
Refefree
Protocol Version 1

Wolfgang Hess

July 7, 2005

Contents

1 Bitstream Protocol 3
1.1 Sockets . 3
1.2 Server Ports . 3
1.3 Communication Blocks . 3
1.4 Handling Exceptions . 4
1.5 Synchronous Communication 4
1.6 Entities . 4

2 Server Protocol 4
2.1 The First Message . 5
2.2 Server Flags . 5
2.3 Login Request . 5
2.4 A Warm Welcome . 6
2.5 Connection Flags . 6
2.6 Heartbeats . 6
2.7 Server Status . 7
2.8 Pause Toggle . 7

3 Submission Protocol 8
3.1 Submission . 8
3.2 Language Identifications . 8
3.3 Polling for Results . 9
3.4 Getting Results . 9
3.5 Judgements . 9

4 Automatic Client Configuration 10
4.1 Programming Languages . 10
4.2 Problem Set . 11
4.3 Completion Message . 11

5 The Scoreboard 11
5.1 Requests . 11
5.2 Replies . 11
5.3 Scores . 12

6 Judge Protocol 12
6.1 Polling for Submissions . 13
6.2 Getting Submission Information 13
6.3 Fetching a Submission Source 14
6.4 Judging a Submission . 14

1

7 Clarifications 15
7.1 Requesting a Clarification . 15
7.2 Polling for Clarification Requests 15
7.3 Getting Clarification Request Information 16
7.4 Getting Answers . 16
7.5 Locking a Clarification Request 17
7.6 Answering a Clarification Request 17

8 File System Structure 18
8.1 Submissions . 18
8.2 Judgements . 19
8.3 Locking . 19
8.4 Notifications . 19
8.5 Clarifications . 20

A Protocol Codes 22
A.1 Basics . 22
A.2 Submissions . 22
A.3 Clarifications . 23

Thanks to Markus Moll, Sebastian Kanthak and Martin Girschick for their
helpful comments on this protocol.

Copyright c©2005 Wolfgang Hess
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE.

2

1 Bitstream Protocol

1.1 Sockets

Communication between the server and its clients is done via TCP sockets.
The server should support SSL connections. This can be done by listening
to an arbitrary local port and using the stunnel program to implement SSL.

1.2 Server Ports

The server must be configurable to listen to the default port 27251, accepting
at least logins from contestants. The server should be configurable to listen
to multiple ports, of which some may accept only judges, only contestants or
both. A client must be configurable to connect to any port. Both clients and
servers should use the default port if the user does not specify otherwise. If
separate ports are used for contestant and judge connections, port 27252 is
recommended for accepting the judges.

1.3 Communication Blocks

Communication is done a message at a time. Each message is contained in
its own block, which has a header containing the length of the data section
followed by the data itself. The length is encoded in 10 bytes as a string, i. e.
as a left-aligned decimal integer padded with spaces representing a 32-bit
value. This is followed by as many bytes of data as stated in the header.
size data size data size data . . .

Each block contains the data as text in one or more lines which are
terminated by a single LF, i. e. by a value 0x0a. To allow some telnet

clients to connect, a server should strip most received data from CRs before
further processing, i. e. characters with a value of 0x0c should be removed.
Received source code is an exception to this rule. Most lines are encoded
in ASCII unless specified otherwise. Lines must not contain any control
characters. If flags are written in a single line, flags are seperated by space,
i. e. by values 0x20. Flags only contain ASCII characters, and they should
be seperated by adding a single space as a suffix to every flag, including the
last one. The first line contains the protocol code for this block. Identification
lines, e. g. login names and passwords, are encoded in UTF-8.

3

1.4 Handling Exceptions

Receiving protocol codes or flags that are unknown to the implementation is
not an error, unless specified otherwise. Whenever this case occurs, unknown
parts must simply be silently ignored. This is used to enable extensions of
the protocol. However, a message that is understood but malformed is an
error.

Currently until the client has successfully logged in, message sent from
the client other than login request are considered an error. Servers that
do accept other messages at that stage must advertise this fact in the server
flags as will be specified then.

If an error is detected the connection is simply closed. The host closing
the connection should send an error message just before the connection is
closed if it is possible. The format of this message is the protocol code error

on the first line, followed by an error text on the next line or lines.

1.5 Synchronous Communication

Communication is done in order, i. e. requests must be answered in the same
order as they are received. This makes it possible to synchronize a connec-
tion by simply sending a heartbeat request, because at the time the reply is
received, all requests made before must have been answered completely.

