
MSB. The variable latency portion of the interface allows the main unit to access slower
devices such as micro-controllers and DSPs. A micro-controller on the expansion pack
can provide functions such as a UART, battery monitoring, button control, etc.

Other memory signals, MWE# and MOE#, are implemented to complete the static mem-
ory and I/O interface.

The SA-1110 includes registers that control the timing of the I/O accesses. Please refer to
the Intel StrongARM 1110 Microprocessor Advanced Developer's Manual for more details
and timing diagrams.

Serial Bus

The expansion pack interface includes pins for the Motorola serial peripheral interface
(SPI) for system management, identification and other low throughput functions. The
master SPI device is a micro controller, an Atmel AT90LS4434, on the main unit that
interfaces to a single slave SPI device on the expansion pack. The expansion pack inter-
face includes the four standard SPI signals; SPI_DI, SPI_DO, SPI_CS# and SPI_SCK.

The SPI bus is primarily used to identify expansion packs upon insertion via an EEPROM
on the expansion pack. The EEPROM contains configuration, ID, control information and
optionally contains bootstrap programs and OEM information.

It is also possible to use SPI on the expansion pack for low bandwidth data transmission
for micro controllers, battery management, etc. A maximum of two devices is allowed on
the SPI bus of an expansion pack. The SPI_CS# signal goes directly to the EEPROM and
an inverted version of SPI_CS# goes to the other device. Figure 6 (SPI Directly to
EEPROM) and Figure 7 (Multiple Devices Communicating on SPI Interface) show the
two possible implementations of the SPI interface on the expansion pack.

Caution is required when using the variable latency I/O feature due to the fact it

can hold the system bus for excessive amounts of time. If this occurs, it can
adversely impact the performance of the main unit.

3-14 Electrical Interface

The Software Interface (Chapter 4) portion of this specification provides more details on
the EEPROM contents and communication over the SPI bus.

FIGURE 6: SPI Directly to EEPROM

FIGURE 7: Multiple Devices Communicating on SPI Interface

Processor Atmel
AT90LS4434

UART

Expansion Pack Interface

EEPROM
SPI

Main Unit Expansion Pack

Serial Port #1

Processor Atmel
AT90LS4434

UART

Expansion Pack Interface

Microcontroller

SPI

Main Unit Expansion
 Pack

Serial
Port #1

EEPROM

Battery, P/S,
Charger, etc.

Buttons, Other
Functions, etc.

DI, DO, CLK

SPI_CS#

Electrical Interface 3-15

Battery Signals

The battery signals are primarily designed to support a lithium-ion or lithium polymer
rechargeable battery in the expansion pack. If an expansion pack does not include a bat-
tery, it should not connect any of the battery signals (V_EBAT, V_ADP, MCHG_EN,
BATT_FLT, EBAT_ON, VS_EBAT, CEN_ETM and CC_ETM). If an expansion pack
uses a different battery technology or does not want to share AC adapter charging with the
main unit, it should not use any of the charging signals on the interface (V_ADP and
MCHG_EN). Please read the following paragraphs, Chapter 5 (Battery, Power Supply and
Charging) and the DC Characteristics and AC Characteristics carefully for guidelines.

When using a lithium-ion or lithium polymer battery in the expansion pack, the battery
signals provide the ability to charge the expansion pack battery simultaneously with the
main unit battery and optionally, extend the battery life of the main unit. The batteries in
the main unit and the expansion pack are charged from multiple sources. The user can
charge the batteries from the DC jack on the main unit, the DC jack on the expansion pack
and through the synchronizing serial connector on the main unit. This allows the main unit
and the expansion pack to charge their respective batteries separately or at the same time.

The V_ADP signals are the positive DC voltage from the AC adapter to charge the batter-
ies. The V_ADP signals can be sourced from the main unit or the expansion pack, since
the AC adapter can be plugged into either one. When charging is sourced from the cradle
through the serial connector, the main unit passes the charge to the expansion pack. The
charging circuits are designed for lithium-ion or lithium polymer batteries, so if an expan-
sion pack uses another battery technology it should not connect the V_ADP signals. Also,
if an expansion pack does not want to share AC adapter charging with the main unit it
should not connect the V_ADP signals.

MCHG_EN is an active-high signal from the main unit to notify the expansion pack that
the main battery is charging and it must limit its charging current to prevent blowing the
fuse in the AC adapter. Typically, the expansion pack should limit its charging current by
one-third. If MCHG_EN is low, then the expansion pack can charge its battery at the full
charge current. Again, MCHG_EN is used only with lithium-ion or lithium polymer bat-
teries. If an expansion pack uses another battery technology or does not use the V_ADP
signals it should not connect MCHG_EN.

The V_EBAT signals are the positive DC voltages from the expansion pack battery to the
main unit power supply that provide extended battery life. Generally, the only case the
V_EBAT pins are connected is for an expansion pack that is specifically designed as an
extended battery. It is recommended that an extended battery have a minimum capacity of
1000 maH.

3-16 Electrical Interface

The CC_ETM and CEN_ETM signals provide a mechanism for the expansion pack bat-
tery to provide a trickle charge to the main battery. It is optional for an expansion pack to
implement the trickle charge feature. If the feature is not implemented, an expansion pack
should not connect CC_ETM and CEN_ETM. The CC_ETM signal provides trickle
charge from the expansion pack battery to the main battery. The CEN_ETM is an active-
high, open-collector signal that enables the trickle charge from the expansion pack battery
to the main battery. The expansion pack must pull this signal up to the extended battery
voltage through a resistor (220kΩ to 470kΩ). The expansion pack should pull CEN_ETM
low when the AC adapter is plugged in or when the expansion pack battery charge is too
low. A current limiter, such as MAX890L or MAX893L, must exist on the expansion pack
between its battery and the CC_ETM pin to limit the trickle charge.

VS_EBAT is the positive terminal sense line for the battery in the expansion pack. The
main unit uses it to determine if it should trickle charge the main battery with the extended
battery. If VS_EBAT has a higher voltage than the main battery, CEN_ETM is driven by
the expansion pack to determine if the trickle charge is provided. If VS_EBAT has a lower
voltage than the main battery, the main unit pulls CEN_ETM (open collector) low and dis-
ables the trickle charge.

EBAT_ON is an active high signal driven by the expansion pack to notify the main unit
that the expansion pack battery has sufficient charge to power the main unit (>3.72V). It is
only connected when the expansion pack battery is designed to provide extended battery
life to the main unit.

BATT_FLT is an active high signal that notifies the main unit that the expansion pack bat-
tery has reached its critical low voltage level, typically 3.4V. The main unit then proceeds
to shutdown the expansion pack by forcing OPT_ON inactive (low).

More details are given in Chapter 5 (Battery, Power Supply and Charging), the DC Char-
acteristics and the AC Characteristics on the battery and charging signals.

Electrical Interface 3-17

Power and Ground Signals

The interface includes seven ground signals and two 3.3V signals. The maximum current
an expansion pack can draw from the VDD pins is 300 mA. If an expansion pack requires
more than 300 mA peak or requires a voltage other than 3.3V, it must include its own
power supply and/or battery and charging circuit. The power and ground pins protrude
0.5 mm farther than the other signals on the main unit connector. This provides power and
ground to the expansion pack before the other signals make a connection.

When an expansion pack is first connected to the main unit, the expansion pack can only
draw approximately 10 mA from the VDD pins for identification. Once the main unit
asserts OPT_ON, an expansion pack can draw the full 300 mA from the main unit. Table 6
(Expansion Pack Current consumption) shows the maximum peak current consumption
for an expansion pack given each state of OPT_ON.

The expansion pack should use the power, ground and OPT_ON signals to detect whether
it is connected to the main unit, so it can enable the power supply and other functions on
the expansion pack.

Table 6: Expansion Pack Current Consumption

OPT_ON = Low OPT_ON = High

Expansion Pack Current
Consumption from VDD

Approx. 10 mA 300 mA (max)

A_GND is the ground associated with the analog, audio portion of the main unit. It
is connected only to expansion packs that use the A-OUTR and A_OUTL signals
and should route directly to the analog, audio section of the expansion pack. It is

very important not to couple digital noise into A_GND (i.e., connect A_GND to digi-
tal ground). If the audio signals are not used by an expansion pack, A_GND is not
connected.

3-18 Electrical Interface

Miscellaneous Signals

The expansion pack interface also includes other signals to provide insertion/removal
detection, reset and interrupt functions. INT_OP is an active high signal that allows the
expansion pack to interrupt the processor for various functions such as event notification,
data transfer, etc. This signal is pulled down on the main unit. Please refer to Section 4,
Software Interface, for more details on the interrupt service routine and support.

The RESET signal is a general-purpose reset signal from the main unit and is an active
high signal. RESET is only active for 100ms (default setting) after OPT_ON is asserted
when the expansion pack is inserted. Please refer to Chapter 4 (Software Interface) for
details on programming the length of RESET. RESET is not active any other time.

A_OUTR and A_OUTL are line out signals from the right and left channels of main unit's
audio codec.

