
Accessing Relational Data with RDF Queries

and Assertions

Dmitry Borodaenko

angdraug@debian.org

Abstract. This paper presents a hybrid RDF storage model that com-
bines relational data with arbitrary RDF meta-data, as implemented in
the RDF storage layer of the Samizdat open publishing and collabora-
tion engine, and explains the supporting algorithms for online translation
of RDF queries and conditional assertions into their relational equiva-
lents. Proposed model allows to supplement legacy databases with RDF
meta-data without sacrificing the benefits of RDBMS technology.

1 Introduction

The survey of free software / open source RDF storage systems performed by
SWAD-Europe[2] has found that the most wide-spread approach to RDF storage
relies on relational databases. As seen from the companion report on mapping
Semantic Web data with RDBMSes[3], traditional relational representation of
RDF is a triple store, usually evolving around a central statement table with
{subject, predicate, object} triples as its rows and one or more tables storing
resource URIrefs, namespaces, and other supplementary data.

While such triple store approach serves well to satisfy the open world as-
sumption of RDF, by abandoning existing relational data models it fails to take
full advantage of the RDBMS technology. According to [2], existing RDF storage
tools are still immature; in the same time, although modern triple stores claim
to scale to millions of triples, ICS-FORTH research[1] shows that schema-specific
storage model yields better results with regards to performance and scalability
on large volumes of data.

These concerns are addressed from different angles by RSSDB[12], Feder-
ate[11], and D2R[6] packages. RSSDB splits the single triples table into a schema-
specific set of property tables. In this way, it walks away from relational data
model, but maintains performance benefits due to better indexing. Federate
takes the most conservative approach and allows to query a relational database
with a restricted application-specific RDF schema. Conversely, D2R is intended
for batch export of data from RDBMS to RDF and assumes that subsequent
operation will involve only RDF.

The hybrid RDF storage model presented in this paper attacks this problem
from yet another angle, which can be described as a combination of Federate’s
relational-to-RDF mapping and a traditional triple store. While having the ad-
vantage of being designed from the ground up with the RDF model in mind,

Samizdat RDF layer[7] deviated from the common RDF storage practice in or-
der to use both relational and triple data models and get the best of both worlds.
Hybrid storage model was designed, and algorithms were implemented that al-
low to access the data in the hybrid triple-relational model with RDF queries
and conditional assertions in an extended variant of the Squish[13] query lan-
guage.1 This paper describes the proposed model and its implementation in the
Samizdat engine.

2 Relational Database Schema

All content in a Samizdat site is represented internally as RDF. Canonic
URIref for any Samizdat resource is http://<site-url>/<resource-id>, where
<site-url> is a base URL of the site and <resource-id> is a unique (within a
single site) numeric identifier of the resource.

Root of SQL representation of RDF resources is Resource table with id pri-
mary key field storing <resource-id>, and label text field representing resource
label. Semantics of label values are different for literals, references to external
resources, and internal resources of the site.

Literal value (including typed literals) is stored directly in the label field
and marked with literal boolean field.

External resource label contains the resource URIref and is marked with
uriref boolean field.

Internal resource is mapped into a row in an internal resource table with
name corresponding to the resource class name stored in the label field, primary
key id field referencing back to the Resource table, and other fields holding
values of internal properties for this resource class, represented as literals or
references to other resources stored in the Resource table. Primary key reference
to Resource.id is enforced by PostgreSQL stored procedures.

To determine what information about a resource can be stored in and ex-
tracted from class-specific tables, RDF storage layer consults site-specific map-
ping

M(p) = {〈tp1, fp1〉, . . .} , (1)

which stores a list of possible pairs of SQL table name t and field name f for
each internal property name p. Mapping M is read at runtime from external
YAML[4] file of the following form:

ns:

s: ’http://www.nongnu.org/samizdat/rdf/schema#’

focus: ’http://www.nongnu.org/samizdat/rdf/focus#’

1 The decision to use Squish over more expressive languages like RDQL[10] and No-
tation3[5] was made due to its intuitive syntax, which was found more suitable for
the Samizdat’s query composer GUI intended for end users of an open-publishing
system.

items: ’http://www.nongnu.org/samizdat/rdf/items#’

rdf: ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’

dc: ’http://purl.org/dc/elements/1.1/’

map:

’dc::date’: {Resource: published_date}

’s::id’: {Resource: id}

’rdf::subject’: {Statement: subject}

’rdf::predicate’: {Statement: predicate}

’rdf::object’: {Statement: object}

’s::rating’: {Statement: rating}

. . .