1.6 Entities

Throughout this protocol description several entities are considered. Contes-
tants and judges are identified by their login name and both are referred to as
clients. They all are persistent independent of specific network connections.

2 Server Protocol

A server must support three states before, running and after. before is
the state before the start of the contest, clients may connect but submissions
are not accepted. running is the state once the contest is started. In this
state the clock advances until the contest is over and the state is changed to
after. In the state after the contest logins are not accepted anymore and
no submissions may be made.

A server should support a fourth state paused which is the same as
running except that the clock is stopped.

The server must support some method to start a contest.

4

2.1 The First Message

After a client has established a new connection the server sends the first
message and then waits for the client to login or close the connection. The
message includes four lines:

1. the protocol code hello

2. the server identification, e. g. Overlord Server 1.0 for the first ver-
sion of the reference implementation, UTF-8

3. the identification of the contest; this is a completely arbitrary identifi-
cation string, a client should show this string to the user, UTF-8

4. the last line contains the server flags

2.2 Server Flags

Currently these server flags are defined:

contestants the server accepts logins of contestants at this port.

judges the server accepts logins of judges at this port.

2.3 Login Request

After the connection to the server has been established the client has to decide
whether to login or not. If the login fails, the server closes the connection, if
it succeeds the server sends a welcome message. The login message is quite
simple and contains four lines:

1. the protocol code login request

2. the login flags, contestant if contestant logins, judge if judge logins
are supported

3. the login name; note that login names of all clients, i. e. judges and
contestants, have a single common namespace, UTF-8

4. the password, UTF-8

5

2.4 A Warm Welcome

Logins that pass the password authentication are welcomed by the server by
a welcome message after which the login procedure has ended and normal
communication starts. The welcome message has these three lines:

1. the protocol code login welcome

2. the account name, an arbitrary string naming the contestant, e. g. for
use in a scoreboard, UTF-8

3. the connection flags

2.5 Connection Flags

The following connection flags are defined:

contestant the server has accepted the connected client as a contestant.

judge the server has accepted the connected client as a judge.

notifies the server supports submission notification and will notify this
client.

status the server includes some of its status in heartbeat answers

autoconfig the server supports the protocol extension for automatic client
configuration.

scoreboard the server supports the extension for showing a scoreboard.

clarifications the server supports the extension for clarification requests.

pause the judge client can use the pause toggle message.

serverstatus the judge client can use the server status extension.

2.6 Heartbeats

To enable clients and servers to synchronize connections and to test whether
a connection is alive, the heartbeat protocol must be implemented by all
clients and servers.

After a server has sent the welcome message it can sent a heartbeat
request over the corresponding connection at any point in time. Likewise

6

a client can send heartbeat requests after the login message. A heartbeat
request contains a single line with the protocol code heartbeat request.

A heartbeat request must be answered immediately by a heartbeat reply
message. This message contains the protocol code heartbeat whoomp in a
single line, or a status message using the same protocol code if the server
announced this.

2.7 Server Status

The current state of the server and the elapsed time in minutes can be queried
if the server included the status flag in the connection flags.

In this case the server must answers to heartbeat requests with its status
in a message that contains three lines:

1. the protocol code heartbeat whoomp

2. the current state, one of before, running, paused, after

3. the number of elapsed minutes

4. the duration of the contest in minutes

While all clients can get the above mentioned status, the server status ex-
tension enables judge clients to receive a more complete status of the server.
If this extension is supported, the serverstatus flag is included in the con-
nection flags of a connecting judge client. To request the status, a mes-
sage containing a single line with the protocol code serverstatus request

is sent by the judge, whereupon the server must answer with a message
with the protocol code serverstatus reply on the first line, followed by an
implementation-defined status report. This should be an XML structure
including at least the compile and runtime configuration, the contest time
and state.

2.8 Pause Toggle

If the server sets the pause connection flag, it must support the paused

state in addition to before, running and after.
In this case a judge client can send a message to change the server state

that contains the following two lines:

1. the protocol code pause toggle

2. the new state, one of before, running, paused, after

7

3 Submission Protocol

When a contestant is connected to the server, submitting solutions and polling
for the results must be supported.

A server which supports notifications has the corresponding connection
flag set and sends results whenever the status of a submission of this contes-
tant changes. Usually this is a notification when the code is received by the
server and another notification after the submission has been judged. When
a submission gets rejudged, an additional notification is sent. If a connec-
tion has the notification flag set and results for the contestant already exist,
the server must send these results immediately after login. Servers should
support notifications.

