The Needle Programming Language

The Needle Programming Language

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu



What is Needle?

Needle is an object-oriented functional programming language
with a multimethod-based OO system, and a static type sys-
tem with parameterized types and substantial ML-style type

inference.

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu



What Is Needle For?

Needle is designed to support exploratory programming.

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu



What Is Needle For?

Needle is designed to support exploratory programming.

1. Create extensible datatypes via subclassing

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu



What Is Needle For?

Needle is designed to support exploratory programming.

1. Create extensible datatypes via subclassing

2. Use higher-order functions to build complex abstractions

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu



What Is Needle For?

Needle is designed to support exploratory programming.
1. Create extensible datatypes via subclassing

2. Use higher-order functions to build complex abstractions

3. Use static typing to make ‘“sloppy” coding easier

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu



Literals and Identifiers

Usual literals:

3 ’a’ '"string"

C-like identifiers, augmented with ? and ’:

frob_foo alphanumeric? x’

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu



Function Calls

Supports most C/Java syntactic conventions as sugar for
function calls:

f(3); // function call

range (from: O, below: 10); // with named args

x[3]; // arrays: elt(x, 3)

x[3] = 5; // arrays: set_elt(x, 3, 5)
square.area; // sugar for: area(square)
square.area = 3; // sugar for: set_area(square, 3)

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu



Composite Expressions

Blocks:

{ foo(); bar(); 3 + baz() }

If-then-else:

if (foo?) { bar } else { frob(); baz }

Function expressions:

fun(x) { fun(y) { x +y } }
fun(vec, pos: x, offset: y) { veclx] - y }

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu



Bindings

Binding:

{ let y = 6;
let £ = fun(z) { z +y }; // y is captured
f(2) // evals to 8

}

Local recursive functions:

{ rec fact(n) {
if (n ==0) {1} else { n * fact(n - 1) }
+;
fact(b)
}

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

10



Class Definitions

Classes have single inheritance and are multiply-rooted, with
no root Object class.

class Point {
constructor point;

X Integer;
y mutable Integer;

}

class ColorPoint (Point) {
constructor colorpoint;

color Color;

}

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

11



Constructors, Getters, and Setters

Making a Point object:
point(x: 3, y: 4)
colorpoint(x: 3, y: 4, color: red)
Accessing a Point:
{ let pt = point(xpos:3, ypos:4);
pt.y = 9;

pt.x + y(pt);
+

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

12



Polymorphic Classes

Classes also support parametric polymorphism:
class List[a] {}

class Nil[a] (List) {

constructor nil;

}

class Cons[a] (List) {
constructor cons;

head a;
tail List[al;
+

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

13



Generic Functions and Methods: The Example Hierarchy

First, let's set up a simple hierarchy for the examples:

class Thing {} // define a root class

class Rock(Thing) { ... }
class Paper(Thing) { ... }
class Scissors(Thing) { ... }

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

14



Generic Functions and Methods: Multiple Dispatch

Generic functions enable method selection and multiple dis-
patch:

generic beats? (Thing, Thing) -> Boolean;
method beats? (x Rock, y Scissors) { true }
method beats? (x Paper, y Rock) { true }
method beats? (x Scissors, y Paper) { true }
method beats? (x Thing, y Thing) { false }

beats?(rock, rock) = false

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

15



Generic Functions and OO programming

In traditional OO, adding new methods to a class is unmod-
ular even if it’'s possible.

generic inflammable? Thing -> Boolean;

method inflammable? (x Thing) { false }
method inflammable? (x Paper) { true }

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

16



Generic Functions and Functional Programming

Higher-order functions easily parameterize over behavior, but
they don’'t parameterize over similar data types very well.

In Scheme:
(map function sequence) ;; for lists
(vector-map function sequence) ;; for vectors
(string-map function sequence) ;; for strings
In Needle:

generic map c < Sequence . (a -> b, clal]) -> c[b];

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

17



Type Expressions

e Simple classes: Integer, Boolean, Char

e Type variables: a, b, ¢

e Parameterized classes: List[al], Table[Integer, Boolean]

e Function types:
— Integer -> Boolean
— (Integer, Integer) -> Integer

— (String, start:Integer, len:Integer) -> String

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

18



Polymorphic Constrained Types

Every expression’s type consists of a type expression, plus
a set of subtype constraints that the type variables have to
satisfy:

generic map c < Sequence . (a -> b, cl[al]) -> c[b];

generic negate a < Number . a -> a;

fun(seq) { map(negate, seq) }

has type ¢ < Sequence & a < Number . cla] -> cl[a]

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

19



ML-sub

Needle's type system is:

e Based on Bourdoncle and Merz's ML-sub (1997)

e Supports type inference (Bonniot 2001)

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

20



Type Inference

Needle has type inference. EQg:

{ rec error_fact(n) {
if (n==0) { "1" } else { n * error_fact(n - 1) }

¥

The compiler will signal an error on this function.

