
The LibTMCG Reference Manual
Version 1.0.1
30 May 2006

♣ ♠ ♥ ♦

Implementation of the
Toolbox for Mental Card Games

♦ ♥ ♠ ♣

Heiko Stamer <stamer@gaos.org>

mailto:stamer@gaos.org

This is the reference manual of LibTMCG.
Revision $Id: libTMCG.texi,v 1.40 2006/05/30 21:17:35 stamer Exp $.
Copyright c© 2005, 2006 Heiko Stamer <stamer@gaos.org>.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

mailto:stamer@gaos.org

i

Table of Contents

1 Introduction . 1
1.1 Further Reading . 1
1.2 Getting Started . 2
1.3 Preliminaries . 2

1.3.1 Terminology . 2
1.3.2 Security . 3

1.4 Preparation . 4
1.5 Header Files and Name Spaces . 4
1.6 Building Sources . 4

1.6.1 Building Sources Using GNU Automake 5
1.7 Initializing the Library . 5

2 Application Programming Interface 6
2.1 Preprocessor Defined Global Symbols . 6
2.2 Data Types and Classes . 8

2.2.1 Data Types . 8
2.2.1.1 Encoding Schemes for Cards . 8
2.2.1.2 Stacks . 13
2.2.1.3 Cryptographic Keys . 18

2.2.2 Classes . 23
2.2.2.1 Verifiable k-out-of-k Threshold Masking Function 23
2.2.2.2 Verifiable Secret Shuffle of Homomorphic Encryptions

. 27
2.2.2.3 Toolbox for Mental Card Games . 29

3 Examples . 39
3.1 Library Initialization . 39
3.2 Session Initialization and Key Generation . 39
3.3 Operations on Cards . 41

3.3.1 Creating an Open Card . 41
3.3.2 Masking and Re-masking of a Card . 41
3.3.3 Opening a Masked Card . 42

3.4 Operations on Stacks . 43
3.4.1 Creating the Deck . 43
3.4.2 Shuffling the Deck . 43
3.4.3 Drawing a Card from the Deck . 44

3.5 Quit a Session . 45

Appendix A Licenses . 47
A.1 GNU General Public License . 47
A.2 GNU Free Documentation License . 53

Appendix B General and API Index 60

Chapter 1: Introduction 1

1 Introduction

‘LibTMCG’ is a C++ library for creating secure electronic card games. The most remarkable
feature is the absence of a trusted third party (TTP), i.e., neither a central game server
nor trusted hardware components are necessary. To emphasize this point again: With the
present library there is no need for an independent referee, because the applied protocols
provide a basic level of confidentiality and fairness by itself. Consequently, the library is
well-suited for peer-to-peer (P2P) environments where no TTP is available. Of course, we
cannot avoid that malicious players share information about their private cards, but the
protocols ensure that the shuffle of the deck is performed randomly (presumed that at least
one player is honest) and thus the cards will be distributed uniformly among the players.
Further, no coalition can learn the private cards of a player against his will (except for trivial
conclusions). The corresponding cryptographic problem, actually called “Mental Poker”,
has been studied since 1979 (Shamir, Rivest, and Adleman) by many authors. LibTMCG
provides the first practical implementation of such protocols.

The implementation relies on advanced cryptographic techniques—the so-called zero-
knowledge proofs. Using these ‘building blocks’ the high-level protocols minimize the effect
of coalitions and preserve the confidentiality of the players’ strategy, i.e., the players are
not required to reveal their cards at the end of the game to show that they did not cheat.

LibTMCG is Free Software according to the definition of the Free Software Foundation.
The source code is released under the GNU General Public License Version 2.

1.1 Further Reading

The cryptographic background and a detailed discussion of the implementation issues are
beyond the scope of this manual. The interested reader is referred to the following papers:

[Sc98]: Christian Schindelhauer. Toolbox for Mental Card Games.
Technical Report A-98-14, University of Lübeck, 1998.
http://citeseer.ist.psu.edu/schindelhauer98toolbox.html

[BS03]: Adam Barnett and Nigel P. Smart. Mental Poker Revisited.
In K.G. Paterson (Ed.): Cryptography and Coding 2003, Lecture Notes in
Computer Science 2898, pp. 370–383, 2003.

[Gr05]: Jens Groth. A Verifiable Secret Shuffle of Homomorphic Encryptions.
Cryptology ePrint Archive, Report 2005/246, 2005.
http://eprint.iacr.org/2005/246

[St04]: Heiko Stamer. Kryptographische Skatrunde. (in German)
Offene Systeme (ISSN 1619-0114), 4:10–30, 2004.
http://www.gaos.org/~stamer/OS-4-2004-openskat_rev2005.pdf

[St05]: Heiko Stamer. Efficient Electronic Gambling: An Extended Imple-
mentation of the Toolbox for Mental Card Games.
Proceedings of the Western European Workshop on Research in Cryptology
(WEWoRC 2005), Lecture Notes in Informatics P-74, pp. 1–12, 2005.
http://www.gaos.org/~stamer/WEWoRC2005_proc.pdf

http://www.fsf.org/licensing/essays/free-sw.html
http://citeseer.ist.psu.edu/penalty z@ schindelhauer98toolbox.html
http://eprint.iacr.org/penalty z@ 2005/penalty z@ 246
http://www.gaos.org/penalty z@ ~stamer/penalty z@ OS-4-2004-openskat_rev2005.pdf
http://www.gaos.org/penalty z@ ~stamer/penalty z@ WEWoRC2005_proc.pdf

Chapter 1: Introduction 2

1.2 Getting Started

This manual describes the application programming interface of LibTMCG. All relevant
data types, public classes and security parameters are explained. The reader should have
an advanced knowledge in applied cryptography and C++ programming. Reference is made
at this point to the famous Handbook of Applied Cryptography for a brief introduction.

This document follows, in style and rarely in phrasing, the Reference Manual of the
GNU Crypto Library. Thus don’t be surprised, if you recognize some obvious analogies.

1.3 Preliminaries

The most card games are played with a regular card deck, i.e., cards where the pattern on
the picture side determines the card type (e.g. the King of Spades ♠, the Seven of Hearts ♥,
the Ace of Club ♣, or the Jack of Diamonds ♦) and where the reverse sides of all cards are
indistinguishable. Only such regular card decks are supported by LibTMCG.

1.3.1 Terminology

The following list defines some terms that are subsequently used in the manual.

Player: A player is an active participant in an electronic card game.

Observer: An observer is an passive party who watches the game.

Card: The term card means the electronic representation of a playing card.

Card Type: The card type is a nonnegative integer which corresponds to the
pattern on the picture side of a real playing card. We assume here that such a
natural encoding always exists.

Masking: Masking is a process which aim is to transform the card represen-
tation such that the input card and the result cannot be linked (except for
trivial conclusions). Roughly speaking, masking is the encryption of a card
representation such that the contained card type is preserved.

Card Secret: The card secret contains all random values used in a masking
operation. These values must be kept secret until the card is publicly revealed.
Otherwise the corresponding output of the masking transformation is linkable
and other players may learn the card type.

Open Card: An open card is a card whose type can be easily determined by all
players and usually by observers as well.

Masked Card: A masked card (also known as face-down card) is a card whose
type is unknown to a subset of players. It can be only revealed, if all players
cooperate in a type computation.

Private Card: A private card is a card whose type is only known to its owner.
As long as the owner does not corporate the type of the private card stays
hidden to all other players (except for trivial conclusions).

Stack: A stack is a not necessarily disjoint subset of the whole card deck.

Prover and Verifier: The prover is a player who shows some property to another
party called verifier. For example, he wants to show that a masking operation
was performed correctly, i.e., the card type is preserved by the transformation.

Chapter 1: Introduction 3

1.3.2 Security

“Mental Poker” solutions cannot prevent that malicious players exchange private informa-
tion, for example, by telephone or Internet chat. Cryptographic protocols can only minimize
the effect of such colluding parties and should try to protect the confidentiality for hon-
est players. But even this small protection often relies on number-theoretical assumptions
which are only believed to be true, i.e. problems like factoring products of large primes
or computing discrete logarithms are only believed to be hard. That means, strict mathe-
matical proofs1 for the hardness of these problems are not known, and it is not very likely
that such proofs will ever be found. However, almost all public key cryptosystems rely on
such assumptions and therefore you should not worry about this issue, as long as reasonable
security parameters are chosen.

LibTMCG was designed to provide security in the “honest-but-curious” (aka semi-
honest) adversary model. That means, all participants follow the protocol instructions
properly but they may gather information and share them within a coalition to obtain a
game advantage. Thus we are not concerned with robustness and availability issues which
are hard to solve in asynchronous environments like the Internet. However, the most op-
erations are verifiable such that cheating can be detected. To obtain this verifiability, the
protocols deploy so-called zero-knowledge proofs which yield no further knowledge but the
validity of a statement. The soundness error of these proofs is bounded by a security pa-
rameter t. Depending on your application scenario this parameter should be chosen such
that there is a reasonable tradeoff between the cheating probability (which is less or equal
than 2−t) and the produced computational and communication complexity.

Unfortunately, in practice there is a substantial problem with the detection of cheaters.
Reliable cheater detection requires that an authenticated broadcast channel has been es-
tablished, where all players have read/write access. LibTMCG does not yet contain the
necessary protocols (reliable broadcast) for creating such a channel. Thus you should take
into account that not necessarily the prover is the source of all evil, if a verification procedure
fails. This level of uncertainty is also a reason for our restricted adversary model.

Note that it is not known, whether the used protocols retain their zero-knowledge
property, when they are composed and executed in a concurrent setting. Thus the ap-
plication programmer should be careful and avoid parallel protocol sessions. It is an
open research project to create a protocol suite whose security can be proven in the UC-
framework of Canetti (see Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols, Cryptology ePrint Archive: Report 2000/067). Furthermore, the proto-
cols should employ concurrent zero-knowledge proofs (see Dwork, Naor, Sahai: Concurrent
Zero-Knowledge, Journal of the ACM 51(6):851–898, 2004).

LibTMCG was carefully implemented with respect to timing attacks (see Kocher:
Cryptanalysis of Diffie-Hellman, RSA, DSS, and other cryptosystems using timing
attacks, CRYPTO ’95, LNCS 963, 1995). Therefore we loose some efficiency, e.g., during
modular exponentiations. However, it is strongly recommended to leave the timing attack
protection turned on, unless you know exactly where it is really not needed.

Security Advice: We have implemented all cryptographic primitives according
to the cited research papers and to the best of our knowledge. However, we can

1 For instance, a “tight reduction” to a known hard problem in the sense of complexity theory.

Chapter 1: Introduction 4

not eliminate any possibility of contained flaws or insecurity, because the im-
plementation of such complex protocols is always an error-prone process. Thus
we encourage readers with advanced cryptographic background to review the
source code of LibTMCG. Please report any complaint or correction proposal.

1.4 Preparation

LibTMCG depends on the three other basic libraries. Therefore you need the corresponding
development files to build LibTMCG and your application properly. The following list gives
a short exposition of the used features and specifies the required versions:
• GNU Multiple Precision Arithmetic Library (‘libgmp’), Version ≥ 4.1.0

The library provides a powerful framework for performing arbitrary precision arithmetic
on integers. Further reasons for choosing this dependency are the license compatibility,
the portability, the vital maintenance, and of course, the reasonable performance.

• GNU Crypto Library (‘libgcrypt’), Version ≥ 1.2.0
The library provides some basic cryptographic algorithms (e.g. RIPEMD-160) and an
easily accessible interface for cryptographically strong pseudo random numbers.

• GNU Privacy Guard Error Code Library (‘libgpg-error’), Version ≥ 0.5
This library defines common error values, e.g., returned by the GNU Crypto Library.

We suppose that the reader is familiar with these libraries because their correct instal-
lation, configuration, and usage is crucial to the security of the entire application.