3.1 Submission

When solutions are submitted by a contestant, the message is split into a
header and the source code. Even if the server does strip CRs in the received
data, the source code must be copied as is. The header is a normal message
and source code is the rest of the message block. The header contains the
following lines:

1. the protocol code submission submit

2. the problem identification, UTF-8

3. the programming language identification, UTF-8

3.2 Language Identifications

The identification string for a programming language should be the file
extensions of source code files of this language, if this is possible. Clients
and servers should use the default languages as default if not configured
otherwise and must be configurable to use these languages. For the three
default languages the identification is defined as follows:

c C

cc C++

java Java

8

3.3 Polling for Results

Contestants can poll the current results of all their submissions. The message
used contains a single line with the protocol code submission results.

The answer may contain new results that are marked as such, and a no-
tifying server will treat these results as notified, even though the notification
was part of the answer to a polling request.

If the client needs to know when the complete answer has been received,
it can guard the request with a heartbeat.

3.4 Getting Results

Each result message contains the result of a single submission. This is used
to notify contestants and to answer the polling request described above. It
contains the following lines:

1. the protocol code submission result

2. the submission number, an integer

3. the submission time in minutes since the contest started, an integer

4. the problem identification, UTF-8

5. the programming language identification, UTF-8

6. notifies if this message is a notification, empty otherwise

7. the state of this submission, either new, unjudged, rejected, accepted
or ignored

8. an explanation for the judgement, empty for the new state, UTF-8

3.5 Judgements

The following judgement states are used throughout this protocol:

new the state of the judgement directly after the submission

unjudged the state of a judgement that has been withdrawn and awaits
rejudging; it is otherwise treated the same as new

rejected the submission has been judged as wrong

accepted the submission has been judges as correct

9

ignored the submission is ignored; this means the submission is treated as
if it were never submitted

There is a standard set of judgements, of which only the first is for ac-
cepted, the others are for incorrect submissions:

• Correct

• Presentation error

• Wrong answer

• Time limit exceeded

• Run-time error

• Compilation error

• Contact staff

4 Automatic Client Configuration

When a server supports the extension for automatic client configuration it
informs a client by sending the autoconfig connection flag. Immediately
after the welcome message and before any other messages, the configuration
messages are sent. They all share a single protocol code login autoconfig.
After sending the configuration data, a completion message must be sent.
The server must send a complete configuration to support the extension.

4.1 Programming Languages

For every programming language supported by the server, a message is send,
containing the following four lines:

1. the protocol code login autoconfig

2. the configuration type language

3. the programming language identification, UTF-8

4. the programming language name, to be shown to the user, UTF-8

10

4.2 Problem Set

For every problem in the problem set for the contest, a message is send,
containing the following four lines:

1. the protocol code login autoconfig

2. the configuration type problem

3. the problem identification, UTF-8

4. the problem name, to be shown to the user, UTF-8

4.3 Completion Message

The completion message consists of these two lines:

1. the protocol code login autoconfig

2. the configuration type completed

5 The Scoreboard

Servers that support the scoreboard extension advertise so in their connection
flags by sending the flag scoreboard. These servers must answer scoreboard
requests.

5.1 Requests

Scoreboard requests can be sent by any connected client and contain only a
line with the protocol code scoreboard request.

5.2 Replies

A server supporting the extension may deny access to the scoreboard, e. g.
to implement a period at the end of the contest when the scoreboard is
not shown anymore or to answer requests while a scoreboard has not been
computed. In this case the reply is a single line containing the scoreboard

protocol code.
Otherwise the protocol code scoreboard is the first line and is followed

by the most current scoreboard the server has computed. This output is
implementation-defined although it should be possible to use the data for
display using a standard web browser. When the scoreboard duration is over

11

and the scoreboard is no longer updated, the server should answer the
request using the last computed scoreboard.

5.3 Scores

This section describes the commonly used scoring system.
For each problem and contestant the number of submissions until and

including the first accepted submission are counted. If a problem was solved
successfully, the time in minutes from the beginning of the contest until
the first successful submission is taken. For each contestant a penalty is
computed as the sum of times consumed for the solved problems and 20
penalty minutes for each rejected submission before an accepted submission
of the same problem.

A contestant solving more problems ranks higher, and, if two contestants
solved the same number of problems, the one with the lower penalty.