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

21



The Type Inference Algorithm

The basic type inference algorithm has four steps:

1. Generate a polymorphic constrained type at each leaf in
the AST.

2. Merge the types together, combining their constraint sets.

3. Check to see if the constraints have a solution. If there
IS no solution, then the expression has a type error.

4. Simplify the constraint set to report back to the user.

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

22



A Type Inference Example: Generating Leaf Types

generic (+) a < Number . (a, a) -> a;
fun(x) { x + x }

Let's see how types are assigned to each leaf.

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

23



A Type Inference Example: Generating Leaf Types

generic (+) a < Number . (a, a) -> a;
fun(x) { x + x }

Let's see how types are assigned to each leaf.

1. {} fun(x) { x + x }

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

24



A Type Inference Example: Generating Leaf Types

generic (+) a < Number . (a, a) -> a;
fun(x) { x + x }

Let's see how types are assigned to each leaf.

1. {} fun(x) { x + x }
2. {x:t} Abstract(t, x + x )

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

25



A Type Inference Example: Generating Leaf Types

generic (+) a < Number . (a, a) -> a;
fun(x) { x + x }

Let's see how types are assigned to each leaf.

1. {} fun(x) { x + x }
2. {x:t} Abstract(t, x + x )
3. {x: t} Abstract(t, Apply(+, x, x))

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

26



A Type Inference Example: Generating Leaf Types

generic (+) a < Number . (a, a) -> a;

fun(x) { x + x }

Let's see how types are assigned to each leaf.

{} fun(x) { X + X }
{x: t} Abstract(t, x + x )
: Abstract(t, Apply(+, x, x))
{x: t} Abstract(t, Apply(a < Number . (a,a) -> a, t, t))

B wWN e
—~—
™
ct
—

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

27



A Type Inference Example: Merging Leaves

Oncae we have the type tree, we can merge the leaf types
into a single constrained type:

1. Abstract(t, Apply(a < Number . (a,a) -> a, t, t))

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

28



A Type Inference Example: Merging Leaves

Oncae we have the type tree, we can merge the leaf types
into a single constrained type:

1. Abstract(t, Apply(a < Number . (a,a) -> a, t, t))

2. Abstract(t, a < Number & (a,a) -> a < (t,t) => b . D)

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

29



A Type Inference Example: Merging Leaves

Oncae we have the type tree, we can merge the leaf types
into a single constrained type:

1. Abstract(t, Apply(a < Number . (a,a) -> a, t, t))
2. Abstract(t, a < Number & (a,a) -> a < (t,t) => b . b)

3. a < Number & (a,a) -> a < (t,t) -=>b . t ->b

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

30



A Type Inference Example: Constraint Resolution

We must verify that there is at least one assignment to the
variables that satisfies the constraints:

a < Number & (a,a) -> a < (t,t) -=>b . t ->b
Example: {t <« a; b «— a}

We check satisfiability using standard techniques:
e Compute the closure of the constraints.

e Run a satisfiability algorithm.

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

31



A Type Inference Example: Constraint Simplification

a < Number & (a,a) -> a < (t,t) > b . t ->D
IS equivalent to

a < Number . a -> a

For readability, inferred types must be simplified.

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

32



Comparison with ML

Pros:

e Datatypes can be extended with subclassing

e Generic functions give you controlled overloading

cons:

e NO principal types

e More complex type inference algorithm

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

33



Comparison with CLOS/Dylan

Pros:

e Integrates well with parametric polymorphism

e More precise types available for documentation

cons:

e Stricter lambda-list rules

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

34



Future Work: Interfaces

In current Needle, generic printing might have the interface:
generic print a -> String;

method print (s String) { s }
method print (b Boolean) { if (b) { "true" } else { "false" } }

method print (o a) { raise Error(); }

Throwing an exception hurts safety.

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

35



Future Work: Interfaces, cont.

What we want is something like this:

interface Print(a) {
print a -> String;

}

generic print Print(a) . a -> String;

String implements Print; // interfaces are added *post-hocx*

Boolean implements Print;

method print (s String) { s }
method print (b Boolean) { if (b) { "true" } else { "false" } }

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

36



Future Work: Interfaces

e Lets you add existing types to new protocols

e Fixes weakness of generic-function style — grouping meth-
ods.

e Idea stems from Haskell typeclasses.

e Implementation in progress.

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

37



How to get Needle

e \\ebDbsite at: http://www.nongnu.org/needle

e Mailing list at:

http://mail.nongnu.org/mailman/listinfo/needle-hackers

e Email me at: neelk@alum.mit.edu

The Needle Programming Language — Neel Krishnaswami — neelk@alum.mit.edu

38



