Programmer’s Style Guide

A guide to writing usable and maintainable programs
Edition 0.0.0, 5 October 2002

Reinhard Muller

Copyright (© 2001 Reinhard Miiller

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and
with no Back-Cover Texts.

A copy of the license is included in the section entitled “GNU Free Documentation Li-
cense”.

Table of Contents

Introduction................, 1
1 How toImplement........................ 3
1.1 Defensive programming....................coovi.... 3
1.1.1 Check the return values of the functions you call
.. 3
1.1.2 Check the validity of parameters in your functions
.. 3
1.1.3 Return information about failure from your
functions. 3
1.1.4 Expect the impossible 3
2 HowtoCode........coviiiiiiinnnnnnnnnn. 4
2.1 Modularityoooi 4
2.1.1 Be aware of the two levels of modularity 4
2.1.2 Make independent modules..................... 4
2.1.3 Be clean in the headers 4
2.1.4 Be clean with what you include................. 4
2.1.5 Use the right order for includes................. 4
2.1.6 Don’t put code in header files 5
2.1.7 Providetestcode........... 5
2.2 Symbolnames..............ooiiiii 5
2.2.1 Define and use a module prefix 5
2.2.2 Name functions after the structure they operate on
.. 5
2.2.3 Make your private global symbols static......... 5
3 HowtoFormat........................... 6

A.1 ADDENDUM: How to use this License for your documents
.. 12

Introduction 1

Introduction

People often tend to judge the quality of software only by the number of it’s functions,
the beauty of it’s user interface or the ease of it’s utilization. But this is not the whole
truth. Good software is more than that:

Good software is stable.

Well, actually this should be obvious: good software should have few bugs. (Oddly
enough, some big and well-known software companies seem to be quite successful while
not following this rule.) Of course, it is not possible to write 100% bug-free programs, but
following a good coding style can save you from quite a few headaches.

Good software is fault tolerant.

This is even a higher aim than stability: not only that a program should not have bugs
itself, but it should also be as tolerant as possible of failures of linked systems. A library
function should always behave as reasonable as possible even when it is passed invalid
parameters, and programs should give correct and meaningful error messages when the
underlying software or hardware does not act like it should. Achieving this is not that
hard, when you keep a few basic rules in mind.

Good software is reusable.

Some people think that reinventing the wheel over and over again is a basic requirement
for a working software industry. However, other people don’t. They try to build their code
in a way that parts of it can be reused by other projects. But there are a few things to
consider when you want your code to be really reusable.

Good software is maintainable.

Maintainability is not a question of simplicity. Even complex and powerful programs
can be wonderfully maintainable, if you only take the necessary measures right from the
start.

Good software is understandable.

What? Not only the original author of a program should be able to understand it, but
everybody else looking at the code, too? Hey, that can’t be right! That would mean that
others can learn from my code! That others could even change my code, improve it, fix
bugs, take over maintenance . .. but wait! Couldn’t that be a good thing, too?

Of course, there are a lot of things to do when you want to write good software. One
of these things is that you should follow some standards in your coding style. To propose
such standards, is the purpose of this guide.

Chapter 1 [How to Implement], page 3 deals with the proper way of implementing
functions, not regarding naming conventions, code formatting and the like. Following the
rules from this chapter will change how your software behaves, and make it more stable
and fault tolerant.

Chapter 2 [How to Code], page 4 contains recommendations on how to translate an
algorithm into code of a computer language. Whether or not you follow these guidelines
(which are about modularity, naming conventions and all that sort of stuff) will not
necessarily have impact on the functionality of your software, but on the reusability and
the maintainability.

Chapter 3 [How to Format|, page 6 gives you hints on the formatting of the code. This
section deals with all the parts of the sourcecode that the compiler actually ignores, but
help to make your software maintainable and understandable, like comments, whitespaces
and indenting.

This text mainly concentrates of writing software in the C programming language, but
most of the principles explained here can easily be translated to other languages.