This means, that for determining the ranking, submissions for problems
that a contestant already solved can be ignored. Likewise submissions by a
contestant for a problem, that this contestant ultimately fails to solve, can
be ignored.

6 Judge Protocol

If the server accepts judge connections at one or multiple ports, it must
set the judges server flag when welcoming a new connection at these ports.
When a judge logs in, the welcome message must have the judge connection
flag set.

When the connection flag for submission notification notifies is set, the
server must inform all connected judge clients with a notification whenever
the state of a submission is changed. When notifications are used, the server
must send a list of all submissions after login. This is similar to the con-
testant case. Thus, using notifications, a connected judge client will have
up-to-date information about all submissions without polling.

Judges can use some protocol codes in the same way as contestants do,
like heartbeats, automatic configuration and scoreboard requests, if they are
supported by the server. What differs significantly is the submission protocol.
Here the role of the judge is to query the submissions that have been made,
and fetch and judge them.

12

6.1 Polling for Submissions

Judges can poll a complete list of all submissions. The message used contains
a single line with the protocol code submission list.

Like in the contestant client case, some of the answers may be marked as
notifications, although they are part of this polling request, and thus are not
notified separately.

If the client needs to know when the complete answer has been received,
it can guard the request with a heartbeat.

6.2 Getting Submission Information

Each submission notification message contains the information about one
submission. This is used to notify the judges and to answer the polling
request described above. It contains the following lines:

1. the protocol code submission notify

2. the submission number, an integer

3. the login name of the submitting contestant, UTF-8

4. the submission time in minutes since the contest started, an integer

5. the problem identification, UTF-8

6. the programming language identification, UTF-8

7. notifies if this message is a notification, empty otherwise

8. the login name of the judge, if already judged, or empty, UTF-8

9. the state of this submission, either new, unjudged, rejected, accepted
or ignored

10. an explanation for the judgement, empty for the new state, UTF-8

11. the lock string for the judgements, typically locked when anyone holds
the lock, empty if unlocked

13

6.3 Fetching a Submission Source

A judge can fetch a submission source by sending a message in the following
format:

1. the protocol code submission fetch

2. the submission number, an integer

When receiving such a message the server should try to obtain a lock
on this submission, so that no other judges can fetch the same submission
while it is being judged. The answer that is sent back contains a header with
the following lines, which is followed by the source code of the submission:

1. the protocol code submission source

2. the submission number, an integer

3. the string success

If the request fails, e. g. because the lock is already held by another judge
the server answers with a message containing only these lines:

1. the protocol code submission source

2. the submission number, an integer

3. the string failure

6.4 Judging a Submission

After a judge has successfully fetched the source code to a submission this
submission can be judged. To do this the judge sends a message in the
following format:

1. the protocol code submission judge

2. the submission number, an integer

3. the state of this submission, either unjudged, rejected, accepted,
ignored or empty

4. an explanation for the judgement, empty if the state is empty, UTF-8

When a judge sends this message, the server must release a taken lock
for the corresponding submission. When a judge sends an empty string as
state, the judgement is not changed, but a lock is released.

14

7 Clarifications

A server which supports clarifications sets the clarifications connection
flag and uses several messages similar to the submission handling. Clari-
fications can be requested by both contestant and judge clients. They are
answered by a judge who can decide to answer them for the requesting client
only or for all clients.

If a server supports clarifications and has the notifies connection flag
set, it must also notify clarifications. This is done similar to the notification
for submissions. When a new connection is made, the state of all clarifications
for this client, i. e. requests that this client made and requests that were an-
swered to everyone, must be sent after login using the clarification reply

message. In addition to that, judge clients receive a clarification notify

and a clarification notify2 message for each request. Whenever the state
of a clarification changes the questioner, or if the request was answered to
everybody all connected clients, must be notified. Likewise every judge has
to be notified using both notification messages for every change in the state
of a request.

7.1 Requesting a Clarification

A clarification request can be sent by contestants and judges. It is split in
a header and the question, like the source code in a submission, and the
question must be copied as is. The header contains the following two lines:

1. the protocol code clarification request

2. the problem identification, empty if it is a general question, UTF-8

7.2 Polling for Clarification Requests

Judges can poll a list of all submitted clarification requests. The message
used for this purpose is the protocol code clarification list on a single
line.

The answer contains both two messages, clarification notify and
clarification notify2, for every clarification request. These messages can
contain notifications in which case these clarifications are not notified again
separately.