The OPT_ON signal notifies the expansion pack that it can turn on and run at full power.
When an expansion pack is first inserted, OPT_ON is low and the expansion pack can
only draw a minimal amount of current for identification. When the OPT_ON signal is
asserted, the expansion pack can draw the maximum allowed current from the VDD pins.

The ODET[2:1]# signals notify the main unit when an expansion pack is inserted or
removed. These signals are pulled high (3.3V) on the main unit and the expansion pack
should tie them low. Upon insertion, the signals interrupt the processor and the routine
goes through the process of identifying the expansion pack through the SPI signals. Upon
removal, the signals go high and again interrupt the processor to notify the system.

The ODET[2:1]# pins on the mating connector are 0.5 mm shorter than normal I/O pins
and 1.0 mm shorter than the power pins. This implementation ensures that the expansion
pack is fully inserted before the main unit communicates with the expansion pack.

Electrical Interface 3-19

Summary of Subtle Electrical Points

This section summarizes subtle but critical points to the electrical interface into one sec-
tion. Table 11 (Signal Conditioning Requirements) also shows signal conditioning require-
ments for the interface.

Bus State in Idle Mode

The buffers between the processor on the main unit and the electrical components on the
expansion pack are tri-stated during idle mode. All digital logic that connects to the inter-
face should have proper signal conditioning to prevent erroneous logic levels and/or
excessive power consumption. Light pull-down or pull-up resistors (e.g. 100kΩ) are a
possible solution to keep the bus in a known state during idle mode.

Variable Latency I/O Mode

If an expansion pack utilizes the variable latency I/O mode, special caution is required due
to the fact it can hold the system bus for excessive amounts of time. If this occurs, it can
adversely impact the performance of the main unit.

A_GND Usage

A_GND is the ground associated with the analog, audio portion of the main unit. It is only
connected to expansion packs that use the A_OUTR and A_OUTL signals and should
route directly to the analog, audio section of the expansion pack. It is very important not to
couple digital noise into A_GND (i.e. connect A_GND to digital ground). If the audio sig-
nals are not used by an expansion pack, A_GND is not connected.

Battery Signals

The battery signals are primarily designed to support a lithium-ion or lithium polymer
rechargeable battery in the expansion pack. If an expansion pack does not include a bat-
tery, none of the battery signals (V_EBAT, V_ADP, MCHG_EN, BATT_FLT, EBAT_ON,
VS_EBAT, CEN_ETM and CC_ETM) should not be connected. If an expansion pack uses
a different battery technology or does not want to share AC adapter charging with the
main unit, it should not use any of the charging signals on the interface (V_ADP and
MCHG_EN). If an expansion pack includes a battery, special attention to the details pro-
vided in other sections to ensure safety. Please refer to the reference schematics as a guide-
line discussed in Chapter 7 (Reference Schematics).

3-20 Electrical Interface

DC Characteristics

These tables show various DC characteristics between the main unit and expansion pack.

Table 7: DC Supply to Expansion Pack

Parameter Comments Symbol Min. Max. Units

Vdd Supply Voltage Operating VDD 3.13 3.46 V

Peak Current Draw
by Expansion Pack

from VDD pins

OPT_ON = Low IDD 10 mA

OPT_ON = High 300

Table 8: Battery and Charging Specifications

Parameter Comments Symbol Min. Max. Units

V_ADP Voltage V_ADP 4.75 5.25 V

Total Discharge Current IVADP_D 2.0 A

Total Charge Current MCHG_EN = H OR
OPT_ON = H

IVADP_C 0.2 A

MCHG_EN = L AND
OPT_ON = L

0.6

Extended Battery Capacity Only when expansion
pack battery used

for extended battery
of main unit

BCAP 1000 maH

Extended Battery Voltage Only when expansion
pack battery used

for extended battery
of main unit

VEBAT 3.72 4.25 V

EBAT_ON Trip Point Extended Battery
Voltage too low and

EBAT_ON driven low

VEBAT ON 3.72 V

Trickle Charge from Option
Battery to Main Battery

CEN_ETM = Low ITR 150 mA

Electrical Interface 3-21

Table 9: Main Unit Output Drive Characteristics

Parameter Comments Symbol Min. Max. Units

Output Voltage
Signals: A[25:0], D[31:0]

IOH = -2 mA VOH 2.75

0.4

V

IOL = 2 mA VOL

Output Voltage
Signals: See Note 1.

IOH = -18 mA VOH 2.4

0.4

V

IOL = 16 mA VOL

Output Voltage
Signals: See Note 3.

IOH = -1.5 mA VOH 2.3

0.5

V

IOL = 10 mA VOL

Output Voltage
Signals: See Note 4.

IOH = -24 mA VOH 3.0

0.2

V

IOL = 24 mA VOL

Table 10: Main Unit Input Characteristics

Parameter Comments Symbol Min. Max. Units

Input Voltage Signals: D[31:0] VIH 2.0

0.8

V

VIL

Input Voltage Signals: RDY VIH 2.0

0.8

V

VIL

Input Voltage Signals: See Note 2. VIH 2.5

0.7

V

VIL

Input Voltage Signals: Signals: SPI_DO VIH 2.1

0.8

V

VIL

Tri-state Leakage Current VOH = VDD/VOL = GND IOZ -5.0 5.0 µA

Input Leakage Current VIH = VDD/VIL = GND IL -5.0 5.0 µA

3-22 Electrical Interface

Table 11: Signal Conditioning Requirements
(See Note 5)

Signal Main Unit Expansion Pack

ODET[2:1]# Pull-up to VDD with 100kΩ Connected to GND

PCM_IRQ[2:1]# Pull-up to VDD with 100kΩ Buffered from card
socket to main unit

CD_SCKT[2:1]# Pull-up to VDD with 100kΩ CD[2:1]# from socket OR’d to
form CD_SCKT# signal

INT_OP Pull-down to GND with 100kΩ Pull-down to
GND with 100kΩ

SPI_SCK, SPI_DI None Pull-down to
GND with 100kΩ

RDY Pull-up to VDD with 100kΩ None

OPT_ON Pull-down to GND with 100kΩ Pull-down to GND with 100kΩ

RESET Pull-down to GND with 100kΩ Pull-down to GND with 100kΩ
(optional)

PCM_WAIT#, PCM_WP Pull-up to VDD with 100kΩ OR gate each signal separately
with CD_SCKT#

PCM_RESET Pull-down to GND with 100kΩ Buffered to card socket

VS_EBAT None Pull-up to extended battery with
1.2kΩ

CEN_ETM Open Collector Pull-up to extended battery with
470kΩ

BATT_FLT Pull-up to VDD with 100kΩ Pull-up to VDD with 100kΩ (min.)

EBAT_ON Pull-down to GND with 100kΩ None

MCHG_EN Pull-down to GND with 50kΩ Pull-down to GND with 100kΩ

NOTE:
1. Signals include MCS[4,2]#, MWE#, MOE#, RD/WR#, DQM[3,1:0]#, PSKTSEL, PCM_CE[2:1]#,

PCM_REG#, PCM_OE#, PCM_WE#, PCM_IOR#, PCM_IOW#.

2. Signals include INT_OP, PCM_IRQ[2:1]#, CD_SCKT[2:1]#, PCM_WAIT#, PCM_WP, ODET[2:1]#,
BATT_FLT.

3. Signals include SPI_CS#, SPI_SCK, SPI_SI and SPI_SO.

4. Signals include OPT_ON, RESET, PCM_RESET.

5. Signal conditioning is required only if the expansion pack connects the respective signals.

Electrical Interface 3-23

AC Characteristics

FIGURE 8: RESET Timing Waveform

Table 12: Interface AC Characteristics
(See Notes 2 & 3)

Parameter Comments Symbol Min. Max. Units

Signal Delay from
Processor to Interface

Signals: A[25:0] TDPIA 8 ns

Signals: D[31:0] TDPID 10

Signal Delay from
Processor to Interface

Signals:
See Note 1 & 2

TDPIC 6.0 ns

Signal Delay from
Interface to Processor

Signals: D[31:0] TDPID 10 ns

Signal Delay from
Interface to Processor

Signal: RDY TDPIB 7.0 ns

Signals: PCM_WAIT#,
PCM_WP

TDPIC 10.0

RESET Active time after
OPT_ON asserted

TRST 100 ms

NOTE:
1. Signals include MCS[4,2]#, MWE#, MOE#, RD/WR#, DQM[3,1:0]#, PSKTSEL, PCM_CE[2:1]#,

PCM_REG#, PCM_OE#, PCM_WE#, PCM_IOR#, PCM_IOW#.

2. Signal waveforms and timing requirements are found in the Intel StrongARM 1110 Microprocessor
Advanced Developer’s Manual, PC Card Standard Release 7.0 and CF+ and CompactFlash Specification
Revision 1.4. This specification provides the delay of the buffers between the processor and interface.