1.5 Header Files and Name Spaces

The interface definitions of classes, data types, and security parameters2 are provided by
the central header file ‘libTMCG.hh’. You have to include this file in all of your sources,
either directly or through some other included file. Thus often you will simply write:

#include <libTMCG.hh>

There are no uniform C++ name spaces for the most parts of the library. Some classes
and data types have the common prefix TMCG_* resp. VTMF_* while others are composed of
the author names and an abbreviation of the title from the related research paper. Further
there are internally used C functions which might produce conflicting names. These function
names are prepended by mpz_* because they are extensions for the large integer support of
the GNU Multiple Precision Arithmetic Library.

1.6 Building Sources

If you want to compile a source file including the ‘libTMCG.hh’ header, you must make sure
that the compiler can find it in the directory hierarchy. This is achieved by adding the path
of the corresponding directory to the compilers include file search path.

However, the path to the include file has been determined at the time the source is config-
ured. To solve this problem, LibTMCG ships with a small helper program libTMCG-config

2 The security parameters are fixed at compile time of LibTMCG. Please don’t change anything unless
you know exactly what you are doing! Beside the apparent security concerns you will probably break
the compatibility with other LibTMCG applications.

Chapter 1: Introduction 5

that knows the path to the include file and a few other configuration options. The options
that need to be added to the compiler invocation are output by the ‘--cflags’ option to
libTMCG-config. The following example shows how it can be used at the command line:

g++ -c foo.cc ‘libTMCG-config --cflags‘

Adding the output of ‘libTMCG-config --cflags’ to the compilers command line will
ensure that the compiler can find the LibTMCG header file.

A similar problem occurs when linking your program with LibTMCG. Again, the com-
piler has to find the library files. Therefore the correct installation path has to be added
to the library search path. To achieve this, the option ‘--libs’ of libTMCG-config can be
used. For convenience, this option also outputs all other stuff that is required to link your
program with LibTMCG (in particular, the ‘-lTMCG’ option).

The example shows how to link ‘foo.o’ with LibTMCG to a program called ‘foo’:
g++ -o foo foo.o ‘libTMCG-config --libs‘

Of course, you can also combine both examples to a single command by calling the shell
script libTMCG-config with both options:

g++ -o foo foo.c ‘libTMCG-config --cflags --libs‘

1.6.1 Building Sources Using GNU Automake

You can use GNU Automake to obtain automatically generated Makefiles. If you do so
then you do not have to care about finding and invoking the libTMCG-config script at all.
LibTMCG provides an Automake extension that does all the stupid work for you.

[Macro]AM_PATH_LIBTMCG ([minimum-version], [action-if-found],
[action-if-not-found])

Check whether LibTMCG (at least version minimum-version, if given) exists on the
host system. If it is found, execute action-if-found, otherwise do action-if-not-found.
Additionally, the macro defines LIBTMCG_CFLAGS to the flags needed for compilation
in order to find the necessary header files, and LIBTMCG_LIBS to the corresponding
linker flags.

You can use the defined variables in your ‘Makefile.am’ as follows:
AM_CPPFLAGS = $(LIBTMCG_CFLAGS)
LDADD = $(LIBTMCG_LIBS)

1.7 Initializing the Library

The first step is the initialization of LibTMCG. The following function must be invoked
early in your program, i.e., before you make use of any other capability of LibTMCG.

[Function]bool init_libTMCG ()
The function checks whether the installed third-party libraries match their required
versions. Further it initializes them and returns true, if everything was sound. Oth-
erwise false is returned and an appropriate error message is sent to std::cerr.

Chapter 2: Application Programming Interface 6

2 Application Programming Interface

2.1 Preprocessor Defined Global Symbols

Please note that the following macros are fixed at compile time of LibTMCG and cannot
be changed by your application. They are only provided here for informational purposes.

[Macro]TMCG_MR_ITERATIONS
Defines the number of iterations for the Miller-Rabin primality test. The default
value is 64 which implies a soundness error probability ≤ 4−64.

[Macro]TMCG_GROTH_L_E
Defines the security parameter `e of Groth’s interactive shuffle argument [Gr05]. The
default value is 80 which implies a soundness error probability ≤ 2−80. For the
intended purposes of LibTMCG this bound seems to be reasonable.

[Macro]TMCG_DDH_SIZE
Defines the security parameter (field size in bit) of the group G which is used by the
card encoding scheme of Barnett and Smart [BS03]. The underlying assumptions are
DDH, CDH, and DLOG. The default value is 1024.

[Macro]TMCG_DLSE_SIZE
Defines the security parameter (subgroup size in bit) of the group G which is used by
the card encoding scheme of Barnett and Smart [BS03]. The underlying assumptions
are DLSE (related to DDH) and DLOG. The default value is 160.

[Macro]TMCG_GCRY_MD_ALGO
Defines the message digest algorithm for digital signatures and the Fiat-Shamir heuris-
tic (see TODO). The security of the most non-interactive zero-knowledge proofs
(NIZK) is related to the so-called random oracle model, i.e., we suppose that the
instantiated hash function behaves like an ideal random function (which cannot hold
in a real world scenario). However, this assumption seems to be reasonable, if the hash
function is collision-resistant and carefully implemented. The default value GCRY_MD_
RMD1601 chooses the hash algorithm RIPEMD-160 (see TODO) which has an output
length of 160 bit. Thus we gain a security level of approximately 280, assuming that
a birthday-attack is the best known attack against this hash function.

[Macro]TMCG_KEYID_SIZE
Defines the length (in characters w.r.t. TMCG_MPZ_IO_BASE) for the distinctive suffix
of the unique TMCG key identifier. The default value is 8 which spans a reasonable
name space for at least 220 different TMCG keys (see TMCG_PublicKey).

Each key identifier starts with the string "ID" followed by the decimal encoded value
of TMCG_KEYID_SIZE and the appended carret symbol "^". The final suffix contains
TMCG_KEYID_SIZE alphanumerical characters from the self signature of TMCG key.
The signature has enough entropy included to be used as unique key identifier.

1 This is a constant defined by the GNU Crypto Library.

Chapter 2: Application Programming Interface 7

[Macro]TMCG_KEY_NIZK_STAGE1
Defines the security parameter (number of iterations) of the NIZK proof (stage
1) which convince all verifiers that the TMCG key was correctly generated. The
default value is 16 which implies a soundness error probability ≤ d−16, where
d = gcd(m,φ(m)). This parameter is only relevant for the card encoding scheme
of Schindelhauer.

[Macro]TMCG_KEY_NIZK_STAGE2
Defines the security parameter (number of iterations) of the NIZK proof (stage 2)
which convince all verifiers that the TMCG key was correctly generated. The default
value is 128 which implies a soundness error probability ≤ 2−128. This parameter is
only relevant for the card encoding scheme of Schindelhauer.

[Macro]TMCG_KEY_NIZK_STAGE3
Defines the security parameter (number of iterations) of the NIZK proof (stage 3)
which convince all verifiers that the TMCG key was correctly generated. The default
value is 128 which implies a soundness error probability ≤ 2−128. This parameter is
only relevant for the card encoding scheme of Schindelhauer.

[Macro]TMCG_LIBGCRYPT_VERSION
Defines the required minimum version number of the GNU Crypto Library. The
default value is "1.2.0". During the initialization of LibTMCG (see init_libTMCG) it
is checked, whether the version number of the linked shared object fulfil this condition.

[Macro]TMCG_LIBGMP_VERSION
Defines the required minimum version number of the GNU Multiple Precision Arith-
metic Library. The default value is "4.1.0". During the initialization of LibTMCG
(see init_libTMCG) it is checked, whether the version number provided by the header
file ‘gmp.h’ and used at compile time of LibTMCG fulfil this condition.

[Macro]TMCG_MAX_CARDS
Defines the maximum number of stackable cards. The default value is 128.

[Macro]TMCG_MAX_PLAYERS
Defines the maximum number of players. The default value is 32. This parameter is
only relevant for the card encoding scheme of Schindelhauer.

[Macro]TMCG_MAX_TYPEBITS
Defines the maximum number of bits to represent the card type in the scheme of
Schindelhauer. On the other hand, this value determines the maximum size of the
message space in the scheme of Barnett and Smart. The default value is 8 which
implies that 256 different card types are possible.

[Macro]TMCG_MPZ_IO_BASE
Defines the input and output base of the std::iostream operators << and >> which
are used to encode large integers (mpz_t). The default value is 36 which is currently
the largest base supported by the GNU Multiple Precision Arithmetic Library.

Chapter 2: Application Programming Interface 8

[Macro]TMCG_PRAB_K0
Defines the security parameter k0 (in characters) of the PRab scheme (see Bellare,
Rogaway: The Exact Security of Digital Signatures – How to Sign with RSA and
Rabin, 1996). The default value is 20 which implies a security level around 280.

[Macro]TMCG_QRA_SIZE
Defines the security parameter (size of the modulus m = p·q in bit) of the TMCG key.
The underlying assumptions are QRA and FACTOR. The default value is 1024. This
parameter is only relevant for TMCG keys and Schindelhauer’s encoding scheme.

[Macro]TMCG_SAEP_S0
Defines the security parameter s0 (in characters) of the Rabin-SAEP scheme (see
Boneh: Simplified OAEP for the RSA and Rabin Functions, 2002). The default value
is 20 which implies a security around 280 against CCA (Chosen Ciphertext Attacks).

[Macro]TMCG_HASH_COMMITMENT
Defines whether shortened commitments are used in the shuffle verification procedure
of Schindelhauer. The default value is true, because it will decrease the communica-
tion complexity significantly. However, as an immediate consequence the soundness
property is violated, if the used hash function TMCG_GCRY_MD_ALGO is broken.

[Macro]TMCG_MAX_FPOWM_T
Defines the maximum size of admissible exponents (in bit) used by fast exponentiation
procedures. The default value is 2048. Note that this parameter has a strong influence
on the amount of memory allocated by LibTMCG since it determines the size of the
precomputed tables. However, it should be at least greater than TMCG_DDH_SIZE and
TMCG_QRA_SIZE.

2.2 Data Types and Classes

This section describes all public data types and classes that are necessary to create a secure
card game. Private methods and only internally used members are not explained.

2.2.1 Data Types

LibTMCG provides several data structures for cards, stacks, and cryptographic keys.

2.2.1.1 Encoding Schemes for Cards

There exist two different encoding schemes that can be used for the digital representation
of playing cards. In the scheme of Schindelhauer [Sc98] the type of a card is shared among
the players through bit-wise representation by quadratic (non-)residues. Thus the security
relies on the well-known QRA (Quadratic Residuosity Assumption). Unfortunately, the size
of a card grows linearly in the number of players and logarithmically in the number of card
types. Recently the much more efficient solution of Barnett and Smart [BS03] has been
implemented. This encoding works on a cyclic group of prime order and requires that the
DDH (Decisional Diffie-Hellman Assumption) holds there.

For both schemes LibTMCG provides a structure whose name contains the suffix Card.
This data type is used to represent an open or even a masked card. Further, there is a
corresponding structure whose name contains the suffix CardSecret. This data type is
used to represent the secret values involved in a card masking operation.

Chapter 2: Application Programming Interface 9

Because of the reduced computational and communication complexity (see [St05] for de-
tails) the usage of the second card encoding scheme, i.e. VTMF_Card and VTMF_CardSecret,
is highly recommended.

[Data type]TMCG_Card
This struct represents a card in the encoding scheme of Schindelhauer [Sc98]. The
type of the card is shared among the players by quadratic residues and non-residues,
respectively. Thus the security relies on the Quadratic Residuosity Assumption.

[Member of TMCG_Card]std::vector< std::vector<MP_INT> > z
This k×w-matrix encodes the type of the corresponding card in a shared way.
For each of the k players there is a separate row and for each of the w bits
in the binary representation of the type there is a column. The elements are
numbers from the group Z◦

mi
where mi is the public modulus of the ith player.