External properties, i.e. properties that are not covered by M , are repre-
sented by {subject, predicate, object} triples in the Statement table. Every
such triple is treated as a reified statement in RDF semantics and is assigned a
<resource-id> and a record in the Resource table.

Resource and Statement are also internal resource tables, and, as such,
have some of their fields mapped by M . In particular, subject, predicate,
and object fields of the Statement table are mapped to the corresponding
properties from the RDF reification vocabulary, and Resource.id is mapped to
samizdat:id property from Samizdat namespace.

Excerpt from default Samizdat database schema with mapped field names
replaced by predicate QNames is visualized on Fig. 1. In addition to Resource

and Statement tables described above, it shows the Message table representing
one of internal resource classes. Note how dc:date property is made available
to all resource classes, and how reified statements are allowed to have optional
samizdat:rating property.

3 Query Pattern Translation

3.1 Prerequisites

Pattern translation algorithm operates on the pattern section of a Squish query.
Query pattern Ψ is represented as a list of pattern clauses

ψi = 〈pi, si, oi〉 , (2)

where i is the position of a clause, pi is the predicate URIref, si is the subject
node and may be URIref or blank node, oi is the object node and may be URIref,
blank node, or literal.

Fig. 1. Excerpt from Samizdat database schema

3.2 Predicate Mapping

For each position i, predicate URIref pi is looked up in the map of internal
resource properties M . All possible mappings are recorded for all clauses in a
list C:

ci = {〈ti1, fi1〉, 〈ti2, fi2〉, . . .} , (3)

where tij is the table name (same for subject si and object oi) and fij is the
field name (meaningful for object only, since subject is always mapped to the
id primary key). In the same iteration, all subject and object positions of nodes
are recorded in the reverse positional mapping

R(n) = {〈i1, m1〉, 〈i2, m2〉, . . .} , (4)

where m shows whether node n appears as subject or as object in the clause i.
Each ambiguous property mapping is compared with mappings for other

occurrences of the same subject and object nodes in the pattern graph; anytime
non-empty intersection of mappings for the same node is found, both subject and
object mappings for the ambiguous property are refined to such intersection.

3.3 Relation Aliases and Join Conditions

Relation alias ai is determined for each clause mapping ci, such that for all
subject occurrences of the subject si that were mapped to the same table ti,
alias is the same, and for all positions with differing table mapping or subject
node, alias is different.

For all nodes n that are mapped to more than one 〈ai, fi〉 pair in different
positions, join conditions are generated. Additionally, for each external resource,
Resource table is joined by URIref, and for each existential blank node that
isn’t already bound by join, NOT NULL condition is generated. Resulting join
conditions set J is used to generate the WHERE section of the target SQL query.

3.4 Example

Following Squish query selects all messages with rating above 1:

SELECT ?msg, ?title, ?name, ?date, ?rating

WHERE (dc::title ?msg ?title)

(dc::creator ?msg ?author)

(s::fullName ?author ?name)

(dc::date ?msg ?date)

(rdf::subject ?stmt ?msg)

(rdf::predicate ?stmt dc::relation)

(rdf::object ?stmt focus::Quality)

(s::rating ?stmt ?rating)

LITERAL ?rating >= 1

ORDER BY ?rating

USING rdf FOR http://www.w3.org/1999/02/22-rdf-syntax-ns#

dc FOR http://purl.org/dc/elements/1.1/

s FOR http://www.nongnu.org/samizdat/rdf/schema#

focus FOR http://www.nongnu.org/samizdat/rdf/focus#

Mappings produced by translation of this query are summarized in the Ta-
ble 1.