3. Times are specified with a 30 pF equivalent load.

TRST

OPT_ON

RESET

3-24 Electrical Interface

Table 13: Audio Specifications
(See Notes 1 & 2)

Parameter Comments Symbol Min. Typ Max. Units

Output Voltage Rl = 20 kΩ VO 1.0 V

Signal to Noise Ratio f = 1kHz, RL = 10 kΩ SN 94 dBr

Total Harmonic
Distortion Plus Noise

-3dB FS, f = 1 kHz,
RL = 10kΩ

THD + N -78 dBr

Output Load Expansion pack load RL 10k Ω

Frequency Response -3 dB points FR 20 20k Hz

NOTE:
1. Audio specifications refer to A_OUTR and A_OUTL.

2. Specifications assume A_GND is properly isolated from digital noise on the expansion pack.

Electrical Interface 3-25

Insertion/Removal

Overview

One of the key features of the expansion packs is the ability to exchange them "on the fly",
with power on or off. The user can remove one expansion pack and insert another without
significant interaction with the system. Upon insertion, the hardware interface invokes a
device manager on the main unit that interrogates the expansion pack on its features with-
out significantly impacting battery life. The interrogation includes data on drivers, appli-
cations, configuration and miscellaneous requirements of the expansion pack. This
identification process allows the expansion pack to store information, drivers and applica-
tions on the expansion pack, so the main unit does not have to use its memory to store
information on a large number of expansion packs. It also allows the main unit to remove
the drivers and applications from memory when the expansion pack is removed.

Ideally, the software application and drivers to run the expansion pack are on the expan-
sion pack.

Sequence of Events for Insertion

The flow chart in Figure 9 (Insertion Flow Chart) outlines the insertion sequence of
events. Starting from a power-on detection, the system boots and detects whether an
expansion pack is installed. If an expansion pack is inserted, the expansion pack detect
signals, ODET[2:1]#, interrupt the processor to notify the system. The interrupt routine
starts a timer to allow the detect signals to debounce. Once the timer times out, it checks to
verify the detect signals are still active. If the signals are inactive the sequence starts over.
If the detect signals are active, the interrupt routine starts a "device manager" that enables
the SPI interface and the VDD pins on the expansion pack. In this state, the expansion pack
can draw only 10 mA for identification purposes. The device manager starts downloading
information from the SPI EEPROM on the expansion pack. The device manager uses the
information from the EEPROM to locate drivers and applications, enable interrupts, deter-
mine memory specifications and type, power consumption, slot configuration, etc. The
device manager loads the expansion pack drivers and applications based on the informa-
tion in the EEPROM.

Once the device manger identifies the expansion pack, it determines if it has enough bat-
tery life to fully power on the expansion pack. Also, data in the memory device gives the
option to display a message to allow the user to enable power to the expansion pack or
decline and enable it at later time. Providing the user interface to enable the expansion
pack is optional to each individual design. Some expansion packs such as an extended bat-
tery or a low power devices may not want to burden the user with the question after an
insertion.

3-26 Electrical Interface

When the device manger enables the expansion pack, either automatically or through user
interaction, the main unit powers the remaining buffers for the entire interface into a high
impedance state. The OPT_ON signal is asserted and notifies the expansion pack to turn
on fully. At this point, the expansion pack can draw up to 300 mA peak and/or enable its
own battery and power supply circuitry. Afterward, the device manager installs the appli-
cation software and drivers, typically stored on the expansion pack, to main memory.

If the user does not want to enable the expansion pack or the device manger determines
there is not sufficient power upon insertion, the main unit removes power to the VDD pins
and disables the SPI interface.

Sequence of Events for Removal

If the expansion pack is removed while the system is on or in hibernation, the expansion
pack detect signals, ODET[2:1]#, interrupt the processor to notify the system. The device
manger starts a timer to allow the detect signals to debounce. Once the timer times out, it
checks to verify the detect signals are still inactive. If the signals are active (expansion
pack still installed) the sequence starts over. If the detect signals are inactive, the device
manager subsequently deasserts OPT_ON, disables the buffers and removes power to the
VDD pins.

If the drivers and application were loaded from the EEPROM driver table, the device man-
ager then unloads the drivers and application. After inserting the expansion pack, the
device manager starts IHVInstall and copies IHVUninstall into RAM. Upon removal of
the expansion pack, this application is run and subsequently is removed from memory.

Electrical Interface 3-27

FIGURE 9: Insertion Flow Chart

Start

Power
On

Expan
Pack

Power Expansion Pack and
Detect Type

Sufficient
Power or

User
Enabled

Load SW and
Start Application

Y

Y

Y

N

N

System
Boot

Y

N

Debounce
Timer

Detect Pins
Active

Y

To Expansion Pack Removal Flow Chart

N

From Removal
Flow Chart

Detect Pins
Inactive

N

3-28 Electrical Interface

FIGURE 10: Removal Flow Chart

Detect
Signals
Inactive

Disable Control
Buffers via HW

Y

Stop
Application

Debounce timer
for detect signals

Detect
Signals
Inactive

Remove
Application

Y

Go to Expansion Pack Insertion Flow Chart

N

N

Start
(from insertion

flow chart)

Software Interface 4-1

chapter 4

SOFTWARE INTERFACE

Overview

Upon insertion of an expansion pack, a “device manager” type driver on the main unit
interrogates the expansion pack and starts the appropriate drivers. The drivers and applica-
tion software are ideally stored on the expansion pack in ROM or flash memory. The driv-
ers are responsible for communicating with the various pieces of hardware available on
the expansion pack. The “device manager” is NOT involved in any of the interactions
between the device drivers and the devices on the expansion packs.

The mechanism to load the device drivers is dynamic and dependent on the expansion
pack. This requires that the device manager is more data driven. The device manager loads
the appropriate drivers based on the available information on the expansion pack identifi-
cation EEPROM. The next sections describe some of the key data elements that are
needed to facilitate this kind of dynamic operation.

4-2 Software Interface

EEPROM Data Structure

After an expansion pack is inserted, the "device manager" interrogates the expansion pack
to identify its features. This occurs over the SPI bus to an EEPROM on the expansion pack
that contains data on drivers, applications, configuration and requirements of the expan-
sion pack. Every expansion pack is required to have EEPROM on the SPI bus for identifi-
cation. The first version of software only supports 256 bytes or less of EEPROM.

The following table shows the data structure in the EEPROM.

ID Information

The ID information is mandatory for all expansion packs. This information is used to iden-
tify the expansion pack and indicates if further information is needed to start drivers, etc.

Table 14: EEPROM Data Structure

Expansion Pack Information Description

ID Information Mandatory information that identifies the expansion pack.

Control Information Mandatory information that identifies where the flash mem-
ory is located.

Driver Table Used to identify the drivers that might not have been present
in the original unit.

Configuration Specific configuration information on the option such as
power consumption, battery capacity, etc.

Bootstrap Program If needed, an OEM may store a bootstrap program in this
region.

Optional OEM Information This is a free-form area. It is the OEM’s responsibility to lay
out this area. It could be used to store software keys, expan-
sion pack parameters, etc.

Table 15: ID Information

Field # Name Type Length Description

1 Start of ID 1 b 0xaa

2 Length of data integer 4 b Used by the ID API to allow for a block read
of identification information. The number in
this field should include ALL information in
the EEPROM including the information
stored in the OEM area.

3 Version Indicator integer 1 b Used to determine the information’s format.
Currently, defaulting to 0x01.

4 Vendor ID integer 2 b Unique vendor ID (Compaq assigned).

5 ID Number integer 2 b Unique per vendor Product ID.

Software Interface 4-3

Control Information

The control information is mandatory. The control information identifies the flash area for
the driver that provides “disk” support for it.

6 Text Description string variable Text description for display to user. Zero
delimited.

7 Type integer 1 b Identifies type of expansion pack:
2 - minimal hardware
3 - data bus
4 - Bootstrap present

8 Interrupt Enable BYTE 1 b ‘Y’/’N’

9 Extended Battery BYTE 1 b ‘Y’/’N’

10 Initial Power State BYTE 1 b ‘Y’/’N’

11 Suspend Power State BYTE 1 b ‘Y’/’N’

12 Time Reset Width BYTE 1 b

13 Reserved BYTE 1 b 0x00

14 Bootstrap Address integer 4 b Address of the Bootstrap program in this
EEPROM.

15 OEM Information
Address

integer 4 b Address of OEM information in this
EEPROM.

16 Application Name char variable Null Terminated field. Contains the name of
the application to start on the expansion pack
flash. i.e. “myprog.exe parm1 parm2”

17 Terminator integer 4 b Marks end of ID information.
Value: 0x0f0f0f0f

Table 16: Control Information

Field # Name Type Length Description

1 Start of Control integer 1 b 0xbb. Occurs once per Control Information
block.

2 Vendor ID integer 4 b Identifies the vendor that supplied the expan-
sion pack. Part of the unique key when com-
bined with the Driver ID.

3 Driver ID integer 4 b

4 Memory Location integer 4 b Memory location for start of flash part in
expansion pack. Used by flash driver.

Table 15: ID Information

Field # Name Type Length Description

4-4 Software Interface

Driver Table

The driver table information is optional. It represents the information needed to start the
drivers dynamically. It could be stored on the expansion pack as a way to extend the driver
table being maintained in the main unit. This information is similar to the information
stored in the registry.