[Constructor on TMCG_Card]TMCG_Card ()
This default constructor initializes the card with an empty 1× 1-matrix. Later
the method TMCG_Card::resize can be used to enlarge the card representation.

[Constructor on TMCG_Card]TMCG_Card (size_t k, size_t w)
This constructor initializes the card with an empty k×w-matrix. The parameter
k is the number of players and w is the maximum number of bits used by the
binary representation of the card type.

[Constructor on TMCG_Card]TMCG_Card (const TMCG_Card& that)
This is a simple copy-constructor and that is the card to be copied.

[Operator on TMCG_Card]TMCG_Card& = (const TMCG_Card& that)
This is a simple assignment-operator and that is the card to be assigned.

[Operator on TMCG_Card]bool == (const TMCG_Card& that)
This operator tests two card representations for equality.

[Operator on TMCG_Card]bool != (const TMCG_Card& that)
This operator tests two card representations for inequality.

[Method on TMCG_Card]void resize (size_t k, size_t w)
This method resizes the representation of the card. The current content of the
member z will be released and a new k × w-matrix is created. The parameter
k is the number of players and w is the maximum number of bits used by the
binary representation of the card type.

[Method on TMCG_Card]bool import (std::string s)
This method imports the content of the member z from the correctly formatted
input string s. It returns true, if the import was successful.

[Destructor on TMCG_Card]~TMCG_Card ()
This destructor releases all occupied resources.

Chapter 2: Application Programming Interface 10

[Operator on TMCG_Card]std::ostream& << (std::ostream& out, const
TMCG_Card& card)

This operator exports the content of the member z (of the given TMCG_Card card) to
the output stream out.

[Operator on TMCG_Card]std::istream& >> (std::istream& in, TMCG_Card&
card)

This operator imports the content of the member z (of the given TMCG_Card card)
from the input stream in. The data has to be delimited by a newline character. The
failbit of the stream is set, if any parse error occurred.

[Data type]TMCG_CardSecret
This struct represents the secret used for a card masking operation in the original
encoding scheme of Schindelhauer [Sc98].

[Member of TMCG_CardSecret]std::vector< std::vector<MP_INT> > r
This k×w-matrix encodes the first part of the secret. For each of the k players
there is a separate row and for each of the w bits in the binary representation
of the corresponding card type there is a column. The elements are numbers
from the group Z◦

mi
where mi is the public modulus of the ith player.

[Member of TMCG_CardSecret]std::vector< std::vector<MP_INT> > b
This k×w-matrix encodes the second part of the secret. For each of the k players
there is a separate row and for each of the w bits in the binary representation
of the corresponding card type there is a column. The elements are simply
numbers from {0, 1}.

[Constructor on TMCG_CardSecret]TMCG_CardSecret ()
This default constructor initializes both members with an empty 1× 1-matrix.
Later the method TMCG_CardSecret::resize can be used to enlarge the card
representation.

[Constructor on TMCG_CardSecret]TMCG_CardSecret (size_t k, size_t w)
This constructor initializes both members with an empty k × w-matrix. The
parameter k is the number of players and w is the maximum number of bits
used by the binary representation of the corresponding card type.

[Constructor on TMCG_CardSecret]TMCG_CardSecret (const
TMCG_CardSecret& that)

This is a simple copy-constructor and that is the secret to be copied.

[Operator on TMCG_CardSecret]TMCG_CardSecret& = (const
TMCG_CardSecret& that)

This is a simple assignment-operator and that is the secret to be assigned.

[Method on TMCG_CardSecret]void resize (size_t k, size_t w)
This method resizes the representation of the secret. The current content of
the members r and b will be released and new k×w-matrices are created. The
parameter k is the number of players and w is the maximum number of bits
used by the binary representation of the corresponding card type.

Chapter 2: Application Programming Interface 11

[Method on TMCG_CardSecret]bool import (std::string s)
This method imports the content of the members r and b from the correctly
formatted input string s. It returns true, if the import was successful.

[Destructor on TMCG_CardSecret]~TMCG_CardSecret ()
This destructor releases all occupied resources.

[Operator on TMCG_CardSecret]std::ostream& << (std::ostream& out, const
TMCG_CardSecret& cardsecret)

This operator exports the content of the members r and b (of the given TMCG_
CardSecret cardsecret) to the output stream out.

[Operator on TMCG_CardSecret]std::istream& >> (std::istream& in,
TMCG_CardSecret& cardsecret)

This operator imports the content of the members r and b (of the given TMCG_
CardSecret cardsecret) from the input stream in. The data has to be delimited
by a newline character. The failbit of the stream is set, if any parse error occurred.

[Data type]VTMF_Card
This struct represents a card in the encoding scheme of Barnett and Smart [BS03].
Here we use the discrete logarithm based instantiation of their general cryptographic
primitive VTMF (Verifiable k-out-of-k Threshold Masking Function). The security
relies on the DDH assumption in the underlying abelian group G.

[Member of VTMF_Card]mpz_t c_1
This is the first part of the encrypted card type. It is an element from the
underlying group G.

[Member of VTMF_Card]mpz_t c_2
This is the second part of the encrypted card type. It is also an element from
the underlying group G.

[Constructor on VTMF_Card]VTMF_Card ()
This default constructor initializes an empty card where the members c_1 and
c_2 are set to zero.

[Constructor on VTMF_Card]VTMF_Card (const VTMF_Card& that)
This is a simple copy-constructor and that is the card to be copied.

[Operator on VTMF_Card]VTMF_Card& = (const VTMF_Card& that)
This is a simple assignment-operator and that is the card to be assigned.

[Operator on VTMF_Card]bool == (const VTMF_Card& that)
This operator tests two card representations for equality.

[Operator on VTMF_Card]bool != (const VTMF_Card& that)
This operator tests two card representations for inequality.

[Method on VTMF_Card]bool import (std::string s)
This method imports the content of the members c_1 and c_2 from a correctly
formatted input string s. It returns true, if the import was successful.

Chapter 2: Application Programming Interface 12

[Destructor on VTMF_Card]~VTMF_Card ()
This destructor releases all occupied resources.

[Operator on VTMF_Card]std::ostream& << (std::ostream& out, const
VTMF_Card& card)

This operator exports the content of the members c_1 and c_2 (of the given VTMF_
Card card) to the output stream out.

[Operator on VTMF_Card]std::istream& >> (std::istream& in, VTMF_Card&
card)

This operator imports the content of the members c_1 and c_2 (of the given VTMF_
Card card) from the input stream in. The data has to be delimited by a newline
character. The failbit of the stream is set, if any parse error occurred.

[Data type]VTMF_CardSecret
This struct represents the secrets used in the card masking operation by the encoding
scheme of Barnett and Smart [BS03].

[Member of VTMF_CardSecret]mpz_t r
This member is the exponent (randomizer) used in the masking operation. It
should be chosen uniformly and randomly from Zq where q is the order of the
finite abelian group G for which the DDH assumption holds.
According to the results of Koshiba and Kurosawa (see Short Exponent Diffie-
Hellman Problems, PKC 2004, LNCS 2947) the length of this exponent can
be shorten to a more efficient size (e.g. 160 bit), if the corresponding genera-
tor of G is adjusted as well. Under the additional DLSE (Discrete Logarithm
with Short Exponents) assumption the DDH problem in G seems to be still
hard. By such an optimization trick we gain a great performance advantage
for almost all modular exponentiations that are computed during the masking
operation, if the VTMF primitive was instantiated by the later explained class
BarnettSmartVTMF_dlog_GroupQR. Furthermore, the size of the card secret is
substantially reduced which results in an improved communication complexity.

[Constructor on VTMF_CardSecret]VTMF_CardSecret ()
This default constructor initializes the secret with an empty member r.

[Constructor on VTMF_CardSecret]VTMF_CardSecret (const
VTMF_CardSecret& that)

This is a simple copy-constructor and that is the secret to be copied.

[Operator on VTMF_CardSecret]VTMF_CardSecret& = (const
VTMF_CardSecret& that)

This is a simple assignment-operator and that is the secret to be assigned.

[Method on VTMF_CardSecret]bool import (std::string s)
This method imports the content of the member r from the correctly formatted
input string s. It returns true, if the import was successful.

[Destructor on VTMF_CardSecret]~VTMF_CardSecret ()
This destructor releases all occupied resources.

Chapter 2: Application Programming Interface 13

[Operator on VTMF_CardSecret]std::ostream& << (std::ostream& out, const
VTMF_CardSecret& cardsecret)

This operator exports the content of the member r (of the given VTMF_CardSecret
cardsecret) to the output stream out.

[Operator on VTMF_CardSecret]std::istream& >> (std::istream& in,
VTMF_CardSecret& cardsecret)

This operator imports the content of the member r (of the given VTMF_CardSecret
cardsecret) from the input stream in. The data has to be delimited by a newline
character. The failbit of the stream is set, if any parse error occurred.

2.2.1.2 Stacks

All of the following data types are generic containers that can be instantiated as C++
templates with the former explained Card and CardSecret data types, respectively. Note
the maximum number of stackable data is upper-bounded by TMCG_MAX_CARDS. There is no
error reported, if this limit is exceeded.

[Data type]TMCG_Stack<CardType>
This struct is a simple container for cards of the specified CardType . Currently, the
elements can be either of type TMCG_Card or VTMF_Card depending on which kind of
encoding scheme is used. The TMCG_Stack structure is mainly used to represent a
stack of masked cards, i.e., playing cards that are stacked in a face-down manner. It
can be either a public stack where all participants have access to or even a private
stack, e.g. the players’ hand. If the corresponding card types are known it can also
serve as an “open stack”, although TMCG_OpenStack is more suitable in that case.

[Member of TMCG_Stack]std::vector<CardType> stack
This is the container that is used internally for storing the cards.

[Constructor on TMCG_Stack]TMCG_Stack ()
This default constructor initializes an empty stack.

[Operator on TMCG_Stack]TMCG_Stack& = (const TMCG_Stack<CardType>&
that)

This is a simple assignment-operator and that is the stack to be assigned.

[Operator on TMCG_Stack]bool == (const TMCG_Stack<CardType>& that)
This operator tests two stacks for equality. It checks whether the sizes of the
stacks and the contained cards are equal with respect to the implied order.

[Operator on TMCG_Stack]bool != (const TMCG_Stack<CardType>& that)
This operator tests two stacks for inequality. It returns true, if either the sizes
does not match or at least two corresponding cards are not equal.

[Operator on TMCG_Stack]const CardType& [] (size_t n)
This operator provides read-only random access to the contained cards. It
returns a const-reference to the nth card from the top of the stack.

[Operator on TMCG_Stack]CardType& [] (size_t n)
This operator provides random access to the contained cards. It returns a
reference to the nth card from the top of the stack.

Chapter 2: Application Programming Interface 14

[Method on TMCG_Stack]size_t size ()
This method returns the size of the stack.

[Method on TMCG_Stack]void push (const CardType& c)
This method pushes the card c to the back of the stack.

[Method on TMCG_Stack]void push (const TMCG_Stack<CardType>& s)
This method pushes the stack s to the back of the stack.

[Method on TMCG_Stack]void push (const TMCG_OpenStack<CardType>&
s)

This method pushes the cards of the open stack s to the back of the stack.

[Method on TMCG_Stack]bool empty ()
This method returns true, if the stack is empty.

[Method on TMCG_Stack]bool pop (CardType& c)
This method removes a card from the back and stores the data in c. It returns
true, if the stack was not empty and thus c contains useful data.

[Method on TMCG_Stack]void clear ()
This method clears the stack, i.e., it removes all cards.

[Method on TMCG_Stack]bool find (const CardType& c)
This method returns true, if the card c was found in the stack.

[Method on TMCG_Stack]bool remove (const CardType& c)
This method removes the top-most card from the stack which is equal to c. It
returns true, if the card was found and successfully removed.

[Method on TMCG_Stack]size_t removeAll (const CardType& c)
This method removes every card from the stack which is equal to c. It returns
the number of removed cards.