Table 1. Query Translation Mappings

i ti fi ai

1 Message title b

2 Message creator b

3 Member full name d

4 Resource published date c

5 Statement subject a

6 Statement predicate a

7 Statement object a

8 Statement rating a

As a result of translation, following SQL query will be generated:

SELECT b.id, b.title, d.full_name, c.published_date, a.rating

FROM Statement a, Message b, Resource c, Member d,

Resource e, Resource f

WHERE a.id IS NOT NULL

AND a.object = e.id AND e.literal = false

AND e.uriref = true AND e.label = ’focus::Quality’

AND a.predicate = f.id AND f.literal = false

AND f.uriref = true AND f.label = ’dc::relation’

AND a.rating IS NOT NULL

AND b.creator = d.id

AND b.id = a.subject

AND b.id = c.id

AND b.title IS NOT NULL

AND c.published_date IS NOT NULL

AND d.full_name IS NOT NULL

AND (a.rating >= 1)

ORDER BY a.rating

3.5 Limitations

In RDF model theory[9], a resource may belong to more than one class. In
Samizdat RDF storage model, resource class specified in Resource.label is
treated as the primary class: it is not possible to have some of the internal
properties of a resource mapped to one table and some other internal properties
mapped to the other. The only exception to this is, obviously, the Resource

table, which is shared by all resource classes.

Predicates with cardinality greater than 1 cannot be mapped to internal
resource tables, and should be recorded as reified statements instead.

RDF properties are allowed to be mapped to more than one internal resource
table, and queries on such ambiguous properties are intended to select all classes
of resources that match this property in conjunction with the rest of the query.

The algorithm described above assumes that other pattern clauses refine such
ambiguous property mapping to one internal resource table. Queries that fail this
assumption will be translated incorrectly by the current implementation: only
the resource class from the first remaining mapping will be matched. This should
be taken into account in site-specific resource maps: ambiguous properties should
be avoided where possible, and their mappings should go in order of resource
class probability descension.

It is possible to solve this problem, but any precise solution will add signifi-
cant complexity to the resulting query. Solutions that would not adversely affect
performance are still being sought. So far, it is recommended not to specify more
than one mapping per internal property.

4 Conditional Assertion

4.1 Prerequisites

Conditional assertion statement in Samizdat Squish is recorded using the same
syntax as RDF query, with the SELECT section containing variables list replaced
by INSERT section with a list of “don’t-bind” variables and UPDATE section con-
taining assignments of values to query variables:

[INSERT node [, ...]]

[UPDATE node = value [, ...]]

WHERE (predicate subject object) [...]

[USING prefix FOR namespace [...]]

Initially, pattern clauses in assertion are translated using the same procedure
as for a query. Pattern Ψ , clause mapping C, reverse positional mapping R, alias
list A, and join conditions set J are generated as described in the previous
section.

After that, database update is performed in two stages described below. Both
stages are executed within a single transaction, rolling back intermediate inserts
and updates in case assertion fails.

4.2 Resource Values

On this stage value mapping V (n) is defined for each node n, and necessary
resource insertions are performed:

1. If n is an internal resource, V (n) is its id. If there is no resource with such
id in the database, error is raised.

2. If n is a literal, V (n) is the literal value.
3. If n is a blank node and only appears in object position, it is assigned a

value from the UPDATE section of the assertion.
4. If n is a blank node and appears in subject position, it is either looked up

in the database or inserted as a new resource. If no resource in the database
matches n (to check that, subgraph of Ψ including all pattern nodes and
predicates reachable from n is generated and matched against the database),
or if n appears in the INSERT section of the assertion, new resource is created
and its id is assigned to V (n). If matching resource is found, V (n) becomes
equal to its id.

5. If n is an external URIref, it is looked up in the Resource table. As with
subject blank nodes, V (n) is the id of a matching or new resource.

All nodes that were inserted during this stage are recorded in the set of new
nodes N .

4.3 Data Assignment

For all aliases from A except additional aliases that are defined for external
URIref nodes (which don’t have to be looked up since their ids are recorded in
V during the previous stage), reverse positional mapping

RA(a) = {i1, i2, . . .} (5)

is defined. Key node K is defined as the subject node si1 from clause ψi1 , and
aliased table t is defined as the table name ti1 from clause mapping ci1 .

For each position k from RA(a), a pair 〈fk, V (ok)〉, where fk is the field name
from ck, and ok the object node from ψk, is added to the data assignment list
D(K) if node ok occurs in new node list N or in UPDATE section of the assertion
statement.

If key node K occurs in N , new row is inserted into the table t. If K is not
in N , but D(K) is not empty, SQL update statement is generated for the row
of t with id equal to V (K). In both cases, assignments are generated from the
data assignment list D(K).

The above procedure is repeated for each alias a included in RA.

4.4 Iterative assertions

If the assertion pattern matches more than once in the site knowledge base, the
algorithm defined in this section will nevertheless run the appropriate insertions
and updates only once. For iterative update of all occurences of pattern, assertion
has to be programmatically wrapped inside an appropriate RDF query.