This is a list of the drivers that can be found in the expansion pack flash. Multiple drivers
are allowed in this section. Only the drivers that are included in the Control information,
that are loaded from the expansion pack flash, are included. The Vendor ID and Driver ID
can be combined to create a unique key for the Device manager to use when looking up
the driver.

5 Stop Memory Loca-
tion

integer 4 b Ending memory location of flash part.

6 Control Information
Terminator

4 b Occurs once per Control Information block.
Value: 0x0f0f0f0f

Table 17: Driver Information

Field
#

Name Type Length Description

1 Vendor ID integer 4 b Vendor identifier. 0xffffffff means the end of driver
table

2 Driver ID integer 4 b Driver identifier.

3 Driver string variable File name of driver, i.e. Driver.dll.

4 Display Name string variable Display name of driver.

5 Stream Prefix string 3 b Identifies the prefix for the Stream interface, i.e.
“COM”.

6 Record Terminator char 1 b 0x03

7 Section Terminator 4 b Occurs once per Driver Table block.
Value: 0x0f0f0f0f

Table 16: Control Information

Field # Name Type Length Description

Software Interface 4-5

Configuration Information

This section is not supported in the first version of the software, but is reserved for future
revisions. The intent of configuration information is to store data about the expansion pack
such as battery capacity, power consumption, socket configuration, etc.

Bootstrap Program

This is a binary program in an "exe" format to bootstrap expansion packs that do not have
a dedicated ROM memory bank. It is copied into the main unit's file system for execution.
While resident drivers may be started, it is assumed that the bootstrap program is responsi-
ble for loading and starting the necessary drivers and applications.

OEM Area

The OEM area is an optional field. Some examples include part numbers, serial numbers,
revision history, manufacturing date, etc. The field contains all remaining memory follow-
ing the bootstrap area.

Table 18: Configuration Information

Field # Name Type Length Description

1 Size of Configuration
info

DWORD 4 b Size of configuration info in bytes

2 Configuration info binary variable Configuration info

3 Section Terminator DWORD 4 b 0x0f0f0f0f

Table 19: Bootstrap Program Information

Field # Name Type Length Description

1 Size of Bootstrap DWORD 4 b Size of bootstrap in bytes

2 Bootstrap program binary variable Binary data in “exe” format

3 Section Terminator DWORD 4 b 0x0f0f0f0f

Table 20: OEM Area Information

Field # Name Type Length Description

1 Size of OEM Area DWORD 4 b Size of OEM area in bytes

2 OEM Data binary variable OEM data

3 Section Terminator DWORD 4 b 0x0f0f0f0f

4-6 Software Interface

Other Software considerations

The IHV will need to implement certain routines for power handling. These are:

• Power On

• Power Off

• Global Variable Maintenance

In addition this section addresses the Expansion Pack SDK. These functions are provided
by Compaq to enable the hardware developer to better control the expansion pack and the
Device Manager as it relates to the EEPROM, expansion pack insertion and insertion pack
removal.

Power On Routine

This is a code snippet that could be used in the power on routine. It demonstrates process-
ing needed to handle the OPT_Pwr_On and Opt_Reset signals.

VOID HWPowerOn(
PVOID pHead // @parm PVOID returned by HWInit.
)

{
Pxxx_HW_INFO pHWHead = (Pxxx_HW_INFO)pHead;
Pxxx_PDD_INFO pPDDHead = (Pxxx_PDD_INFO)pHead;

// Restore any registers that we need
*(pHWHead->pRegister0) = pHWHead-> pRegister0;
*(pHWHead->pRegister1) = pHWHead-> pRegister1;
*(pHWHead->pRegister2) = pHWHead-> pRegister2;
// Other needed handles here…
PowerHandler(ON); // refer to Turn on Power

return;
} // HWPowerOn()

Software Interface 4-7

Power Off Routine

This is a sample routine for the power off processing. It demonstrates how to handle the
Opt_Pwr_Off and Opt_Reset signals. It also includes an example of how to save registers
for later use.

VOID
HWPowerOff(

PVOID pHead // @parm PVOID returned by HWInit.
)

{
Pxxx_HW_INFO pHWHead = (Pxxx_HW_INFO)pHead;
Pxxx_PDD_INFO pPDDHead = (Pxxx_PDD_INFO)pHead;

// Other indeed handles here…
// Save any registers that we need

pHWHead-> pRegister0 = *(pHWHead->pRegister0);
pHWHead-> pRegister1 = *(pHWHead->pRegister1);
pHWHead-> pRegister2 = *(pHWHead->pRegister2);
PowerHandler(OFF); // refer to Turn on Power

return;
} // HWPowerOff())_©"©()/

Maintaining a Global Variable

This sample code demonstrates one method for maintaining a global variable for lower
level driver routines.

PDRIVER_GLOBALS pDrvGlob = (PDRIVER_GLOBALS)
DRIVER_GLOBALS_PHYSICAL_MEMORY_START;
void BitSetExtendGPIO(ULONG bits)
{

pDrvGlob->misc.extendIO |= bits;
(ULONG*) EXTERNAL_IO_BASE = pDrvGlob->misc.extendIO;

}
void BitClearExtendGPIO(ULONG bits)
{

pDrvGlob->misc.extendIO &= ~bits;
(ULONG*) EXTERNAL_IO_BASE = pDrvGlob->misc.extendIO;

}
Void PowerHandler(BYTE bState)
{

if (ON == bState)
{

// turn on Opt_Pwr_On
BitSetExtendGPIO(EXTEND_GPIO_OPT_POWER);

4-8 Software Interface

// turn on Opt_On
BitSetExtendGPIO(EXTEND_GPIO_OPT_ON);
// Reset Expansion Pack
BitSetExtendGPIO(EXTEND_GPIO_OPT_RESET);

BitClearExtendGPIO (EXTEND_GPIO_OPT_RESET);
}
else if (OFF == bState)
{

// turn off Opt_Pwr_On
BitClearExtendGPIO (EXTEND_GPIO_OPT_POWER);
// turn off Opt_On
BitClearExtendGPIO (EXTEND_GPIO_OPT_ON);
// mark global, keep the Opt_On & Opt_Pwr_On State while
device

being suspended
pDrvGlob->misc.wPwrState |= (DRV_OPT_ON_SUSPEND_ON |

DRV_OPT_PWR_ON_SUSPEND_ON);
}
}

Expansion Pack SDK

Compaq is planning an SDK with some functions that will be useful in creating the soft-
ware for an expansion pack. The following functions are provided as a part of the Expan-
sion Pack SDK:

BOOL PPC_GET_BATT_LEVEL(HWND hwnd, UINT32 *bufout);

BOOL PPC_GET_TIME_RESETWIDTH_WAITSTABLE(HWND hwnd, UINT32 *pbuf);

BOOL PPC_SET_INTERRUPT_ENABLED(HWND hwnd, BOOL bflag);

BOOL PPC_SET_POWER(HWND hwnd, BOOL bflag);

BOOL PPC_GET_POWER(HWND hwnd, UINT32 *pbuf);

BOOL PPC_REBOOT(HWND hwnd);

int PPC_InstallCompleted(int iResult);

int PPC_UninstallCompleted(int iResult);

void PPC_EnableFlashWrite(void);

void PPC_DisableFlashWrite(void);

void PPC_DestroyPartitionWhenRegistered(void);

PBYTE PPC_NVM_AddStr(HWND hWnd, PBYTE pbuf, const char *strSource);

PBYTE PPC_NVM_AddBin(HWND hWnd, PBYTE pbuf, const char *strSource, UINT32 size);

BOOL PPC_NVM_Write(HWND hWnd, PVOID pnvm_in, HWND hwndProgress);

BOOL PPC_NVM_Read(HWND hWnd, PVOID pnvm_out, HWND hwndProgress);

BOOL PPC_NVM_FreeRead(HWND hWnd, PVOID pnvm_out);

Software Interface 4-9

PPC_GET_BATT_LEVEL

This function reports remaining charge for the main and extended battery as a percentage
range from 0 to 100 in increments of 10. It reports “BATTERY_PERCENTAGE_
UNKNOWN” if the percentage of battery life is unknown.

Syntax

BOOL PPC_GET_BATT_LEVEL(HWND hwnd, UINT32 *bufout)

Parameters

hWnd[in]: Handle of current window. Reserved, set it to be NULL.

bufout [out]:

HIWORD: Reserved.

LOWORD:

HIBYTE: Percentage remaining of the main battery charge.

LOBYTE: Percentage remaining of the extended battery charge.

Return Value

Nonzero indicates success.

Example

DWORD dwResult;
.// Read percentage of full battery charge remaining
if (PPC_GET_BATT_LEVEL(NULL, &dwResult))
{
ShowDbgString(L"PPC_GET_BATT_LEVEL success\r\n");
.
.