[Method on TMCG_Stack]bool import (std::string s)
This method imports the stack from the correctly formatted input string s. It
returns true, if the import was successful.

[Destructor on TMCG_Stack]~TMCG_Stack ()
This destructor releases all occupied resources.

[Operator on TMCG_Stack]std::ostream& << (std::ostream& out, const
TMCG_Stack<CardType>& stack)

This operator exports the given stack to the output stream out.

[Operator on TMCG_Stack]std::istream& >> (std::istream& in,
TMCG_Stack<CardType>& stack)

This operator imports the given stack from the input stream in. The data has to be
delimited by a newline character. The failbit of the stream is set, if any parse error
occurred.

Chapter 2: Application Programming Interface 15

[Data type]TMCG_OpenStack<CardType>
This struct is a simple container for cards of the specified CardType whose types
are known. The elements are pairs where the first component is the type and the
second component is the corresponding card. The card type is represented by a
size_t integer. Currently, the cards can be either of type TMCG_Card or VTMF_Card
depending on which kind of encoding scheme is used.

[Member of TMCG_OpenStack]std::vector<std::pair<size_t,
CardType> > stack

This is the container that is used internally for storing the pairs.

[Constructor on TMCG_OpenStack]TMCG_OpenStack ()
This default constructor initializes an empty stack.

[Operator on TMCG_OpenStack]TMCG_OpenStack& = (const
TMCG_OpenStack<CardType>& that)

This is a simple assignment-operator and that is the stack to be assigned.

[Operator on TMCG_OpenStack]bool == (const
TMCG_OpenStack<CardType>& that)

This operator tests two stacks for equality. It checks whether the types, the
sizes, and the contained cards are equal with respect to the stack order.

[Operator on TMCG_OpenStack]bool != (const
TMCG_OpenStack<CardType>& that)

This operator tests two stacks for inequality. It returns true, if either the sizes
resp. types does not match or at least two corresponding cards are not equal.

[Operator on TMCG_OpenStack]const std::pair<size_t, CardType>& []
(size_t n)

This operator provides read-only random access to the contained pairs. It
returns a const-reference to the nth pair from the top of the stack.

[Operator on TMCG_OpenStack]std::pair<size_t, CardType>& []
(size_t n)

This operator provides random access to the contained pairs. It returns a
reference to the nth pair from the top of the stack.

[Method on TMCG_OpenStack]size_t size ()
This method returns the size of the stack.

[Method on TMCG_OpenStack]void push (const std::pair<size_t,
CardType>& p)

This method pushes the pair p to the back of the stack. The first component is
the type and the second component is the corresponding card representation.

[Method on TMCG_OpenStack]void push (size_t type, const CardType& c)
This method pushes a pair to the back of the stack. The parameter type is the
card type and c is the corresponding card representation.

Chapter 2: Application Programming Interface 16

[Method on TMCG_OpenStack]void push (const
TMCG_OpenStack<CardType>& s)

This method pushes the pairs of the stack s to the back of this stack.

[Method on TMCG_OpenStack]bool empty ()
This method returns true, if the stack is empty.

[Method on TMCG_OpenStack]bool pop (size_t& type, CardType& c)
This method removes a pair from the back of the stack. It stores the card type
in type and the representation in c. It returns true, if the stack was not empty
and thus type and c contain useful data.

[Method on TMCG_OpenStack]void clear ()
This method clears the stack, i.e., it removes all pairs.

[Method on TMCG_OpenStack]bool find (size_t type)
This method returns true, if a pair with the first component type was found
in the stack.

[Method on TMCG_OpenStack]bool remove (size_t type)
This method removes the top-most pair with the first component type from the
stack. It returns true, if such a pair was found and successfully removed.

[Method on TMCG_OpenStack]size_t removeAll (size_t type)
This method removes every pair from the stack whose first component is equal
to type. Further it returns the number of removed pairs.

[Method on TMCG_OpenStack]bool move (size_t type,
TMCG_Stack<CardType>& s)

This method moves the top-most card representation of the given type to an-
other stack s. It returns true, if such a pair was found and successfully moved.

[Destructor on TMCG_OpenStack]~TMCG_OpenStack ()
This destructor releases all occupied resources.

[Data type]TMCG_StackSecret<CardSecretType>
This struct is a simple container for the secrets involved in the masking operation of
cards. Additionally, the permutation of a corresponding shuffle of the stack is stored.
The elements are pairs where the first component is a permutation index of type
size_t and the second component is a card secret of the specified CardSecretType .
Currently, such secrets can be either of type TMCG_CardSecret or VTMF_CardSecret
depending on which kind of encoding scheme is used.

[Member of TMCG_StackSecret]std::vector<std::pair<size_t,
CardSecretType> > stack

This is the container that is used internally for storing the pairs.

[Constructor on TMCG_StackSecret]TMCG_StackSecret ()
This default constructor initializes an empty stack secret.

Chapter 2: Application Programming Interface 17

[Operator on TMCG_StackSecret]TMCG_StackSecret& = (const
TMCG_StackSecret<CardSecretType>& that)

This is a simple assignment-operator and that is the stack secret to be assigned.

[Operator on TMCG_StackSecret]const std::pair<size_t,
CardSecretType>& [] (size_t n)

This operator provides read-only random access to the contained pairs. It
returns a const-reference to the nth pair from the top of the stack secret.

[Operator on TMCG_StackSecret]std::pair<size_t, CardSecretType>&
[] (size_t n)

This operator provides random access to the contained pairs. It returns a
reference to the nth pair from the top of the stack secret.

[Method on TMCG_StackSecret]size_t size ()
This method returns the size of the stack secret.

[Method on TMCG_StackSecret]void push (size_t index, const
CardSecretType& cs)

This method pushes a pair to the back of the stack secret. The parameter index
is the permutation index and cs is the corresponding card secret.

[Method on TMCG_StackSecret]void clear ()
This method clears the stack secret, i.e., it removes all pairs.

[Method on TMCG_StackSecret]size_t find_position (size_t index)
This method searches for a given permutation index in the stack secret. It
returns the corresponding position2 in the stack secret, if the index was found.
Otherwise, the size of the stack secret is returned. Please note that in this case
the returned value is not a valid position for an access to the stack secret.

[Method on TMCG_StackSecret]bool find (size_t index)
This method searches for a given permutation index in the stack secret. It
returns true, if such an index was found.

[Method on TMCG_StackSecret]bool import (std::string s)
This method imports the stack secret from a correctly formatted input string
s. It returns true, if the import was successful.

[Destructor on TMCG_StackSecret]~TMCG_StackSecret ()
This destructor releases all occupied resources.

[Operator on TMCG_StackSecret]std::ostream& << (std::ostream& out, const
TMCG_StackSecret<CardSecretType>& stacksecret)

This operator exports the given stacksecret to the output stream out.

[Operator on TMCG_StackSecret]std::istream& >> (std::istream& in,
TMCG_StackSecret<CardSecretType>& stacksecret)

This operator imports the given stacksecret from the input stream in. The data has
to be delimited by a newline character. The failbit of the stream is set, if any parse
error occurred.

2 According to the behavior of the []-operator, the zero denotes always the top-most position.

Chapter 2: Application Programming Interface 18

2.2.1.3 Cryptographic Keys

LibTMCG only provides data types for keys used in the encoding scheme of Schindel-
hauer [Sc98], because it is not efficient to perform the corresponding key generation in
every new game session. Furthermore, the keys admit to ensure the confidentiality and
integrity of messages, even if the scheme of Barnett and Smart [BS03] has been applied for
the card encoding. Therefore these structures may be of independent interest, for example
to establish authenticated communication channels between players. However, like in every
public key cryptosystem a trusted PKI (Public Key Infrastructure) is needed. This might
not be a serious concern in distributed game environments, if the players compare their key
fingerprints by telephone or if a central service provider issues public key certificates.

[Data type]TMCG_SecretKey
This struct represents the secret part of the TMCG key. The underlying public key
cryptosystem is due to Rabin with minor modifications for encryption padding (SAEP
scheme of Boneh) and digital signatures (PRab scheme of Bellare and Rogaway).

[Member of TMCG_SecretKey]std::string name
This string contains the name or a pseudonym of the key owner.

[Member of TMCG_SecretKey]std::string email
This string contains the email address of the key owner.

[Member of TMCG_SecretKey]std::string type
This string contains information about the key type. The common prefix is
TMCG/RABIN. It is followed by the decimal encoded bit size of the modulus
m. The suffix NIZK signals that the correctness of the key is shown by an
appended non-interactive zero-knowledge proof. The single parts are separated
by underscore characters _, e.g., TMCG/RABIN_1024_NIZK has the correct form.

[Member of TMCG_SecretKey]std::string nizk
This string contains two stages of the non-interactive zero-knowledge proof of
Gennaro, Micciancio, and Rabin (An Efficient Non-Interactive Statistical Zero-
Knowledge Proof System for Quasi-Safe Prime Products, ACM CCS 1998).
The proof shows that m was correctly generated as product of two primes
both congruent to 3 (modulo 4). Further there is another non-interactive zero-
knowledge proof appended which shows that the condition y ∈ NQR◦

m holds.

[Member of TMCG_SecretKey]std::string sig
This string contains the self signature of the public key.

[Member of TMCG_SecretKey]mpz_t m
This is the public modulus m = p ·q which is the product of two secret primes p
and q. The size of m is determined by the security parameter TMCG_QRA_SIZE.

[Member of TMCG_SecretKey]mpz_t y
This is the public quadratic non-residue y ∈ NQR◦

m which is used in several
zero-knowledge proofs of Schindelhauer’s encoding scheme [Sc98].

[Member of TMCG_SecretKey]mpz_t p
This is the secret prime number p which is a factor of the modulus m.

Chapter 2: Application Programming Interface 19

[Member of TMCG_SecretKey]mpz_t q
This is the secret prime number q which is a factor of the modulus m.

[Constructor on TMCG_SecretKey]TMCG_SecretKey ()
This default constructor initializes an empty secret key.

[Constructor on TMCG_SecretKey]TMCG_SecretKey (const std::string& n,
const std::string& e, unsigned long int keysize
=TMCG_QRA_SIZE)

This constructor generates a new secret key where n is the name or a pseudonym
of the owner, e is a corresponding email address, and keysize is the desired bit
length of the modulus m. The default value of the last argument is set to TMCG_
QRA_SIZE, if keysize is omitted in the call. Depending on keysize the generation
is an highly time-consuming task and dots are sent to std::cerr as a progress
indicator.

[Constructor on TMCG_SecretKey]TMCG_SecretKey (const std::string& s)
This constructor initializes the key from a correctly formatted input string s.

[Constructor on TMCG_SecretKey]TMCG_SecretKey (const
TMCG_SecretKey& that)

This is a simple copy-constructor and that is the key to be copied.

[Operator on TMCG_SecretKey]TMCG_SecretKey& = (const
TMCG_SecretKey& that)

This is a simple assignment-operator and that is the key to be assigned.

[Method on TMCG_SecretKey]bool check ()
This method tests whether the self signature is valid and whether the non-
interactive zero-knowledge proofs are sound. It returns true, if all checks have
been successfully passed. Due to the computational complexity of the verifica-
tion procedure these checks are extremely time-consuming.

[Method on TMCG_SecretKey]std::string fingerprint ()
This method returns the fingerprint of the key. The fingerprint is the hex-
adecimal notation of the hash value (algorithm TMCG_GCRY_MD_ALGO) on the
members name, email, type, m, y, nizk, and sig.

[Method on TMCG_SecretKey]std::string selfid ()
This method returns the real value of the self signature. The string ERROR is
returned, if any parse error occurred. The string SELFSIG-SELFSIG-SELFSIG-
SELFSIG-SELFSIG-SELFSIG is returned, if the self signature sig was empty.

[Method on TMCG_SecretKey]std::string keyid (size_t size
=TMCG_KEYID_SIZE)

This method returns the unique key identifier of length size. The default value
of the first argument is set to TMCG_KEYID_SIZE, if size is omitted in the call.