To know when the request has been completely answered, heartbeats can
be used.

15

7.3 Getting Clarification Request Information

Each notification to a judge about a clarification request and its state consists
of two messages that are sent one after the other. The first message contains
the request information that will remain unchanged. It is split in a header
which is followed by the question. The header contains the following lines:

1. the protocol code clarification notify

2. the request number, an integer

3. the login name of the questioner, UTF-8

4. the problem identification, empty if it is a general question, UTF-8

5. the submission time of the request in minutes since the contest started,
an integer

This message is always directly followed by the current state of the clar-
ification which is split into two parts as well, a header and the answer. The
header has the following format:

1. the protocol code clarification notify2

2. the request number, an integer

3. the login name of the judge, if already answered, or empty, UTF-8

4. the state of this request, either unanswered, questioner or everyone

5. the answer time in minutes since contest start when the last change
was made, or empty if none

6. notifies if this message is a notification, empty otherwise

7. the lock string for the answer, typically locked when a lock is held,
empty if unlocked

7.4 Getting Answers

Clients can poll the current clarification status of all their own questions and
answers to everyone. This is done by sending a single line message with the
protocol code clarification replies.

The answer my contain notifications in which case the clarifications will
not be notified again. The answer can be guarded by a heartbeat if desired.

16

For every clarification a separate message is sent containing a header
followed by the answer to the clarification. The header has the following
format:

1. the protocol code clarification reply

2. the request number, an integer

3. the problem identification, empty if it is a general question, UTF-8

4. the state of this request, either unanswered, questioner or everyone

5. notifies if this message is a notification, empty otherwise

7.5 Locking a Clarification Request

If a judge wants to answer a clarification request, the request has to be locked
first, which is done using this message format:

1. the protocol code clarification lock

2. the request number, an integer

When receiving such a message the server should try to obtain a lock
on this request, so that no other judges can lock the same request while it is
being answered. The reply by the server has this form:

1. the protocol code clarification locked

2. the request number, an integer

3. either success or failure

If the server answers failure the request made by the judge has no effect.

7.6 Answering a Clarification Request

After a judge has successfully locked the request, it can be answered. For
that purpose the judge sends a message with these lines as a header, followed
by the answer:

1. the protocol code clarification answer

2. the request number, an integer

17

3. the state of this request, either unanswered, questioner, everyone or
empty

When a judge sends this message, the server must release a taken lock
for the corresponding request. When a judge sends an empty string as state,
the answer is not changed, but a lock is released. The answer is empty in
this case.

If a judge wants to answer the question to the questioner only, it has to
use the state questioner, likewise if the judge likes everyone to receive the
answer, the state everyone is necessary.

8 File System Structure

The server writes all data necessary to stop and restart the server to disk.
These files should be human readable. Submission related data is stored in
files with names of the form n.purpose, where n is the zero-based decimal
number of the submission, and purpose is a string describing the content of
the file. The format to use for these files is specified herein. The following
protocols can either be used directly or by the server on behalf of a client.

8.1 Submissions

When a submission is received by the server three files are created: n.source,
n.judgement and n.submission. The first one contains the source code that
was submitted. The last one must be created atomically as the last of the
three, and contains the following lines:

1. the identification of the contestant who submitted this code, UTF-8

2. the identification of the problem, for which this was submitted, UTF-8

3. the identification of the language the code was submitted in, UTF-8

4. the submission time in minutes from the beginning of the contest

To atomically create this file it should be created as a temporary file
and moved into place. Using this approach, the server must cope with a
rename that failed due to NFS, e. g. by verifying the result with a stat call.

These two files, n.submission and n.source, must not be changed.

18

8.2 Judgements

Judgements are saved as files named n.judgement and can be created by
external processes as well as by the server itself. All changes to these files
have to be done atomically. The contents are on separate lines:

1. the identification of the judge, UTF-8, or empty if none

2. the judgement itself, either new, unjudged, rejected, accepted or
ignored

3. an explanation for the judgement, empty for the new state, UTF-8

When a submission is received, a judgement file is created containing the
initial state.

As described above atomic creation of the file can be done by renaming
an already written temporary file to the correct name, keeping in mind that
NFS might need to be handled. Renaming also handles atomic replacement
of the file, if the submission is being rejudged. The contents of a file must
not be changed.