ShowDbgString(L"Main=%d%%, Extended=%d%%\r\n”,
(dwResult >> 8)& 0xff,

dwResult & 0xff);
}

4-10 Software Interface

PPC_GET_TIME_RESETWIDTH_WAITSTABLE

This function provides the width of the RESET signal and delay time cycles are executed
to the expansion pack. This data is provided in the EEPROM. The Device Manager only
resets the expansion pack the first time it is inserted.

Syntax

BOOL PPC_GET_TIME_RESETWIDTH_WAITSTABLE(HWND hwnd, UINT32 *pbuf)

Parameters

hWnd[in]: Handle of current window. Reserved, set it to be NULL.

pbuf [out]:

HIWORD: Width to reset expansion pack; measured in ms.

LOWORD: Time to wait for the hardware to become stable after reset; measured in ms.

NOTE: Set to 0xFFFF if you don�t need to reset expansion pack or wait until the hardware is sta-

ble.

Return Value

Nonzero indicates success.

Example

DWORD dwWidth;
// Read percentage of full battery charge remaining
if (PPC_GET_TIME_RESETWIDTH_WAITSTABLE(NULL, &dwWidth))
{

WORD wRwidth, wWwidth;
ShowDbgString(L"PPC_GET_TIME_RESETWIDTH_WAITSTABLE
OK\r\n");
wRwidth = (dwWidth >> 16)& 0xffff;
wWwidth = dwWidth & 0xffff;
ShowDbgString(L"reset width=%d, waitstable=%d\r\n”,

wRwidth, wWwidth);
.
.
}

Software Interface 4-11

PPC_SET_INTERRUPT_ENABLED

This function sets the interrupt-enabled bit for expansion pack in the HAL layer. When the
expansion pack is designed to interrupt the main unit for event handling, this function is
used to enable the interrupt. By default, the interrupt is disabled.

Syntax

BOOL PPC_SET_INTERRUPT_ENABLED(HWND hwnd, BOOL bflag);

Parameters

hWnd[in]: Handle of current window. Reserved, set it to be NULL.

bflag [in]: TRUE enables the interrupt and FALSE disables the interrupt.

Return Value

Nonzero indicates success.

Example

HANDLE XXX_Init(ULONG Identifier)
{
PHW_INDEP_INFO pXXXHead = NULL;

// Allocate our control structure.
pXXXHead = (PHW_INDEP_INFO)LocalAlloc(LPTR,

sizeof(HW_INDEP_INFO));
// Check that LocalAlloc did stuff ok too.
if (! pXXXHead)
{

ShowDbgString(L"Error allocating memory for pXXX-
Head, XXX_Init

failed\n\r"));
return (NULL);

}
if (!InterruptInitialize(

pXXXHead ->pHWObj->dwIntID,
pXXXHead->hEvent,
pXXXHead->pHWObj->pFuncTbl->HWGetRxStart((PVOID)pSe-
rialHead),

0))
{
ShowDbgString(L”drv XXX Init failed\r\n”);

XXX_Deinit(pXXXHead);
return (NULL);

}
// enable the interrupt

PPC_SET_INTERRUPT_ENABLED(NULL, TRUE);
.

return (pXXXHead);
}

4-12 Software Interface

PPC_SET_POWER

This function sets or resets the state of hardware pin OPT_ON.

Syntax

BOOL PPC_SET_POWER(HWND hwnd, BOOL bflag);

Parameters

hWnd[in]: Handle of current window. Reserved, set it to be NULL.

bflag [in]: Set FALSE to power up the expansion pack through OPT_ON. Set others to
power down.

Return Value

Nonzero indicates success.

Example

// reset OPT_ON to power up the expansion pack
PPC_SET_POWER(NULL, FALSE);

Software Interface 4-13

PPC_GET_POWER

This function returns current state of hardware pin OPT_ON.

Syntax

BOOL PPC_GET_POWER(HWND hwnd, UINT32 *pbuf);

Parameters

hWnd[in]: Handle of current window. Reserved, set it to be NULL.

pbuf [out]: Current state of OPT_ON. 0 means expansion pack is powering up, other mean
it’s powering down.

Return Value

Nonzero indicates success.

Example

DWORD dwState;
. . .
// read OPT_ON state
PPC_GET_POWER(NULL, &dwState);
if (0 == dwState)
{
// if powering up do something here …
}
else
{
// if powering down do something here …
}

4-14 Software Interface

PPC_REBOOT

This function provides an interface to reboot the main device by software.

Syntax

BOOL PPC_REBOOT(HWND hwnd);

Parameters

hWnd[in]: Handle of current window. Reserved, set it to be NULL.

Return Value

Nonzero indicates success.

Example

switch (LOWORD(wParam))
{

case IDC_BTN_RESET:
// if button clicked
if (BN_CLICKED == HIWORD(wParam))

PPC_REBOOT(NULL); //reboot main device
return TRUE;

}

Software Interface 4-15

PPC_InstallCompleted

This function lets the device manager receive the notification and information from
install.exe.

Syntax

int PPC_InstallCompleted(int iResult);

Parameters

iResult[in]: See details below.

Return Value

Returns iResult as above.

Example

case WM_DESTROY:
.
.
// notify DM install has been completed and no special
requirement

int i = PPC_InstallCompleted(PR_SUCCESS);
PostQuitMessage(0);
return 0;

Table 21: PPC_InstallCompleted Parameters for iResult [in]

Value Name Description

0X0001 PR_RESET_REQUIRED Reset main device requested, device manager
automatically reboots main device after one
(1) second.

0X0002 PR_OPT_ON_REQUIRED Device manager needs to activate OPT_ON
pin after install.exe completed. Please note
that OPT_ON is activated if the extended bat-
tery is defined in EEPROM.

0X0004 PR_OPT_RESET_REQUIRED Device manager needs to activate
OPT_RESET pin within a defined interval
after install.exe is completed.

0x0000 PR_SUCCESS Running install.exe or uninstall.exe success-
ful.

0xFFFF PR_FAILED Running install.exe or uninstall.exe failed.

4-16 Software Interface

PPC_UninstallCompleted

This function lets the device manager receive the notification and information from unin-
stall.exe.

Syntax

int PPC_UninstallCompleted(int iResult);

Parameters

iResult[in]: See details below.

Return Value

Returns iResult as above.

Example

case WM_DESTROY:
.
.

// notify DM install has been completed and no special
requirement
int i = PPC_UninstallCompleted(PR_SUCCESS);
PostQuitMessage(0);
return 0;

Table 22: PPC_UninstallCompleted Parameters for iResult [in]

Value Name Description

0X0001 PR_RESET_REQUIRED Reset main device requested, device manager
automatically reboots main device after one
(1) second.

0X0002 PR_OPT_ON_REQUIRED Device manager needs to activate OPT_ON
pin after install.exe completed. Please note
that OPT_ON is activated if the extended bat-
tery is defined in EEPROM.

0X0004 PR_OPT_RESET_REQUIRED Device manager needs to activate
OPT_RESET pin within a defined interval
after install.exe is completed.

0x0000 PR_SUCCESS Running install.exe or uninstall.exe success-
ful.

0xFFFF PR_FAILED Running install.exe or uninstall.exe failed.

Software Interface 4-17

PPC_EnableFlashWrite

This function enables flash memory for write operations.

Syntax

void PPC_EnableFlashWrite(void);

Parameters

None.

Return Value

None.

Example

// Here we Enable the write function
PPC_EnableFlashWrite();
.
.
// Do something here, e.g. write files into flash memory…
.
.
// Here we disable the write function
PPC_DisableFlashWrite();
.
.

4-18 Software Interface

PPC_DisableFlashWrite

This function enables flash memory for write operations.

Syntax

void PPC_DisableFlashWrite(void);

Parameters

None.

Return Value

None.

Example

// Here we Enable the write function
PPC_EnableFlashWrite();
.
.
// Do something here, e.g. write files into flash memory…
.
.
// Here we disable the write function
PPC_DisableFlashWrite();
.
.

Software Interface 4-19

PPC_DestroyPartitionWhenRegistered

This function allows you to format the flash memory in the expansion pack as a disk.

Syntax

void PPC_DestroyPartitionWhenRegistered(void);

Parameters

None.

Return Value

None.

Example

// Here we enable the flag to perform a destroy partition
table of flash disk to
// get an opportunity to re-format the flash disk when it has
been registered.
PPC_DestroyPartitionWhenRegistered();

4-20 Software Interface

PPC_NVM_AddStr

This function provides an entry to add a string type of variable into EEPROM (sometimes
referred to as NVRAM) structure. It allocates a memory block to store the source string
and returns the address.

Syntax

PBYTE PPC_NVM_AddStr(HWND hWnd, PBYTE pbuf, const char *strSource);

Parameters

hWnd[in]: Handle of current window. Reserved, set it to be NULL.

pbuf[out]: Destination stored in the string. It is always in the field of the EEPROM struc-
ture, which has string type.

strSource[in]: Address of a source string which is filled into EEPROM structure with.

Return Value

Return NULL if function failed, e.g. insufficient memory.