[Method on TMCG_SecretKey]size_t keyid_size (const std::string& s)
This method returns the length of the unique key identifier s. Zero is returned,
if any parse error occurred.

Chapter 2: Application Programming Interface 20

[Method on TMCG_SecretKey]std::string sigid (std::string s)
This method returns the unique key identifier which is included in the signature
s. The string ERROR is returned, if any parse error occurred.

[Method on TMCG_SecretKey]bool import (std::string s)
This method imports the key from a correctly formatted input string s. It
returns true, if the import was successful.

[Method on TMCG_SecretKey]bool decrypt (char* value, std::string s)
This method decrypts the given encryption packet s and stores the content in
value which is a pointer to a character array of size TMCG_SAEP_S0. The method
returns true, if the decryption was successful.

[Method on TMCG_SecretKey]std::string sign (const std::string&
data)

This method returns a digital signature on data.

[Method on TMCG_SecretKey]std::string encrypt (const char* value)
This method encrypts the content of value which is a pointer to a character
array of size TMCG_SAEP_S0. The method returns a corresponding encryption
packet that can be decrypted by the owner of the secret key.

[Method on TMCG_SecretKey]bool verify (const std::string& data,
std::string s)

This method verifies whether the signature s on data is valid or not. It returns
true, if everything was sound.

[Destructor on TMCG_SecretKey]~TMCG_SecretKey ()
This destructor releases all occupied resources.

[Operator on TMCG_SecretKey]std::ostream& << (std::ostream& out, const
TMCG_SecretKey& key)

This operator exports the given key to the output stream out.

[Operator on TMCG_SecretKey]std::istream& >> (std::istream& in,
TMCG_SecretKey& key)

This operator imports the given key from the input stream in. The data has to be
delimited by a newline character. The failbit is set, if any parse error occurred.

[Data type]TMCG_PublicKey
This struct represents the public part of the TMCG key.

[Member of TMCG_PublicKey]std::string name
This string contains the name or a pseudonym of the key owner.

[Member of TMCG_PublicKey]std::string email
This string contains the email address of the key owner.

[Member of TMCG_PublicKey]std::string type
This string contains information about the key type. The common prefix is
TMCG/RABIN. It is followed by the decimal encoded bit size of the modulus

Chapter 2: Application Programming Interface 21

m. The suffix NIZK signals that the correctness of the key is shown by an
appended non-interactive zero-knowledge proof. The single parts are separated
by underscore characters _, e.g., TMCG/RABIN_1024_NIZK has the correct form.

[Member of TMCG_PublicKey]std::string nizk
This string contains two stages of non-interactive zero-knowledge proof of Gen-
naro, Micciancio and Rabin (ACM CCS, 1998). They show that the modu-
lus m was correctly generated. Further there is another non-interactive zero-
knowledge proof appended which shows that the condition y ∈ NQR◦

m holds.

[Member of TMCG_PublicKey]std::string sig
This string contains the self signature of the public key.

[Member of TMCG_PublicKey]mpz_t m
This is the public modulus m = p ·q which is the product of two secret primes p
and q. The size of m is determined by the security parameter TMCG_QRA_SIZE.

[Member of TMCG_PublicKey]mpz_t y
This is the public quadratic non-residue y ∈ NQR◦

m which is used by several
zero-knowledge proofs of the toolbox.

[Constructor on TMCG_PublicKey]TMCG_PublicKey ()
This default constructor initializes an empty public key.

[Constructor on TMCG_PublicKey]TMCG_PublicKey (const
TMCG_SecretKey& skey)

This constructor initializes the key using public values of the secret key skey.

[Constructor on TMCG_PublicKey]TMCG_PublicKey (const
TMCG_PublicKey& pkey)

This is a simple copy-constructor and pkey is the key to be copied.

[Operator on TMCG_PublicKey]TMCG_PublicKey& = (const
TMCG_PublicKey& that)

This is a simple assignment-operator and that is the key to be assigned.

[Method on TMCG_PublicKey]bool check ()
This method tests whether the self signature is valid and whether the non-
interactive zero-knowledge proofs are sound. It returns true, if all checks have
been successfully passed. Due to the computational complexity of the verifica-
tion procedure these checks are extremely time-consuming.

[Method on TMCG_PublicKey]std::string fingerprint ()
This method returns the fingerprint of the key. The fingerprint is the hex-
adecimal notation of the hash value (algorithm TMCG_GCRY_MD_ALGO) on the
members name, email, type, m, y, nizk, and sig.

[Method on TMCG_PublicKey]std::string selfid ()
This method returns the real value of the self signature. The string ERROR is
returned, if any parse error occurred. The string SELFSIG-SELFSIG-SELFSIG-
SELFSIG-SELFSIG-SELFSIG is returned, if the self signature sig was empty.

Chapter 2: Application Programming Interface 22

[Method on TMCG_PublicKey]std::string keyid (size_t size
=TMCG_KEYID_SIZE)

This method returns the unique key identifier of length size. The default value
of the first argument is set to TMCG_KEYID_SIZE, if size is omitted in the call.

[Method on TMCG_PublicKey]size_t keyid_size (const std::string& s)
This method returns the length of the unique key identifier s. Zero is returned,
if any parse error occurred.

[Method on TMCG_PublicKey]std::string sigid (std::string s)
This method returns the unique key identifier which is included in the signature
s. The string ERROR is returned, if any parse error occurred.

[Method on TMCG_PublicKey]bool import (std::string s)
This method imports the key from a correctly formatted input string s. It
returns true, if the import was successful.

[Method on TMCG_PublicKey]std::string encrypt (const char* value)
This method encrypts the content of value which is a pointer to a character
array of size TMCG_SAEP_S0. The method returns a corresponding encryption
packet that can be decrypted by the owner of the secret key.

[Method on TMCG_PublicKey]bool verify (const std::string& data,
std::string s)

This method verifies whether the signature s on data is valid or not. It returns
true, if everything was sound.

[Destructor on TMCG_PublicKey]~TMCG_PublicKey ()
This destructor releases all occupied resources.

[Operator on TMCG_PublicKey]std::ostream& << (std::ostream& out, const
TMCG_PublicKey& key)

This operator exports the given key to the output stream out.

[Operator on TMCG_PublicKey]std::istream& >> (std::istream& in,
TMCG_PublicKey& key)

This operator imports the given key from the input stream in. The data has to be
delimited by a newline character. The failbit is set, if any parse error occurred.

[Data type]TMCG_PublicKeyRing
This struct is just a simple container for TMCG public keys. There are no particular
methods provided by TMCG_PublicKeyRing. You have to use the regular interface of
the STL container std::vector to access the single keys of the ring.

[Member of TMCG_PublicKeyRing]std::vector<TMCG_PublicKey> keys
This is the real container that is used to store the keys.

[Constructor on TMCG_PublicKeyRing]TMCG_PublicKeyRing ()
This default constructor initializes an empty public key ring.

[Constructor on TMCG_PublicKeyRing]TMCG_PublicKeyRing (size_t n)
This constructor initializes the container for storing exactly n keys.

Chapter 2: Application Programming Interface 23

[Destructor on TMCG_PublicKeyRing]~TMCG_PublicKeyRing ()
This destructor releases all occupied resources.

2.2.2 Classes

LibTMCG consists of several C++ classes. Some of them are only extensions or optimiza-
tions, but other provide necessary interfaces to perform the basic operations in secure card
games, e.g., the creation of open cards, the masking of cards, the opening of masked cards,
the verifiable secret shuffle of a stack, and more general tasks like distributed key gen-
eration procedures. Each class implements the main functionality of the corresponding
research paper [Sc98,BS03,Gr05]. The author names are a prefix of the class name and the
then following part is an abbreviation of the title.

2.2.2.1 Verifiable k-out-of-k Threshold Masking Function

The two classes of this subsection are concrete instantiations of Barnett and Smart’s VTMF
primitive [BS03]. More formally, the authors specify four different protocols:
• Key Generation Protocol
• Verifiable Masking Protocol
• Verifiable Re-masking Protocol
• Verifiable Decryption Protocol

Each protocol uses low-level operations on an appropriately chosen algebraic group G.
The choice of this group is crucial to the security of the card encoding scheme and thus to
the high-level operations on cards resp. stacks.

There are just a few methods and members of these classes that might be of general
interest for an application programmer, e.g. the methods of the key generation protocol.
The other stuff is only used internally by high-level operations of SchindelhauerTMCG.
Therefore this manual omits the description of such internal functions and members.

[Class]BarnettSmartVTMF_dlog
This class implements the discrete logarithm instantiation of the VTMF primitive in
the field Z/pZ, where p is a large prime number. The mathematical computations
are performed in the finite cyclic subgroup G of prime order q such that p = kq + 1
holds for some k ∈ Z. The security relies on the DDH assumption in G, i.e., the
distribution {ga, gb, gab} is computationally indistinguishable from {ga, gb, gc}, where
g is a generator of G and a, b, c are chosen at random from Zq. Currently, this well-
established assumption is believed to hold, if p and q are chosen according to the
predefined security parameters of LibTMCG.

[Member of BarnettSmartVTMF_dlog]mpz_t p
This is the public prime number p which defines the underlying field Z/pZ.

[Member of BarnettSmartVTMF_dlog]mpz_t q
This is the public prime number q which defines the underlying cyclic group G.
G is a subgroup of Z/pZ and is exactly of order q.

[Member of BarnettSmartVTMF_dlog]mpz_t g
This is the fixed public generator g of the underlying group G.

Chapter 2: Application Programming Interface 24

[Member of BarnettSmartVTMF_dlog]mpz_t k
This is a public integer k such that p = kq + 1 holds.

[Member of BarnettSmartVTMF_dlog]mpz_t h
This is the common public key h =

∏k
i=1 hi which contains the public keys hi of

each player Pi. Note that in the above formula k denotes the number of players.

[Constructor on BarnettSmartVTMF_dlog]BarnettSmartVTMF_dlog
(unsigned long int fieldsize =TMCG_DDH_SIZE, unsigned long int
subgroupsize =TMCG_DLSE_SIZE)

This constructor creates a new VTMF instance. That means, the primes p
and q are randomly and uniformly chosen such that they have length fieldsize
bit and subgroupsize bit, respectively. Further, a generator g for the unique
subgroup of order q is chosen at random. If the arguments are omitted, then
fieldsize and subgroupsize are set to their default values TMCG_DDH_SIZE and
TMCG_DLSE_SIZE, respectively. Depending on fieldsize and subgroupsize the
group generation is a very time-consuming task and some dots are sent to
std::cerr as a progress indicator.

[Constructor on BarnettSmartVTMF_dlog]BarnettSmartVTMF_dlog
(std::istream& in, unsigned long int fieldsize =TMCG_DDH_SIZE,
unsigned long int subgroupsize =TMCG_DLSE_SIZE)

This constructor initializes the VTMF instance from a correctly formatted in-
put stream in. For example, such a stream can be generated by calling the
method PublishGroup of an already created instance. The arguments field-
size and subgroupsize are stored for later following usage, e.g. by the method
CheckGroup as explained below. If these arguments are omitted, then they are
set to the default values TMCG_DDH_SIZE and TMCG_DLSE_SIZE, respectively.

[Method on BarnettSmartVTMF_dlog]bool CheckGroup ()
This method checks whether p and q have appropriate sizes with respect to
the bit lengths given during the initialization of the corresponding instance.
Further, it checks whether p has the correct form (i.e. p = kq + 1), whether p
and q are probable prime, and whether g is a generator of the subgroup G. It
returns true, if all of these checks have been passed successfully.

[Method on BarnettSmartVTMF_dlog]void PublishGroup (std::ostream&
out)

This method exports all necessary group parameters of G to the given output
stream out, so other VTMF instances of G can be initialized, e.g. with the
second constructor of BarnettSmartVTMF_dlog.