This is not a replacement for the GNU Coding Standards (which you can find at
http://www.gnu.org/prep/standards.html). This document does not deal with the
specific issues about writing free software, and the very specific issues about writing soft-
ware that should be incorporated into the GNU system. However, the above arguments

http://www.gnu.org/prep/standards.html

Introduction 2

probably make clear that only free software can be really good software, and therefore it is
recommended that you read the GNU Coding Standards, too. In any case this document
tries to not contradict the GNU Coding Standards.

This document is the result of a free documentation project. You can improve it if
you want. Please look at http://www.freesoftware.fsf.org/style-guide for more
information about this project.

http://www.freesoftware.fsf.org/style-guide

Chapter 1: How to Implement 3

1 How to Implement

1.1 Defensive programming

While it is good to believe that there is good in everybody, it is better to not rely on
that.

Virtually every piece of code depends on underlying systems, either soft- or hardware.
Software can have bugs, hardware can fail. Even your own code can have bugs. You can’t
do anything against that. But you can reduce the impact bugs and hardware failures have
on the system.

1.1.1 Check the return values of the functions you call

Many functions provide return values that tell about success or failure of the function.
If a function fails, react reasonably. Ignoring return values from a function can be like
Russian roulette.

1.1.2 Check the validity of parameters in your functions

Every function you write (especially the external ones) carry the risk of being called
with invalid parameters. A good function always behaves correct, even when it is called
incorrectly.

If you use the glib library, the macros g_return_if_fail() and g_return_val_if_
fail() provide a good way of checking parameters.

But what is correct behaviour when parameters make no sense? The answer is clear:

1.1.3 Return information about failure from your functions

Provide a means for the caller of your function to perceive failure. Make it possible to
distinguish between different reasons of failure, if it could make sense for the caller to react
differently. If your function fails, do not (besides the error code) return something that
could look like a reasonable result (for example, if your function should return a pointer
to a newly-allocated dynamic variable, always return a NULL pointer if it fails. Never
return a random pointer, or a pointer to a improperly initalized data structure).

1.1.4 Expect the impossible

In a switch statement, always use default. If only specific cases are valid, place an
assertion after the default.

If you use the glib library, use g_assert_not_reached().

Chapter 2: How to Code 4

2 How to Code

2.1 Modularity

2.1.1 Be aware of the two levels of modularity

A program consists of different libraries, and a library consists of different object files
(built from different source files). The following is not only true for the relationship
between libraries, but also for the relationship between the different sources of a library,
as well as the different sources of a program.

2.1.2 Make independent modules

If every module can be understood without reading the source of the other modules,
people will understand the whole program better. If every module can be tested without
relying on other modules, your code can get more stable. And, if every module can be
debugged without digging through all the other code, you will be able to fix bugs much
faster than otherwise.

Avoid circular dependencies in your modules. Avoid dependencies on too many other
modules in a single module. Avoid modules that are tied together too strong.

2.1.3 Be clean in the headers

For C, the header files are the faces of your modules. If you put something in a header,
you have to expect that people rely on it. Don’t put implementation specific stuff in a
header. Don’t define structures in your header - define the structure in the main source,
and simply put a type definition in the header, to make your structures opaque.

As every source file is a ‘low-level module’, every source file must have it’s own header
if it exports symbols that other source files of the same ‘high-level module’ (library or
application) uses. Don’t write a ‘big’ header file in which you define all symbols that are
shared among your library or application, as that would make the internal dependency
structure of your modules very unclear.

And, of course, protect all headers against multiple including.

2.1.4 Be clean with what you include

The #include preprocessor directives are a way of documenting dependencies. Don’t
include what you don’t need. Explicitly include every header you directly depend on, even
if it’s implicitly included in another header.

Be careful to use #include<...> for system headers and headers that are external to
your project and #include "..." for your own headers.

In header files, only include other headers when the code in this header needs the other
header. Foreign headers you include in the header of your library have to be present on
every system where your library should be used.

In source files, include all headers the source depends on, even those already included
in the source’s own header. This documents clearly what your source depends on.