It returns the start address of allocated memory block, which is the same as destination
address (i.e. pbuf).inat.

Example

.

.
// fill “Compaq PC-Card Expansion” as the text description
to user
nvm_in.ssc_nvm_id_info.strTextDesc =

PPC_NVM_AddStr(NULL,
nvm_in.ssc_nvm_id_info.strTextDesc,

"Compaq PC-Card Expansion");
.
.
// write contents into NVRAM
if (PPC_NVM_Write(NULL, &nvm_in, hwndProgress) == FALSE)
{

ShowDbgString(L"WRITE ERROR");
return 0;

Software Interface 4-21

PPC_NVM_AddBin

This function provides an entry to add a binary data into a BLOB type of variable into
EEPROM (sometimes referred to as NVRAM) structure. It allocates a memory block to
store the source binary data and returns the address.

Syntax

PBYTE PPC_NVM_AddBin(HWND hWnd, PBYTE pbuf, const char *strSource, UINT32 size);

Parameters

hWnd[in]: Handle of current window. Reserved, set it to be NULL.

pbuf[out]: Destination to be stored the binary data. It should always be the field of the
EEPROM structure, which has the CEBLOB type.

strSource[in]: Address of a source binary data which will be filled into EEPROM structure
with.

Size[in]: Specifies the size, in bytes, of the BLOB. It also means the memory size that will
be allocated for pbuf.

Return Value

Return NULL if function failed, e.g. insufficient memory.

It returns the start address of allocated memory block, which is the same as destination
address (i.e. pbuf).

Example

//fake binary data
char bs[]={0x0, 0x1, 0x2, 0x3, 0x4, 0x5};
nvm_in.blobIntrEnableInfo.dwCount = sizeof(Bin1)/
sizeof(char);
nvm_in.blobIntrEnableInfo.lpb = PPC_NVM_AddBin(NULL,

nvm_in.blobIntrEnableInfo.lpb,
bs,
nvm_in.blobIntrEnableInfo.dwCount);

.

.
// write contents into NVRAM
if (PPC_NVM_Write(NULL, &nvm_in, hwndProgress) == FALSE)
{

ShowDbgString(L"WRITE ERROR");
return 0;

4-22 Software Interface

PPC_NVM_Write

This function writes structure pnvm_in into physical EEPROM (sometimes referred to as
NVRAM). It fills the relevant settings in pnvm_in to EEPROM and frees the memory that
may be allocated by both functions of PPC_NVM_AddStr and PPC_NVM_AddBin.

Syntax

BOOL PPC_NVM_Write(HWND hWnd, PVOID pnvm_in, HWND hwndProgress);

Parameters

hWnd[in]: Handle of current window. Reserved, set it to be NULL.

pnvm_in[in]: Address of structure SSC_NVM to be written.

hwndProgress[in]: The handle of the progress bar indicates the progress of a lengthy oper-
ation by displaying a colored bar inside a horizontal rectangle. Set to NULL if it is not
needed. Driver may update its parent window with standard API UpdateWindow.

Return Value

It returns a nonzero value if the referred structure data has been successfully written into
physical EEPROM. If the operation fails, it returns a FALSE.

Example

// write contents into NVRAM
if (PPC_NVM_Write(NULL, (PVOID)&nvm_in, hwndProgress) ==
FALSE)
{

ShowDbgString(L"WRITE ERROR\r\n");
return 0;

}

Software Interface 4-23

PPC_NVM_Read

This function reads from physical EEPROM (sometimes referred to as NVRAM) and fills
the data into the structure pnvm_out. To avoid a memory leak, user must manually free the
allocated memory with function PPC_NVM_FreeRead.

Syntax

BOOL PPC_NVM_Read(HWND hWnd, PVOID pnvm_out, HWND hwndProgress);

Parameters

hWnd[in]: Handle of current window. Reserved, set it to be NULL.

pnvm_out[out]: Address of structure SSC_NVM that is filled with the data read from
physical EEPROM.

hwndProgress[in]: The handle of the progress bar indicates the progress of a lengthy oper-
ation by displaying a colored bar inside a horizontal rectangle. Set to NULL if a lengthy
operation is not needed.

Driver may update its parent window with the standard API UpdateWindow.

Return Value

It returns a nonzero value if the referred structure data has been successfully read and
filled from physical EEPROM. If failed at physical read or structure filled, it returns a
FALSE.

Example

// read contents from NVRAM
if (PPC_NVM_Read(NULL, (PVOID)&nvm_out, hwndProgress))
{

PPC_ShowDbgString(L"Read success\r\n");
// do something here
.
.
.
// release extra-allocated memory at last

PPC_NVM_FreeRead(NULL, (PVOID)pnvm_out);
}

4-24 Software Interface

PPC_NVM_FreeRead

This function releases the allocated memory by PPC_NVM_Read. The developer must
call this function when it no longer needs the data that was read via the PC_NVM_Read
function.

Syntax

BOOL PPC_NVM_FreeRead(HWND hWnd, PVOID pnvm_out);

Parameters

hWnd[in]: Handle of current window. Reserved, set it to be NULL.

pnvm_out[in]: The address of SSC_NVM that had been stored the read data. Driver will
release the extra-allocated memory for it.

Return Value

It returns a nonzero value if allocated memory successfully released. If it failed at releas-
ing the extra-allocated memory, it returns a FALSE.

Example

Refer to section PPC_NVM_Read.

Software Interface 4-25

Interrupts

The following interrupts are generated as a part of the expansion pack implementation.

Interrupts

Table 23: Interrupts

Interrupt Description

SYSINT_OP This is the interrupt signal generated by the
expansion pack. It is available for application
or driver use.

4-26 Software Interface

Signals

Table 24: Signal

Signal Description

OPT_IND The ODET[2:1]# signals are combined to
generate an insertion signal, OPT_IND,
when an expansion pack is inserted.
When this signal is present, the lower
level drivers will send an OPT_PLUG
message to the device manager.

Opt_Int This corresponds to the INT_OP signal
on the interface.

Opt_Reset This is the reset signal that is sent to the
expansion pack. The Device Manager
will issue a RESET to the expansion pack
device. The length of RESET is taken
from the Reset Time field of the
EEPROM. For more details, please refer
to the ID information section description
earlier in this chapter.

Opt_Pwr_On This signal controls the expansion pack
power (VDD). This signal must be turned
on before the expansion pack can be
enabled. For more details, please refer to
the power handling routine description
earlier in this chapter.

NOTE: Before reading or writing to the

EEPROM, this signal will be turned

ON with a 5 ms delay before read-

ing the EEPROM. The developer

needs to maintain the pin state,

while device is been powered on or

down. The Device Manager main-

tains the setting of Opt_Pwr_On.

Software Interface 4-27

Significant Messages

• Expansion Pack Detect – reserved for Expansion Pack Device Manager.

Expansion Pack Removed Notification

An application can register with the device manager for notification of expansion pack
removal. When the expansion pack is removed, the device manager will inform the regis-
tered applications and drivers of the removal.

Opt_On Opt_On is used to notify the expansion
pack that it can turn on all the electronics.

NOTE: This signal is not required to read

the EEPROM. The card detection of

CF/PCMCIA signals are controlled

by this signal. Before this signal is

turned on, the main unit cannot

receive card detect notification.

The device driver must maintain

the pin state while device has been

powered on. The Device Manager

maintains the setting. The device

driver should use the appropriate

functions to affect the state in

power handling routines.

Table 25: Significant Messages

Message Description

Opt_Plug This message is sent to the device manager.
After receiving this message, the device man-
ager will perform the expansion pack setup
procedures.

Table 24: Signal

Signal Description

4-28 Software Interface

Specific Applications Used By Device Manager

To facilitate insertion, removal and control panel information. The device manager and
associated programs look for and use specific applications from the expansion pack flash.
The following table briefly identifies these applications:

IHVInstall.exe

The Device Manager identifies this installation executable as a setup program. It is exe-
cuted when the expansion pack is inserted. This application is used for installation, but
could be used to load specific device drivers, registry settings or application files. It
should also start the appropriate application for the expansion pack.

It must contain the SDK call PPC_InstallCompleted. This enables the Device manager to
proceed with processing.

IHVUninstall.exe

The Device Manager identifies this executable as the opposite of the installation execut-
able. It is copied to the main unit. It is called automatically upon expansion pack removal.
It performs the appropriate notifications to device drivers and applications that are using
the expansion pack. The application is deleted after execution completes. Another good
use for this application is to remove any unneeded files or registry settings.

It must contain the SDK call PPC_UninstallCompleted. This enables the device manager
to perform some necessary housekeeping.

Diagnostic.exe

The Device Manager identifies this executable as the diagnostic or “self test” application.
When this application is present, the Device Manager enables the “Diagnostic” button on
the expansion pack control panel applet. The end user could then start this application by
tapping on that button. This application is also used to display information that is specific
to the expansion pack. There are no specific requirements for this application. Compaq
recommends that the application be compliant with the guidelines for Windows CE logo
certification.