8.3 Locking

To prevent several judges to interfere with each other while judging a submis-
sion, a locking mechanism is implemented. Judges only change the judgement
files when they hold a lock. For this purpose a judge creates a temporary
file and links it to n.lock. If this succeeds this judge can, still atomically,
change the judgement as long as the lock is held. The lock is released by
unlinking the lock file. If the linking of the lock does not succeed, i. e. the
temporary file is still linked only once, the judge is not allowed to change the
judgement.

8.4 Notifications

If notifications are supported, the server should send out notifications when-
ever a judgement is made, either as a first judgement to a submission (the
usual case) or when a submission is rejudged. The following section describe
a possible implementation.

Notifications that have already been sent out to the contestant are re-
membered using n.notified and n.jnotified file names. To test whether
a contestant was already notified, the number of hard links of the n.notified
file are checked. Therefore the judgement files must only be hard linked once,
i. e. moving them into place is acceptable, just linking them is not.

19

When a new judgement exists its corresponding file is created with a
single hard link. If there exists an old judge notification file n.jnotified it
has to be removed and is replaced by linking the judgement to n.jnotified,
thus resulting in two hard links. When the is hard linked twice, an old
notification file n.notified must be removed as is replaced by linking the
judge notification n.jnotified to n.notified resulting in the final number
of three hard links.

When the submission is rejudged the hard link count drops to one and
another notification is sent.

Likewise changes of the lock file n.lock are notified by a file named
n.lock.notified. If this file exists the last notified state was that the lock
is taken, and if it does not exist the notification said the lock is not taken.
Only judges are notified about a changes in the lock state.

8.5 Clarifications

The files used for clarifications are similar to those for submissions. They
are of the form Cn.purpose, with n being the number of the clarification
request and purpose used to discriminate between the different files of a
single clarification request.

When the server receives a clarification request, a file Cn.clarification
is created atomically after an answer file in the unanswered state has been
created. The clarification file contains the following lines followed by the
question:

1. the identification of the questioner who submitted this request, UTF-8

2. the problem identification, empty if it is a general question, UTF-8

3. the time in minutes from the beginning of the contest

The answer file has the name Cn.answer and contains the following lines
followed by the answer, if it exists:

1. the identification of the judge, UTF-8, or empty if none

2. the request state, unanswered, questioner or everyone

3. the answer time in minutes since contest start when the last change
was made, or empty if none

The answer file is similar to the judgements and can be changed atom-
ically. The locking mechanism is exactly the same and the lock files are
prefixed with C.

20

If notifications are supported, several additional files are created. There
are some differences to the submission notifications. For every answer two
notification files Cn.onotified and Cn.notified are created using the meth-
ods for the n.jnotified and n.notified respectively. The former file is
created when all connected judges and, in case the answer was for everyone,
all connected clients except the questioner are notified. The latter file is only
created when the questioner is notified. Lock notifications are sent to the
judges as before, using Cn.lock.notified files.

21

A Protocol Codes

A.1 Basics

hello Used by the server to greet new connections.

login request First message of a client with login name and password.

login welcome Sent by the server to confirm a successful login.

login autoconfig Sent by the server to automatically configure a client.

heartbeat request Requests a heartbeat for connection synchronisation.

heartbeat whoomp The answer to a heartbeat request.

error Error messages sent before closing a connection.

scoreboard request Requests a scoreboard message from the server.

scoreboard Answers (or not) a scoreboard request.

pause toggle Request by a judge to change the current contest state.

serverstatus request Request by a judge to get the server status.

serverstatus reply Reply to a server status request.

A.2 Submissions

submission submit Used to submit a solution.

submission results Used by a contestant to fetch all submission result.

submission result Used to inform a contestant about a submission result.

submission notify Used to inform a judge about a (new) submission.

submission list Used by a judge to fetch a list of all submissions.

submission fetch Used by a judge to fetch a submission.

submission source Used to inform a judge about submission source codes.

submission judge Used to judge (or “unfetch”) a submission.

22

A.3 Clarifications

clarification request Used by a client (contestant or judge) to request a
clarification.

clarification replies Used by a client to fetch all clarifications.

clarification reply Used to inform a client about a clarification.

clarification notify Used to inform a judge about a (new) request.

clarification notify2 Used to inform a judge about a (new) answer.

clarification list Used by a judge to fetch all requests.

clarification lock Used by a judge to lock a request.

clarification locked Used to inform a judge about a locked request.

clarification answer Used to answer (or unlock) a request.

23

