
The Core Components of MathMoon

Christian von Schultz

20th December 2004

The game is composed of several “rooms”, each with a mathematical task
for the player to solve. The rooms are specified in a room list and thus
configurable at run-time. The window contents changes depending on which
room is currently loaded. If a room needs to act on some data a previous
room has created, the data can be stored and retrieved from the application
object, which in turn stores the data in a special RGDataControl object (see
figure 1).

There are guard objects that wait for some event to occur. These come in
two flavours: time guards and room guards. A time guard is activated every
minute and can do everything from displaying a message reminding the user
that there is only a limited amount of time left, to changing the room or
even end the program because the user has run out of time (that’s what the
TimeOut time guard does, see figure 1). The Timer object is in charge of
telling others when to wake up, and also tells the user (by sending messages
to the MainWindow) how much time is left.

A room guard is activated each time we enter a new room, and may
change certain aspects of that room by editing the wxExpr clause that will
create the new room (each item in the room list is stored in a wxExpr object
and written to the room list file as a Prolog clause, see figure 1 and the
document describing the room list). A guard does not have to do anything
when it is activated, it could also be used as a way of storing persistent data
(that’s what the RGDataControl room guard does).

The guards and the WindowContents typically reside in modules. A mod-
ule is a DLL (under Windows) or a shared library (under GNU/Linux and
UNIX) that contains a class derived from the abstract class defining the mod-
ule type (i.e. TimeGuard, RoomGuard or WindowContents). It also contains a
function that creates new instances of the class being defined in the module,
and one function to delete these instances. Only modules having the same
version as the main program can be used.

The modules are represented by the Module template class. It contains

1



Figure 1: The core classes in MathMoon

2



functions for loading a DLL or shared library, verifying its version and loading
the object it contains.

If an object needs to find some file, it consults the Config class. It uses
command line parameters and the wxConfig object to determine different
settings and file paths.

The MainWindow handles the menu bar and provides space for the Timer

and WindowContents objects to interact with the user (the Timer object only
updates the right pane of the status bar). The MainWindow also takes care
of replacing the current WindowContents, when it is safe to do so.

The WindowContents object is responsible for (almost) all interaction
with the user. When it is time for it to take over, Init() is called with the
wxExpr object that is creating it and the wxPanel that the MainWindow has
set up for usage by this object as arguments. This function may interact
with the current WindowContents object before calling Destroy() on it and
start populating the wxPanel itself. All WindowContents object should also
support a cHibernate() function1 that will create a wxExpr that should be
able to recreate the object and its current state, if the user wants to save the
session.

The WindowContents classes will in general be front-ends. They can act
as templates for new rooms if they act differently depending on what the
wxExpr clause that is creating them looks like. More information on the
nature of these clauses can be found in the document describing the room
list file.

At this point I guess I could describe the details of how all these objects
communicate, but such things are subject to change. The best way of finding
out exactly what the different parts do is probably to read the source code.
If you wish to write a module for example, see how the existing modules were
written. That will help you more than an in-depth description here. This
document should still be useful as an overview though.

1All functions starting with a lower-case c create something that they do not delete.

Deletion should be taken care of by the calling function or object.

3