Table 26: Specific Applications Used by Device Manager

Application Description

IHVInstall.exe Facilitates Expansion Insertion

IHVUninstall.exe Facilitates Expansion Removal

Diagnostic.exe Helps end-user gather information about
expansion pack.

Battery, Power Supply and Charging 5-1

chapter 5

BATTERY, POWER SUPPLY

AND CHARGING

Overview

An expansion pack can obtain power for its electronics from two sources. The first one is
the main unit through the VDD pins on the interface. The other source is to provide its own
power from a built-in battery. Figure 11 (Expansion Pack Power Circuit Block Diagram)
shows a block diagram of a sample power circuitry and distribution scheme.

The main unit can provide up to 300 mA peak at a regulated 3.3V to the expansion pack.
When an expansion pack is first connected to the main unit, the expansion pack can only
draw approximately 10 mA from the VDD pins to allow the main unit to identify it. Once
the main unit asserts OPT_ON, an expansion pack can draw the full 300 mA from the
main unit.

If an expansion pack requires more than 300 mA peak or requires a voltage other than
3.3V, it must include its own power supply and/or battery and charging circuit. Upon
insertion, the expansion pack must use power from the main unit while OPT_ON is low to
allow the main unit to identify it. Typically, an expansion pack uses VDD to supply power for
the critical logic, EEPROM and the flash memory. Once OPT_ON is high, the expansion pack
can enable its own power supply circuits for the remaining circuitry.

The batteries in the main unit and the expansion pack are charged from multiple sources.
The user can charge the batteries from the DC jack on the main unit, the DC jack on the
expansion pack or through the serial connector on the main unit. Thus, expansion packs
with a battery must include a DC jack for charging with an AC adapter. This allows the
main unit and the expansion pack to charge their respective batteries separately or at the
same time.

5-2 Battery, Power Supply and Charging

It is optional for the expansion pack to provide extended battery life to the main unit. The
implementation depends on the total peak current consumption of the expansion pack and
the main unit. It is recommended that an extended battery have a minimum capacity of
1000 maH.

If the expansion pack includes a battery, specific requirements must be met to ensure
proper operation and safety. The following sections and Chapter 7 (Reference Schematics)
give more details on a possible implementation.

Battery, Power Supply and Charging 5-3

Battery and Power Supply

Figure 11 (Expansion Pack Power Circuit Block Diagram) shows a block diagram of the
battery, charger, safety circuit and power supply. The expansion pack battery supplies
power to the expansion pack power supply through the power switch on top of Figure 11.
The power switch also can supply power to the power supply from the AC adapter signal,
V_ADP. If the AC adapter is plugged in, the power switch disconnects the expansion pack
battery from the power supply and the AC adapter supplies the power to the power supply.
If the AC adapter is not plugged in and the battery has sufficient charge, the power switch
enables the battery to supply the power.

The critical-low detect circuit monitors the voltage level of the battery to verify it does not
go below the critical voltage level specified by the battery (typically 3.4V). This circuit
also generates the BATT_FLT signal to notify the main unit if the battery has reached this
point.

The power switch is controlled by OPT_ON, which enables the expansion pack to run at
full power. If OPT_ON is inactive, the power switch is disabled and no power is supplied
to the expansion pack power supply.

The micro controller monitors the battery voltage, temperature and charging. It typically
includes A/D converters to monitor the battery parameters and communicates to the main
unit through the SPI bus. Battery status can be displayed on the main unit via the SPI bus
and APIs provided in the Software Interface section (Chapter 4).

5-4 Battery, Power Supply and Charging

Battery Charger Implementation

Figure 11 also includes a block diagram of the charging circuit. The signals V_ADP and
MCHG_EN signals provide the ability to charge the expansion pack battery simulta-
neously with the main unit battery.

FIGURE 11: Expansion Pack Power Circuit Block Diagram

The V_ADP signals are the positive DC voltage from the AC adapter to charge the batter-
ies. The V_ADP signals can be sourced from the main unit or the DC jack on the expan-
sion pack, since the AC adapter can be plugged into the main unit or the expansion pack.
When charging is sourced from the synchronizing cradle through the serial connector, the
main unit passes the charge to the expansion pack through the V_ADP signals.

The V_ADP signals feed the charger circuit that includes a power transistor and charge
regulator such as the MAX846 to control the current to the expansion pack battery. The
battery charger is designed to charge the lithium polymer battery with constant current and
constant voltage charge modes. MCHG_EN is a signal from the main unit to notify the
expansion pack that the main battery is charging and the expansion pack must limit its
charging current to prevent blowing the fuse in the AC adapter. OPT_ON is also typically
used by the charging circuit to limit the charge current when OPT_ON is active.

Power
Supply

Expansion
 Pack

Electronics

Power
Switch

Charger

OVP
Switch

Expansion
 Pack

Battery

Microcontroller
and Logic

MCHG_EN

V_ADP

V_ADP

Critical Low
Detect

BATT_FLT

Trickle
ChargerCC_ETM

CEN_ETM

OPT_ON

SPI

VDD
NVRAM

SPI

Flash Memory,
Buffers, etc.

LED

Level Detect
and Power

Switch
V_EBAT

EBAT_ON

DC
JACK

VS_EBAT

VS_EBAT

Battery, Power Supply and Charging 5-5

The charging units are designed for lithium-ion or lithium polymer batteries, so if an
option pack uses another battery technology it should not connect the V_ADP or
MCHG_EN signals. Also, if an expansion pack does not want to share AC adapter charg-
ing with the main unit it should not connect the V_ADP and MCHG_EN signals.

The micro controller is used to monitor the battery and charge conditions. It is typically
used to monitor charge time, battery temperature, battery voltage and system power
requirements to control the charger. The micro controller also controls an LED that noti-
fies the user that the battery is being charged by blinking at 1 Hz. If the battery is fully
charged and the AC adapter is plugged in, the LED is turned on.

The OVP (over-voltage protection) switch monitors the battery and disconnects the
expansion pack battery if the battery voltage exceeds the specification.

If an expansion pack includes a DC jack, the developer may choose to use the same one as
the main unit.

The charging circuits are designed for lithium-ion or lithium polymer batteries, so if an
option pack uses another battery technology, it should not connect the V_ADP signals.
Also, if an expansion pack does not want to share AC adapter charging with the main unit,
it should not connect the V_ADP signals.

5-6 Battery, Power Supply and Charging

Extended Battery Implementation

An expansion pack can provide extended battery life to the main unit in two ways. First, it
can connect the V_EBAT and EBAT_ON signals when the expansion pack battery is used
to run the main unit. Second, it can connect the CC_ETM, CEN_ETM and VS_EBAT sig-
nals with a current limiter to provide a trickle charge to the main unit battery. The trickle
charge keeps the main battery at a sufficient level to power the main unit in the event the
expansion pack is removed while the unit is on. The V_EBAT signals are the positive DC
voltages from the expansion pack battery to the main unit power supply. The V_EBAT
signals are connected to the expansion pack battery through a power switch. A voltage
level detect circuit is used to enable the power switch and EBAT_ON signal when the bat-
tery has sufficient charge to supply power to the main unit. EBAT_ON is driven low level
when extended battery voltage is lower than 3.72V.

If an expansion pack does not function as an extended battery to the main unit, the
V_EBAT and EBAT_ON signals should not be connected.

The CC_ETM, CEN_ETM and VS_EBAT signals provide a mechanism for the expansion
pack battery to provide a trickle charge to the main battery. The CC_ETM signal provides
the trickle charge from the expansion pack battery to the main battery. The CEN_ETM is
an active high, open-collector signal that enables the trickle charge from the expansion
pack battery to the main battery. The expansion pack must pull this signal up to the
extended battery voltage. The expansion pack should pull CEN_ETM low when the AC
adapter is plugged in or when the expansion pack battery charge is too low. A current lim-
iter, such as MAX890L or MAX893L, must exist on the expansion pack between its bat-
tery and the CC_ETM pin to limit the trickle charge.

VS_EBAT is the positive terminal sense line for the battery in the expansion pack. The
main unit uses it to determine if it should trickle charge the main battery with the extended
battery. If VS_EBAT has a lower voltage than the main battery, the main unit pulls
CEN_ETM (open collector) low and disables the trickle charge. If VS_EBAT has a higher
voltage than the main battery, CEN_ETM is pulled high by the expansion pack. If the AC
adapter is plugged in or the expansion pack battery is too low (typically 3.65V), then the
expansion pack must pull CEN_ETM low and disable the trickle charge.

If an expansion pack does not provide a trickle charge to the main unit, the CC_ETM,
CEN_ETM and VS_EBAT signals should not be connected.

Mechanical Interface 6-1

chapter 6

MECHANICAL INTERFACE

Overview

All functional expansion packs consist of four basic structures, including:

1. a uniquely-curved, injection-molded plastic base part which enables any expansion
pack to physically slide up and onto the back of any main unit;

2. a common universal connector soldered to a PCB with absolute dimensions as to the
position of the connector and of the thickness of the board but with less criteria as to
the board area dimensions (see Figure 13: PCB Topside Component Limitation);

3. an unknown volume of “new” electronics that will, at minimum, communicate
through the PCB and the universal connector;

4. an injection-molded plastic top cover part of specified shape at its bottom mating edge
but of unspecified volume and shape (and possibly with unspecified openings)
throughout its remainder.