5 Implementation Details

Samizdat engine[8] is written in Ruby programming language and uses Post-
greSQL database for storage and an assortment of Ruby libraries for database
access (DBI), configuration and RDF mapping (YAML), l10n (GetText), and
Pingback protocol (XML-RPC). It is running on a variety of platforms ranging
from Debian GNU/Linux to Windows 98/Cygwin. Samizdat is free software and
is available under GNU General Public License, version 2 or later.

Samizdat project development started in December 2002, first public release
was announced in June 2003. As of the second beta version 0.5.1, released in
March 2004, Samizdat provided basic set of open publishing functionality, in-
cluding registering site members, publishing and replying to messages, uploading
multimedia messages, voting on relation of site focuses to resources, creating and
managing new focuses, hand-editing or using GUI for constructing and publish-
ing Squish queries that can be used to search and filter site resources.

6 Conclusions

Wide adoption of the Semantic Web requires interoperability between relational
databases and RDF applications. Existing RDF stores treat relational data as
legacy and require that it is recorded in triples before being processed, with the
exception of the Federate system that provides limited direct access to relational
data via application-specific RDF schema.

The Samizdat RDF storage layer provides an intermediate solution for this
problem by combining relational databases with arbitrary RDF meta-data. The
described approach allows to take advantage of RDBMS transactions, replica-
tion, performance optimizations, etc., in Semantic Web applications, and reduces
the costs of migration from relational data model to RDF.

As can be seen from corresponding sections of this paper, current implemen-
tation of the proposed approach has several limitations. These limitations are
not caused by limitations in the approach itself, but rather, reflect the pragmatic
decision to only implement the functionality that is used by Samizdat engine.
As more advanced collaboration features such as message versioning and aggre-
gation are added to Samizdat, some of the limitations of its RDF storage layer
will be removed.

References

1. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis D., Tolle, K.: The
RDFSuite: Managing Voluminous RDF Description Bases, Technical report, ICS-
FORTH, Heraklion, Greece, 2000.
http://139.91.183.30:9090/RDF/publications/semweb2001.html

2. Beckett, Dave: Semantic Web Scalability and Storage: Survey of Free Software /
Open Source RDF storage systems, SWAD-Europe Deliverable 10.1
http://www.w3.org/2001/sw/Europe/reports/rdf scalable storage report

3. Beckett, D., Grant, J.: Semantic Web Scalability and Storage: Mapping Semantic
Web Data with RDBMSes, SWAD-Europe Deliverable 10.2
http://www.w3.org/2001/sw/Europe/reports/scalable rdbms mapping report

4. Ben-Kiki, O., Evans, C., Ingerson, B.: YAML Ain’t Markup Language (YAML)
1.0. Working Draft 2004-JAN-29.
http://www.yaml.org/spec/

5. Berners-Lee, Tim: Notation3 — Ideas about Web architecture
http://www.w3.org/DesignIssues/Notation3

6. Bizer, Chris: D2R MAP — Database to RDF Mapping Language and Processor
http://www.wiwiss.fu-berlin.de/suhl/bizer/d2rmap/D2Rmap.htm

7. Borodaenko, Dmitry: Samizdat RDF Storage, December 2002
http://savannah.nongnu.org/cgi-bin/viewcvs/samizdat/samizdat/doc/rdf-
storage.txt

8. Borodaenko, Dmitry: Samizdat RDF Implementation Report, September 2003
http://lists.w3.org/Archives/Public/www-rdf-interest/2003Sep/0043.html

9. Hayes, Patrick: RDF Semantics. W3C, February 2004
http://www.w3.org/TR/rdf-mt

10. Jena Semantic Web Framework: RDQL Grammar
http://jena.sf.net/RDQL/rdql grammar.html

11. Prud’hommeaux, Eric: RDF Access to Relational Databases
http://www.w3.org/2003/01/21-RDF-RDB-access/

12. RSSDB — RDF Schema Specific DataBase (RSSDB), ICS-FORTH, 2002
http://139.91.183.30:9090/RDF/RSSDB/

13. Libby Miller, Andy Seaborne, Alberto Reggiori: Three Implementations of
SquishQL, a Simple RDF Query Language. 1st International Semantic Web Con-
ference (ISWC2002), June 9-12, 2002. Sardinia, Italy.
http://ilrt.org/discovery/2001/02/squish/