[Method on BarnettSmartVTMF_dlog]void
KeyGenerationProtocol_GenerateKey ()

This method generates a VTMF key pair and stores the pair internally for
a later following usage. It must be called before any other part of the key
generation protocol is executed. Otherwise, the produced results are wrong.

Chapter 2: Application Programming Interface 25

[Method on BarnettSmartVTMF_dlog]void
KeyGenerationProtocol_PublishKey (std::ostream& out)

This method exports the public part of the generated VTMF key pair to the
given output stream out. Further, it appends a non-interactive zero-knowledge
proof of knowledge which shows that the instance knows the secret part. Due
to the non-interactive nature of this proof the method has to be called only
once while the computed output can be reused multiple times if necessary.

[Method on BarnettSmartVTMF_dlog]bool
KeyGenerationProtocol_UpdateKey (std::istream& in)

This method reads the public part of a VTMF key and the proof of knowledge
from the input stream in. It appends the key to the common public key and
returns true, if the given proof was sound. Otherwise, false is returned.

[Method on BarnettSmartVTMF_dlog]bool
KeyGenerationProtocol_RemoveKey (std::istream& in)

This method reads the public part of a VTMF key and the corresponding
proof of knowledge from the input stream in. It removes the key from the
common public key and returns true, if the key was previously appended by
KeyGenerationProtocol_UpdateKey as explained above.

[Method on BarnettSmartVTMF_dlog]void
KeyGenerationProtocol_Finalize ()

This method must be called after any update (KeyGenerationProtocol_
UpdateKey) or removal (KeyGenerationProtocol_RemoveKey) has been
performed on the common public key.

[Destructor on BarnettSmartVTMF_dlog]~BarnettSmartVTMF_dlog ()
This destructor releases all occupied resources.

[Subclass of BarnettSmartVTMF_dlog]BarnettSmartVTMF_dlog_GroupQR
This subclass implements the discrete logarithm instantiation of the VTMF primitive
in the field Z/pZ, where p is a large prime number. The mathematical computations
are performed in the finite cyclic subgroup G (quadratic residues modulo p) of prime
order q, where p = 2q + 1 holds. The security relies on the DDH assumption in G,
i.e., the distribution {ga, gb, gab} is computationally indistinguishable from {ga, gb, gc},
where g is a generator of G and a, b, c are chosen at random from Zq. Currently, this
well-established assumption is believed to hold, if p and q are chosen according to the
predefined security parameters of LibTMCG.

[Member of BarnettSmartVTMF_dlog_GroupQR]mpz_t p
This is the public prime number p which defines the underlying field Z/pZ.

[Member of BarnettSmartVTMF_dlog_GroupQR]mpz_t q
This is the public prime number q which defines the underlying cyclic group G.
G denotes the unique subgroup of quadratic residues modulo p which is exactly
of order q, if p = 2q + 1 holds.

[Member of BarnettSmartVTMF_dlog_GroupQR]mpz_t g
This is the fixed public generator g of the underlying group G.

Chapter 2: Application Programming Interface 26

[Member of BarnettSmartVTMF_dlog_GroupQR]mpz_t k
This integer is fixed here by k = 2.

[Member of BarnettSmartVTMF_dlog_GroupQR]mpz_t h
This is the common public key h =

∏k
i=1 hi which contains the public keys hi of

each player Pi. Note that in the above formula k denotes the number of players.

[on BarnettSmartVTMF_dlog_GroupQR]BarnettSmartVTMF_dlog_GroupQR
(unsigned long int fieldsize =TMCG_DDH_SIZE, unsigned long int
exponentsize =TMCG_DLSE_SIZE)

This constructor creates a new VTMF instance. That means, the safe prime
p is randomly and uniformly chosen such that it has a length of fieldsize
bit. Further, the generator g is initially set up by 2 and then shifted by
fieldsize − exponentsize bit positions, according to the procedure described
by Koshiba and Kurosawa (see Short Exponent Diffie-Hellman Problems,
PKC 2004, LNCS 2947). If the arguments of the constructor are omitted, then
fieldsize and exponentsize are set to their default values TMCG_DDH_SIZE and
TMCG_DLSE_SIZE, respectively. Depending on fieldsize and exponentsize the
group generation is a very time-consuming task and some dots are sent to
std::cerr as a progress indicator.

[on BarnettSmartVTMF_dlog_GroupQR]BarnettSmartVTMF_dlog_GroupQR
(std::istream& in, unsigned long int fieldsize =TMCG_DDH_SIZE,
unsigned long int exponentsize =TMCG_DLSE_SIZE)

This constructor initializes the VTMF instance from a correctly formatted in-
put stream in. For example, such a stream can be generated by calling the
method PublishGroup of an already created instance. The arguments field-
size and exponentsize are stored for later following usage, e.g. by the method
CheckGroup as explained below. If these arguments are omitted, then they are
set to the default values TMCG_DDH_SIZE and TMCG_DLSE_SIZE, respectively.

[Method on BarnettSmartVTMF_dlog_GroupQR]bool CheckGroup ()
This method checks whether p and q have appropriate sizes with respect to
the bit lengths given during the initialization of the corresponding instance.
Further, it checks whether p has the correct form (i.e. p = 2q + 1), whether p
and q are probable prime, and whether g is a generator of the subgroup G. It
returns true, if all of these checks have been passed successfully.

[Method on BarnettSmartVTMF_dlog_GroupQR]void PublishGroup
(std::ostream& out)

This method exports all necessary group parameters of G to the given output
stream out, so other VTMF instances of G can be initialized, e.g. with the
second constructor of BarnettSmartVTMF_dlog_GroupQR.

[Method on BarnettSmartVTMF_dlog_GroupQR]void
KeyGenerationProtocol_GenerateKey ()

This method generates a VTMF key pair and stores the pair internally for
a later following usage. It must be called before any other part of the key
generation protocol is executed. Otherwise, the produced results are wrong.

Chapter 2: Application Programming Interface 27

[Method on BarnettSmartVTMF_dlog_GroupQR]void
KeyGenerationProtocol_PublishKey (std::ostream& out)

This method exports the public part of the generated VTMF key pair to the
given output stream out. Further, it appends a non-interactive zero-knowledge
proof of knowledge which shows that the instance knows the secret part. Due
to the non-interactive nature of this proof the method has to be called only
once while the computed output can be reused multiple times if necessary.

[Method on BarnettSmartVTMF_dlog_GroupQR]bool
KeyGenerationProtocol_UpdateKey (std::istream& in)

This method reads the public part of a VTMF key and the proof of knowledge
from the input stream in. It appends the key to the common public key and
returns true, if the given proof was sound. Otherwise, false is returned.

[Method on BarnettSmartVTMF_dlog_GroupQR]bool
KeyGenerationProtocol_RemoveKey (std::istream& in)

This method reads the public part of a VTMF key and the corresponding
proof of knowledge from the input stream in. It removes the key from the
common public key and returns true, if the key was previously appended by
KeyGenerationProtocol_UpdateKey as explained above.

[Method on BarnettSmartVTMF_dlog_GroupQR]void
KeyGenerationProtocol_Finalize ()

This method must be called after any update (KeyGenerationProtocol_
UpdateKey) or removal (KeyGenerationProtocol_RemoveKey) has been
performed on the common public key.

[on BarnettSmartVTMF_dlog_GroupQR]~BarnettSmartVTMF_dlog_GroupQR
()

This destructor releases all occupied resources.

2.2.2.2 Verifiable Secret Shuffle of Homomorphic Encryptions

Recently, Groth [Gr05] has proposed a very efficient solution to perform a verifiable shuf-
fle of homomorphically encrypted values. He describes an honest verifier zero-knowledge
argument which shows the correctness of a shuffle. Beside other applications (e.g. verifi-
able mix networks, electronic voting) his protocol can be used to show (with overwhelming
probability) that the secret shuffle of a deck of cards was performed correctly. The com-
putational complexity and the produced communication traffic are superior to previously
deployed techniques (e.g. Schindelhauer’s cut-and-choose method). LibTMCG provides the
first known implementation of Groth’s famous protocol. However, it can only be used along
with the VTMF card encoding scheme of Barnett and Smart [BS03].

Our implementation uses the statistically hiding and computationally binding homomor-
phic commitment scheme due to Pedersen (see Non-interactive and Information-theoretic
Secure Verifiable Secret Sharing, CRYPTO ’91, LNCS 576). The binding property relies on
the hardness of computing discrete logarithms in G, and thus a commitment is only binding
for computationally bounded provers.3 But this choice seems to be reasonable for the inten-

3 Strictly speaking, due to this reason Groth’s protocol is a zero-knowledge argument instead of a zero-
knowledge proof. However, for convenience we will not distinguish between these terms here.

Chapter 2: Application Programming Interface 28

tion of LibTMCG, because all players are supposed to be computationally bounded. The
security parameters of the commitment scheme (in particular the group G) are determined
by the corresponding VTMF instance.

Further, to the best of our knowledge it is not known, whether Groth’s protocol retains
the zero-knowledge property when it is executed in a concurrent setting. Thus the applica-
tion programmer should be careful and avoid parallel invocations of the same instance.

[Class]GrothVSSHE
This class provides the low-level interface for Groth’s protocol. There are just a
few methods that might be of general interest. All other components are only used
internally by high-level operations and thus their description is omitted here.

[Constructor on GrothVSSHE]GrothVSSHE (size_t n, mpz_srcptr p ENC,
mpz_srcptr q ENC, mpz_srcptr k ENC, mpz_srcptr g ENC,
mpz_srcptr h ENC, unsigned long int ell e =TMCG_GROTH_L_E,
unsigned long int fieldsize =TMCG_DDH_SIZE, unsigned long int
subgroupsize =TMCG_DLSE_SIZE)

This constructor creates a new instance. The low-level operations are later used
to show the correctness of a shuffle of at most n cards. The protocol and some
parameters of the commitment scheme are initialized by the members of the
corresponding VTMF instance. Consequently, p ENC is the prime number p
which determines the field Z/pZ, q ENC is the order of the underlying subgroup
G, i.e. the prime number q, and k ENC is the integer such that p = qk + 1
holds. Further, g ENC is the generator g, and finally h ENC is the common
public key h. The positive integer ell e is the security parameter which controls
the soundness error probability (2−`e) of the protocol. The default value is
defined by TMCG_GROTH_L_E, if this argument is omitted. The fieldsize and
the subgroupsize are supplied to internal classes and are only of interest, if
p ENC or q ENC have lengths different from the default. If these arguments
are omitted, they are set to TMCG_DDH_SIZE and TMCG_DLSE_SIZE, respectively.

Note that the generators g′1, . . . , g
′
n of the Pedersen commitment scheme are

randomly and uniformly chosen from Zq. Therefore this constructor should be
instantiated only once by the session leader. All other instances must be created
by the second constructor. Further, it is very important that the VTMF key
generation protocol has been finished before the value of h is passed to the
constructor. Otherwise, the correctness verification will definitely fail.

[Constructor on GrothVSSHE]GrothVSSHE (size_t n, std::istream& in,
unsigned long int ell e =TMCG_GROTH_L_E, unsigned long int
fieldsize =TMCG_DDH_SIZE, unsigned long int subgroupsize
=TMCG_DLSE_SIZE)

This constructor initializes the instance from a correctly formatted input
stream in. For example, such a stream can be generated by calling the method
PublishGroup of an already created instance. Later the instance can be used
to show the correctness of a shuffle of at most n cards. The positive integer
ell e controls the soundness error probability of the protocol. The default
value is defined by TMCG_GROTH_L_E, if this argument is omitted.

Chapter 2: Application Programming Interface 29

[Method on GrothVSSHE]bool CheckGroup ()
This method checks whether the initialized commitment scheme is sound. It
returns true, if all tests have been passed successfully.

[Method on GrothVSSHE]void PublishGroup (std::ostream& out)
This method exports the instance configuration to the output stream out such
that other instances can be initialized, e.g. with the second constructor.