Figure 12 (Main Unit Sliding into an Expansion Pack) illustrates the principle of a main
unit sliding onto an expansion pack (in this case, a CompactFlash expansion pack). The
expansion pack and main unit eventually make electrical connection through their respec-
tive universal connector plug and receptacle located near the bottoms of the expansion
pack and the main unit, respectively.

6-2 Mechanical Interface

FIGURE 12: Main Unit Sliding into an Expansion Pack

Mechanical Interface 6-3

FIGURE 13: PCB Topside Component Limitation

Certain constraints of form factor in any future development of expansion packs must also
be comprehended and these constraints would include that:

1. the plastic base part or sleeve of the expansion pack which immediately surrounds the
main unit has specified dimensions and close tolerance gap with main unit (see the fol-
lowing Note),

2. the lower rear and bottom portions of the expansion pack base part or sleeve have
specified dimensions and Industrial Design so as to preserve a reliable fit when
inserted into the iPaq Pocket PC docking cradle and

3. NO future design of an expansion pack’s form factor should allow blockage of (i.e.,
deny access to) those user-accessible hardware features around the top of the main unit
(including, the headphone jack, FIR port, microphone openings, record button and sty-
lus). However, please understand that the total stack-up thickness of the expansion
pack as measured from the rear surface of the main unit is determined by the require-
ments of each individual expansion pack.

NOTE: It is recognized that developers may discover certain complications when interfacing their

designs with the unusual shape and the close mating tolerances of the expansion pack�s
plastic base part or sleeve. Therefore, it is possible to procure sample and production vol-
umes of certain common parts from the original vendors. Nevertheless, the injection-

molded cover part or turtle-shell is the responsibility of the developer of the new expan-
sion pack.

6-4 Mechanical Interface

Figure 14 (Exploded View Example from a CompactFlash Expansion Pack, Part 1) and
Figure 15 (Exploded View Example from a CompactFlash Expansion Pack, Part 2) show
exploded views of an expansion pack using the example of a CompactFlash expansion
pack. These figures are intended to only provide a general understanding of how the
mechanical structures fit together. They are not intended for actual mechanical design.

FIGURE 14: Exploded View Example of a CompactFlash Expansion Pack, Part 1.

Table 27: Part List for a CompactFlash Expansion Pack (Part 1)

Item Description Qty Material

1 OPTION PACK BASE, iPAQ 1 PC/ABS (Kobelco ku2-1517)

2 OPTION PACK COVER, iPAQ 1 PC+ABS (Kobelco ku2-1517)

3
PCB ASSY, CF CARD, iPAQ

(Example only)
1 PCB THICKNESS=0.8 mm

4 LOCK BUTTON, iPAQ 1 PC/ABS (Kobelco ku2-1517)

5 LOCK BUTTON SPRING, iPAQ 1 PC/ABS (Kobelco ku2-1517)

6
UNIVERSAL CONNECTOR,

OPTION PACK, iPAQ
1

Mechanical Interface 6-5

7
UNIVERSAL CONN, SUPPORT,

iPAQ
1 PC/ABS (Kobelco ku2-1517)

8 INSERT F-20-36-17, iPAQ 3 Brass

9 INSERT F-20-36-42, iPAQ 1 Brass

10 INSERT F-20-35-30, iPAQ 4 Brass

11
PHILLIPS SCREW, FLAT PAN

HEAD M2.0X2.5
3 Nickel

12
PHILLIPS SCREW, FLAT PAN

HEAD M2.0X4
1 Nickel

13
TORX SCREW FLAT HEAD

M2.0X2.3 BLACK
2

14
TORX SCREW FLAT HEAD

M2.0X5.5 BLACK
2

Table 27: Part List for a CompactFlash Expansion Pack (Part 1)

Item Description Qty Material

6-6 Mechanical Interface

FIGURE 15: Exploded View Example from a CompactFlash Expansion Pack, Part 2

Table 28: Part List for a CompactFlash Expansion Pack (Part 2)

Item Description Qty Material

11
PHILLIPS SCREW,

FLAT PAN HEAD M2.0x2.5
3 Nickel

12
PHILLIPS SCREW,

 FLAT PAN HEAD M2.0x4
1 Nickel

Mechanical Interface 6-7

Additional mechanical design highlights that are noted for development of an expansion
pack include:

1. The cosmetic texture surface of the expansion pack plastic turtle shell or “cover part”
(the developer’s responsibility) are specified in the figures above to ensure seamless
appearance with the expansion pack’s sleeve or base plastic textured part.

2. The PC/ABS resin manufacturer and type and color of the expansion pack plastic tur-
tle shell or “cover part” (the developer’s responsibility) is specified in the figures
above to ensure seamless cosmetic and material appearance with the expansion pack’s
sleeve or base plastic part.

3. The format for all mechanical drawings is Pro-Engineer Version 20. The drawings are
available at http://www.compaq.com/handhelds/developer.

4. It is possible to procure the following components from the original vendors.

• Expansion Pack Sleeve

• Plastic resin, PC/ABS, Ku2-1517

• Expansion Pack Connector (or Universal Connector)

• Lock Button

• Lock Button Spring

• Expansion Pack Connector plastic support part

http://www.compaq.com/handhelds/developer

6-8 Mechanical Interface

Interface (Universal) Connector

The interface between the expansion pack and the main unit is a 100-pin plug/receptacle
connection with the plug connector on the main unit and the receptacle connector on the
expansion packs. The connectors mate 180° from each. Each connector solders to the
respective PCB with a mixture of through-hole and surface mount pins on a 0.8mm pitch.
See the following figure for a view of the two connectors fully mated.

Some of the pins on each connector protrude out at different lengths to ensure certain
events happen sequentially. Table 29 (Interface ‘Universal’ Connector) shows the various
lengths for each of the plugs and receptacles on the connectors.

FIGURE 16: Expansion Pack Connectors Mated

Table 29: Interface (Universal) Connector

Pin #
Plug Distance
 from Front

Receptacle Distance
from Front

Shorten Receptacle
Pins

10, 47, 50, 51, 92 0.90 mm 1.82 mm

Extended Plug Pins 5, 21, 31, 45, 49, 55,
66, 76, 86, 95, 99

0.40 mm 1.32 mm

Normal Pins All others 0.90 mm 1.32 mm

Reference Schematics 7-9

chapter 7

REFERENCE SCHEMATICS

As available, reference schematics for expansion packs are planned to coincide with this
specification. Future schematics are listed below. Please refer to
http://www.compaq.com/handhelds/developer for updates.

• Lithium Polymer Battery support circuitry

• UART connection

• Dual PCMCIA/CF slot

• Single CF slot

http://www.compaq.com/handhelds/developer

7-10 Reference Schematics

Regulatory Requirements and Approvals 8-1

chapter 8

REGULATORY REQUIREMENTS

AND APPROVALS

Suggested Agency Approvals

It is the responsibility of the manufacturer to obtain the necessary regulatory certifications
for their product. Certifications that should be considered include, but are not limited to
the following:

• FAA - US

• FCC Part 15 - US

• UL 1950 - US

• FCC Part 68 - US

• ICES-003 - Canada

• CSA 950 - Canada

• CS-03 - Canada

• RSP100 - Canada

• RSS210 - Canada

• CE - Europe

• ETS300328 - Europe

• ETS300826 - Europe

• CTR21 - Europe

• CISPR 22 - International

• IEC 60950 - International

8-2 Regulatory Requirements and Approvals

Agency Acceptance Testing

The manufacturer of expansion packs for the Compaq iPAQ H3000 Series is responsible
for all agency testing.

Environmental Requirements 9-1

chapter 9

ENVIRONMENTAL REQUIREMENTS

The developer is responsible to assure the expansion pack meets all environmental
requirements of the customer. Some suggested specifications are listed below:

Operational Environment

Temperature Ranges

Operating Temperature (Independent of altitude) 0°C to 40°C.

Non-Operating Temperature (Independent of altitude) -30°C to 60°C.

Humidity

Operating (non-condensing) 20% to 80% at 25°C.

Non-Operating (38.7°C maximum wet bulb temperature) 5% to 85%.

Altitude

Operating 0 to 15,000 feet [4,572 m]. Equivalent to 14.7 to 8.29 psia.

Non-Operating 0 to 40,000 feet [12,192 m]. Equivalent to 14.7 to 4.4 psia.

9-2 Environmental Requirements

Environmentally Safe Materials

Any plastic casework and the packaging material shall not contain any ozone depleting
chemicals such as CFCs, PBDE, PBDPE or Halon compounds.

Toxic Materials

Materials which produce toxic effects during service usage or due to component failure
shall not be used in the expansion pack construction. Cadmium and polychlorinated biphe-
nyls may not be used in any form. The use of beryllium is only allowed in semi-conduc-
tors and shall not be exposed upon failure.