2.1.5 Use the right order for includes

If your project has a global configuration file (like autoconf’s config.h), this must be
included in every source file, and it must be included as the wvery first line of your code
after comments, so that all other header files can react on the defines. config.h may
only include #define’s. Nobody expects code in such a file. Don’t include config.h in a

Chapter 2: How to Code 5

header file, unless you want to force all projects that use your header to have a config.h,
too.

Next should be your source’s own header file (where this source exports its external
symbols). By putting no other includes before this, you implicitly check whether your
header file is self-contained, i.e. if it contains all #include’s it needs to compile.

Then, include all needed header files that are external to your project, with the most
usual ones first. Last, include the needed header files of the other modules of your project.

Never put any code before the #include’s. Nobody searches them somewhere else as
at the very top of your source or header file.

2.1.6 Don’t put code in header files

Nobody expects real code in files that end in .h.

2.1.7 Provide test code

When you write a module, you will write code to test it. That code is a part of the
module. Put it in it’s own file, document it, and make it a program that others can use
to test if the module behaves correctly on their system. GNU Automake provides a very
good means for running automatic tests when a program is built with make check.

2.2 Symbol names

2.2.1 Define and use a module prefix

Choose a prefix for a module, and use that prefix for all symbols in that module. If the
module prefix is ‘foo’, then all public symbols of that module should start with ‘foo_’,

)

and all private symbols with ‘_foo_’.

2.2.2 Name functions after the structure they operate on

If the module foo defines a structure bar, name the structure tag ‘_foo_bar’, define

the structure tag in the main source, and define a type ‘foo_bar’ in the header. Name all
the functions operating on this structure beginning with ‘foo_bar_’. For example, name
a function that frees the memory of the structure, ‘foo_bar_free’.

2.2.3 Make your private global symbols static

WEell, that’s the reason why we have static symbols anyway, isn’t it?

Chapter 3: How to Format

3 How to Format

text goes here

Appendix A: GNU Free Documentation License

Appendix A GNU Free Documentation License

Version 1.1, March 2000

Copyright (© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the docu-
ment must themselves be free in the same sense. It complements the GNU General

Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited
to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally

for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public

[43

is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into

another language.

A “Secondary Section” is a named appendix or a front-matter section of the Docu-
ment that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (For example, if the Doc-
ument is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with
the subject or with related matters, or of legal, commercial, philosophical, ethical or

political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is

released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released

under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents
can be viewed and edited directly and straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup has been designed
to thwart or discourage subsequent modification by readers is not Transparent. A copy

that is not “Transparent” is called “Opaque”.

Appendix A: GNU Free Documentation License 8

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modifica-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added
material, which the general network-using public has access to download anonymously
at no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

Appendix A: GNU Free Documentation License 9

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it
has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

1. Preserve the section entitled “History”, and its title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on
its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed
in the “History” section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in
the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover

Appendix A: GNU Free Documentation License 10

Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you
or by arrangement made by the same entity you are acting on behalf of, you may
not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such
section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any
sections entitled “Acknowledgments”, and any sections entitled “Dedications”. You
must delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Doc-
ument, then if the Document is less than one quarter of the entire aggregate, the
Document’s Cover Texts may be placed on covers that surround only the Document
within the aggregate. Otherwise they must appear on covers around the whole ag-
gregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License provided that

Appendix A: GNU Free Documentation License 11

10.

you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 12

A.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled ‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releas-
ing these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Introduction
	How to Implement
	Defensive programming
	Check the return values of the functions you call
	Check the validity of parameters in your functions
	Return information about failure from your functions
	Expect the impossible

	How to Code
	Modularity
	Be aware of the two levels of modularity
	Make independent modules
	Be clean in the headers
	Be clean with what you include
	Use the right order for includes
	Don't put code in header files
	Provide test code

	Symbol names
	Define and use a module prefix
	Name functions after the structure they operate on
	Make your private global symbols static

	How to Format
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