[Destructor on GrothVSSHE]~GrothVSSHE ()
This destructor releases all occupied resources.

2.2.2.3 Toolbox for Mental Card Games

This section explains the main class of LibTMCG which provides all “high-level operations”
from Schindelhauer’s toolbox [Sc98]. Even if the more efficient card encoding scheme of
Barnett and Smart [BS03] is deployed, at least one instance of the following class must be
created to perform any card or stack operations.

[Class]SchindelhauerTMCG
This class implements the main core of Schindelhauer’s toolbox, i.e. important func-
tions like masking, opening, and shuffling of cards and stacks, respectively. Some
exotic operations are still missing, e.g., the possibility to insert a masked card se-
cretly into a stack or the verifiable subset properties of stacks. All implemented
operations are available for the original encoding scheme of Schindelhauer (see TMCG_
Card) and, of course, for the more efficient encoding scheme of Barnett and Smart
(see VTMF_Card and BarnettSmartVTMF_dlog) as well.

[Member of SchindelhauerTMCG]unsigned long int TMCG_SecurityLevel
This read-only nonnegative integer represents the security parameter t which
was given to the constructor of this class. It defines the number of protocol
iterations and hence the soundness error probability (2−t) of the zero-knowledge
proofs in the encoding scheme of Schindelhauer. Further it defines the soundness
error probability (also 2−t) of the shuffle argument in the encoding scheme of
Barnett and Smart, if the efficient protocol of Groth [Gr05] is not used.

[Member of SchindelhauerTMCG]size_t TMCG_Players
This read-only nonnegative integer represents the number of players as given
to the constructor of this class.

[Member of SchindelhauerTMCG]size_t TMCG_TypeBits
This read-only nonnegative integer contains the number of bits that are neces-
sary to encode the card types in the binary representation. It was given as an
argument to the constructor of this class.

[Constructor on SchindelhauerTMCG]SchindelhauerTMCG (unsigned long
int security, size_t k, size_t w)

This constructor creates an instance, where security is a nonnegative integer
that represents the security parameter t. The parameter k is the number of
players and w is the number of bits which are necessary to represent all possible
card types in a binary representation.

Chapter 2: Application Programming Interface 30

The integer t controls the maximum soundness error probability (2−t) of the
zero-knowledge proofs in the encoding scheme of Schindelhauer. Specifically,
security defines the number of sequential iterations of the involved protocols and
thus has a major impact on the computational and communication complexity.
If the encoding scheme of Barnett and Smart [BS03] is used, then it only defines
the soundness error probability (also 2−t) of the shuffle proof. However, if
only the efficient shuffle verification protocol of Groth [Gr05] is used, then the
parameter security is dispensable, because the parameter ell e given during
instantiation of GrothVSSHE (e.g. the LibTMCG default security parameter
TMCG_GROTH_L_E) determines this soundness error probability (2−`e).

Unfortunately, the parameters k and w have a major impact on the complexity
in the encoding scheme of Schindelhauer, too. Therefore you should always
use reasonable values. For example, to create a deck with M different card
types simply set w to dlog2 Me which is an tight upper-bound for the binary
representation. Furthermore, set k to the number of players which are really
involved and not to a possible maximum value. Note that k and w are limited by
the global constants TMCG_MAX_PLAYERS and TMCG_MAX_TYPEBITS, respectively.

[Method on SchindelhauerTMCG]void TMCG_CreateOpenCard (TMCG_Card&
c, const TMCG_PublicKeyRing& ring, size_t type)

This method initializes the open card c with the given type using the encoding
scheme of Schindelhauer. The type MUST be an integer from the interval
[0, 2w − 1], where w is the number given to the constructor of this class. The
w MUST be the same number as used at creation of c (see TMCG_Card). The
parameter ring is a container with exactly k public keys, where k is the number
given to the constructor of this class. The k MUST be the same number as
used at the creation of c.

[Method on SchindelhauerTMCG]void TMCG_CreateOpenCard (VTMF_Card&
c, BarnettSmartVTMF_dlog* vtmf, size_t type)

This method initializes the open card c with the given type using the encoding
scheme of Barnett and Smart. The type MUST be an integer from the interval
[0, 2w − 1], where w is the number given to the constructor of this class. The
parameter vtmf is a pointer to an already initialized VTMF instance, i.e. the
key generation protocol was successfully finished (see BarnettSmartVTMF_dlog
and BarnettSmartVTMF_dlog_GroupQR, respectively).

[Method on SchindelhauerTMCG]void TMCG_CreateCardSecret
(TMCG_CardSecret& cs, const TMCG_PublicKeyRing& ring, size_t
index)

This method initializes the card secret cs with random values which is neces-
sary to perform later a masking operation on a card. The parameter ring is a
container with exactly k public keys, where k is the number given to the con-
structor of this class. It MUST be the same number as used at the creation of
cs (see TMCG_CardSecret). The parameter index is from the interval [0, k − 1]
and determines the position of the players public key in the container ring.

Chapter 2: Application Programming Interface 31

[Method on SchindelhauerTMCG]void TMCG_CreateCardSecret
(VTMF_CardSecret& cs, BarnettSmartVTMF_dlog* vtmf)

This method initializes the card secret cs with a random value which is necessary
to perform later a masking operation on a card. The parameter vtmf is a pointer
to an already initialized VTMF instance, i.e. the key generation protocol MUST
be successfully finished (see BarnettSmartVTMF_dlog and BarnettSmartVTMF_
dlog_GroupQR, respectively).

[Method on SchindelhauerTMCG]void TMCG_CreatePrivateCard
(TMCG_Card& c, TMCG_CardSecret& cs, const
TMCG_PublicKeyRing& ring, size_t index, size_t type)

This method initializes a masked card c with the given type and a corresponding
card secret cs using the encoding scheme of Schindelhauer. The type MUST
be an integer from the interval [0, 2w − 1], where w is the number given to
the constructor of this class. The w MUST be the same number as used at
creation of c (see TMCG_Card) and cs (see TMCG_CardSecret). The parameter
ring is a container with exactly k public keys, where k is the number given
to the constructor of this class. The k MUST be the same number as used at
the creation of c and cs. The parameter index is from the interval [0, k − 1]
and determines the position of the players public key in the container ring.
Internally, TMCG_CreatePrivateCard calls
1. TMCG_CreateOpenCard to initialize c with type,
2. TMCG_CreateCardSecret to initialize cs with random values, and
3. TMCG_MaskCard to mask c with the secret cs.

[Method on SchindelhauerTMCG]void TMCG_CreatePrivateCard
(VTMF_Card& c, VTMF_CardSecret& cs, BarnettSmartVTMF_dlog*
vtmf, size_t type)

This method initializes a masked card c with the given type and a correspond-
ing card secret cs using the encoding scheme of Barnett and Smart. The type
MUST be an integer from the interval [0, 2w − 1], where w is the number
given to the constructor of this class. The parameter vtmf is a pointer to
an already initialized VTMF instance, i.e. the key generation protocol MUST
be successfully finished (see BarnettSmartVTMF_dlog and BarnettSmartVTMF_
dlog_GroupQR, respectively). Specifically, TMCG_CreatePrivateCard directly
executes the masking operation of the verifiable masking protocol.

[Method on SchindelhauerTMCG]void TMCG_MaskCard (const TMCG_Card&
c, TMCG_Card& cc, const TMCG_CardSecret& cs, const
TMCG_PublicKeyRing& ring, bool TimingAttackProtection =true)

This method performs a masking operation on the open or already masked card
c using the encoding scheme of Schindelhauer. Finally it returns the result in cc.
The parameter cs MUST be an initialized fresh card secret which has NEVER
been involved in a masking operation before. The parameters c, cc, and cs
MUST be created such that their k and w corresponds to the numbers given
to the constructor of this class, respectively. The parameter ring is a container
with exactly k public keys. The protection against timing attacks is turned on,
if TimingAttackProtection is set to true.

Chapter 2: Application Programming Interface 32

[Method on SchindelhauerTMCG]void TMCG_MaskCard (const VTMF_Card&
c, VTMF_Card& cc, const VTMF_CardSecret& cs,
BarnettSmartVTMF_dlog* vtmf, bool TimingAttackProtection
=true)

This method performs a masking operation on the open or already masked
card c using the encoding scheme of Barnett and Smart. Finally it returns
the result in cc. Specifically, TMCG_MaskCard directly executes the masking
operation of the verifiable re-masking protocol. The parameter cs MUST be
an initialized fresh card secret which has NEVER been involved in a mask-
ing operation before. The parameter vtmf is a pointer to an already initial-
ized VTMF instance, i.e. the key generation protocol MUST be successfully
finished (see BarnettSmartVTMF_dlog and BarnettSmartVTMF_dlog_GroupQR,
respectively). The protection against timing attacks is turned on, if TimingAt-
tackProtection is set to true.

[Method on SchindelhauerTMCG]void TMCG_ProveMaskCard (const
TMCG_Card& c, const TMCG_Card& cc, const TMCG_CardSecret& cs,
const TMCG_PublicKeyRing& ring, std::istream& in,
std::ostream& out)

This method should be called by the prover after TMCG_MaskCard to show that
he performed the masking operation correctly. The parameters c, cc, and cs are
the input, the result, and the used card secret of TMCG_MaskCard, respectively.
They MUST be created such that their k resp. w corresponds to the numbers
given to the constructor of this class. The parameter ring is a container with
exactly k public keys. The input/output protocol messages from and to the
verifier are transmitted on the streams in and out, respectively.

[Method on SchindelhauerTMCG]void TMCG_ProveMaskCard (const
VTMF_Card& c, const VTMF_Card& cc, const VTMF_CardSecret& cs,
BarnettSmartVTMF_dlog* vtmf, std::istream& in, std::ostream&
out)

This method should be executed by the prover after calling TMCG_MaskCard to
show that he performed the masking operation correctly. Specifically, TMCG_
ProveMaskCard directly calls the prove operation of the verifiable re-masking
protocol. The parameters c, cc, and cs are the input, the result, and the used
card secret of TMCG_MaskCard, respectively. The parameter vtmf is a pointer to
an already initialized VTMF instance, i.e. the key generation protocol MUST
be successfully finished. The input/output protocol messages from and to the
verifier are transmitted on the streams in and out, respectively.

[Method on SchindelhauerTMCG]bool TMCG_VerifyMaskCard (const
TMCG_Card& c, const TMCG_Card& cc, const TMCG_PublicKeyRing&
ring, std::istream& in, std::ostream& out)

This method should be executed by the verifier to check whether or not a
masking operation was performed correctly. The parameters c and cc are the
input and the result of TMCG_MaskCard, respectively. They MUST be created
such that their k resp. w corresponds to the numbers given to the constructor
of this class. The parameter ring is a container with exactly k public keys. The

Chapter 2: Application Programming Interface 33

input/output protocol messages from and to the prover are transmitted on the
streams in and out, respectively. The method returns true, if everything was
sound.

[Method on SchindelhauerTMCG]bool TMCG_VerifyMaskCard (const
VTMF_Card& c, const VTMF_Card& cc, BarnettSmartVTMF_dlog*
vtmf, std::istream& in, std::ostream& out)

This method should be executed by the verifier to check whether or not a mask-
ing operation was performed correctly. Specifically, TMCG_VerifyMaskCard di-
rectly calls the verify operation of the verifiable re-masking protocol. The pa-
rameters c and cc are the input and the result of TMCG_MaskCard, respectively.
The parameter vtmf is a pointer to an already initialized VTMF instance, i.e.
the key generation protocol MUST be successfully finished. The input/output
protocol messages from and to the prover are transmitted on the streams in
and out, respectively. The method returns true, if everything was sound.

[Method on SchindelhauerTMCG]void TMCG_ProveCardSecret (const
TMCG_Card& c, const TMCG_SecretKey& key, size_t index,
std::istream& in, std::ostream& out)

This method is used to reveal the card type of c to a verifier. Every player
must execute this method as prover. The card c MUST be created such that
its k resp. w corresponds to the numbers given to the constructor of this class.
The parameter key is the corresponding secret key (see TMCG_SecretKey) of
the prover. The parameter index is from the interval [0, k − 1] and contains
the position of the provers public key in the container ring (same as in TMCG_
CreateCardSecret). The input/output protocol messages from and to the
verifier are transmitted on the streams in and out, respectively.

[Method on SchindelhauerTMCG]void TMCG_ProveCardSecret (const
VTMF_Card& c, BarnettSmartVTMF_dlog* vtmf, std::istream& in,
std::ostream& out)

This method is used to reveal the card type of c to a verifier. Every player
must execute this method as prover. Specifically, TMCG_ProveCardSecret di-
rectly calls the prove operation of the verifiable decryption protocol. The pa-
rameter vtmf is a pointer to an already initialized VTMF instance, i.e. the key
generation protocol MUST be successfully finished. The input/output protocol
messages from and to the verifier are transmitted on the streams in and out,
respectively.

[Method on SchindelhauerTMCG]bool TMCG_VerifyCardSecret (const
TMCG_Card& c, TMCG_CardSecret& cs, const TMCG_PublicKey& key,
size_t index, std::istream& in, std::ostream& out)

This method is used to verify and accumulate card type information regard-
ing c that are supplied by a prover. It is the opposite method of TMCG_
ProveCardSecret and must be executed by the player who wants to know
the type. The secrets provided by the single provers are accumulated in the
parameter cs. Thus c and cs MUST be created such that their k resp. w cor-
responds to the numbers given to the constructor of this class. The parameter

Chapter 2: Application Programming Interface 34

key is the corresponding public key (see TMCG_PublicKey) of the prover. The
parameter index is from the interval [0, k − 1] and contains the position of the
provers public key in the container ring (same as in TMCG_CreateCardSecret).
The input/output protocol messages from and to the prover are transmitted on
the streams in and out, respectively.

[Method on SchindelhauerTMCG]bool TMCG_VerifyCardSecret (const
VTMF_Card& c, BarnettSmartVTMF_dlog* vtmf, std::istream& in,
std::ostream& out)

This method is used to verify and accumulate card type information regard-
ing c that are supplied by a prover. It is the opposite method of TMCG_
ProveCardSecret and must be executed by the player who wants to know
the type. The secrets provided by the single provers are accumulated inter-
nally, thus this method cannot be interleaved with the opening of other cards.
Specifically, TMCG_VerifyCardSecret directly calls the verify and update oper-
ation of the verifiable decryption protocol. The parameter vtmf is a pointer to
an already initialized VTMF instance, i.e. the key generation protocol MUST
be successfully finished. The input/output protocol messages from and to the
verifier are transmitted on the streams in and out, respectively.

[Method on SchindelhauerTMCG]void TMCG_SelfCardSecret (const
TMCG_Card& c, TMCG_CardSecret& cs, const TMCG_SecretKey& key,
size_t index)

This method is used to compute and accumulate card type information regard-
ing c. Analogously to TMCG_VerifyCardSecret it must be executed by the
player who wants to know the type of c. The information is accumulated in the
parameter cs. Thus c and cs MUST be created such that their k resp. w cor-
responds to the numbers given to the constructor of this class. The parameter
key is the corresponding secret key (see TMCG_SecretKey) of the player. The
parameter index is from the interval [0, k − 1] and contains the position of the
players public key in the container ring (same as in TMCG_CreateCardSecret).

[Method on SchindelhauerTMCG]void TMCG_SelfCardSecret (const
VTMF_Card& c, BarnettSmartVTMF_dlog* vtmf)

This method is used to compute and accumulate card type information regard-
ing c. It MUST be called by the player who wants to know the type of c
BEFORE TMCG_VerifyCardSecret and TMCG_TypeOfCard are executed. The
secrets provided by the player are accumulated internally, thus this method
cannot be interleaved with the opening of other cards. Specifically, TMCG_
SelfCardSecret directly calls the initialize operation of the verifiable decryp-
tion protocol. The parameter vtmf is a pointer to an already initialized VTMF
instance, i.e. the key generation protocol MUST be successfully finished.

[Method on SchindelhauerTMCG]size_t TMCG_TypeOfCard (const
TMCG_CardSecret& cs)

This method returns the type of a masked card provided that the type informa-
tion were properly accumulated in cs before (by calling TMCG_SelfCardSecret
and TMCG_VerifyCardSecret, respectively).

Chapter 2: Application Programming Interface 35

[Method on SchindelhauerTMCG]size_t TMCG_TypeOfCard (const
VTMF_Card& c, BarnettSmartVTMF_dlog* vtmf)

This method returns the type of a masked card c provided that the type in-
formation regarding c were properly accumulated internally before (by calling
TMCG_SelfCardSecret and TMCG_VerifyCardSecret, respectively). It returns
the value TMCG_MaxCardType, if the opening operation failed or if the card type
was not among the set of valid types. This method MUST be performed by the
player who wants to know the type AFTER TMCG_SelfCardSecret and TMCG_
VerifyCardSecret are executed. Specifically, TMCG_TypeOfCard directly calls
the finalize operation of the verifiable decryption protocol. The parameter vtmf
is a pointer to an already initialized VTMF instance, i.e. the key generation
protocol MUST be successfully finished.

[Method on SchindelhauerTMCG]size_t TMCG_CreateStackSecret
(TMCG_StackSecret<TMCG_CardSecret>& ss, bool cyclic, const
TMCG_PublicKeyRing& ring, size_t index, size_t size)

This method initializes the stack secret ss with a randomly chosen permutation
and fresh card secrets. Later this stack secret can be used to perform a secret
shuffle operation on a stack. If the parameter cyclic is set to true, then the
permutation is only a cyclic shift which might be of interest for particular
operations, e.g. cutting the deck. The parameter ring is a container with
exactly k public keys, where k is the number given to the constructor of this
class. The parameter index is from the interval [0, k − 1] and contains the
position of the players public key in the container ring. The parameter size
determines the size of the created stack secret, i.e. the number of cards in
the corresponding stack. The size is upper-bounded by TMCG_MAX_CARDS. The
method returns the offset of the cyclic shift, if cyclic was set to true. Otherwise,
the value 0 is returned.

[Method on SchindelhauerTMCG]size_t TMCG_CreateStackSecret
(TMCG_StackSecret<VTMF_CardSecret>& ss, bool cyclic, size_t
size, BarnettSmartVTMF_dlog* vtmf)

This method initializes the stack secret ss with a randomly chosen permutation
and fresh card secrets. Later this stack secret can be used to perform a secret
shuffle operation on a stack. If the parameter cyclic is set to true, then the
permutation is only a cyclic shift which might be of interest for particular
operations, e.g. cutting the deck. The parameter size determines the size of the
created stack secret, i.e. the number of cards in the corresponding stack. The
size is upper-bounded by TMCG_MAX_CARDS. The parameter vtmf is a pointer to
an already initialized VTMF instance, i.e. the key generation protocol MUST
be successfully finished. The method returns the offset of the cyclic shift, if
cyclic was set to true. Otherwise, the value 0 is returned.

Chapter 2: Application Programming Interface 36

[Method on SchindelhauerTMCG]void TMCG_MixStack (const
TMCG_Stack<TMCG_Card>& s, TMCG_Stack<TMCG_Card>& s2, const
TMCG_StackSecret<TMCG_CardSecret>& ss, const
TMCG_PublicKeyRing& ring, bool TimingAttackProtection =true)

This method shuffles a given stack s according to the previously created stack
secret ss (see TMCG_CreateStackSecret). The result of the shuffle is returned
in s2. The parameter ss MUST be a fresh stack secret which has NEVER been
involved in a shuffle operation before. The parameters s and ss MUST be of
the same size. The parameter ring is a container with exactly k public keys,
where k is the number given to the constructor of this class. The protection
against timing attacks is turned on, if TimingAttackProtection is set to true.

[Method on SchindelhauerTMCG]void TMCG_MixStack (const
TMCG_Stack<VTMF_Card>& s, TMCG_Stack<VTMF_Card>& s2, const
TMCG_StackSecret<VTMF_CardSecret>& ss,
BarnettSmartVTMF_dlog* vtmf, bool TimingAttackProtection
=true)

This method shuffles a given stack s according to the previously created stack
secret ss (see TMCG_CreateStackSecret). The result of the shuffle is returned
in s2. The parameter ss MUST be a fresh stack secret which has NEVER been
involved in a shuffle operation before. The parameters s and ss MUST be of
the same size. The parameter vtmf is a pointer to an already initialized VTMF
instance, i.e. the key generation protocol MUST be successfully finished. The
protection against timing attacks is turned on, if TimingAttackProtection is set
to true.

[Method on SchindelhauerTMCG]void TMCG_ProveStackEquality (const
TMCG_Stack<TMCG_Card>& s, const TMCG_Stack<TMCG_Card>& s2,
const TMCG_StackSecret<TMCG_CardSecret>& ss, bool cyclic,
const TMCG_PublicKeyRing& ring, size_t index, std::istream&
in, std::ostream& out)

This method should be called by the prover after TMCG_MixStack to show that
he performed the shuffle operation correctly. The parameters s, s2, and ss are
the input, the result, and the used stack secret of TMCG_MixStack, respectively.
Of course, the parameters s, s2, and ss MUST be of the same size. The param-
eter cyclic determines whether a cyclic shift or a full permutation was used to
shuffle the stack. The parameter ring is a container with exactly k public keys,
where k is the number given to the constructor of this class. The parameter
index is from the interval [0, k − 1] and contains the position of the provers
public key in the container ring. The input/output protocol messages from and
to the verifier are transmitted on the streams in and out, respectively.

Chapter 2: Application Programming Interface 37

[Method on SchindelhauerTMCG]void TMCG_ProveStackEquality (const
TMCG_Stack<VTMF_Card>& s, const TMCG_Stack<VTMF_Card>& s2,
const TMCG_StackSecret<VTMF_CardSecret>& ss, bool cyclic,
BarnettSmartVTMF_dlog* vtmf, std::istream& in, std::ostream&
out)

This method should be called by the prover after TMCG_MixStack to show that
he performed the shuffle operation correctly. The parameters s, s2, and ss are
the input, the result, and the used stack secret of TMCG_MixStack, respectively.
Of course, the parameters s, s2, and ss MUST be of the same size. The pa-
rameter cyclic determines whether a cyclic shift or a full permutation was used
to shuffle the stack. The parameter vtmf is a pointer to an already initialized
VTMF instance, i.e. the key generation protocol MUST be successfully finished.
The input/output protocol messages from and to the verifier are transmitted
on the streams in and out, respectively.

[Method on SchindelhauerTMCG]void TMCG_ProveStackEquality_Groth
(const TMCG_Stack<VTMF_Card>& s, const
TMCG_Stack<VTMF_Card>& s2, const
TMCG_StackSecret<VTMF_CardSecret>& ss,
BarnettSmartVTMF_dlog* vtmf, GrothVSSHE* vsshe,
std::istream& in, std::ostream& out)

This is a method like above. The only difference is that the more efficient shuffle
verification protocol of Groth is used. Thus vsshe is a pointer to an initialized
instance of GrothVSSHE. The rest of the arguments are the same.

[Method on SchindelhauerTMCG]bool TMCG_VerifyStackEquality (const
TMCG_Stack<TMCG_Card>& s, const TMCG_Stack<TMCG_Card>& s2,
bool cyclic, const TMCG_PublicKeyRing& ring, std::istream& in,
std::ostream& out)

This method should be executed by the verifier to check whether or not a shuffle
operation was performed correctly. The parameters s and s2 are the input and
the result of TMCG_MixStack, respectively. Of course, the parameters s and s2
should be of the same size. The parameter cyclic determines whether a cyclic
shift or a full permutation was used to shuffle the stack. The parameter ring
is a container with exactly k public keys, where k is the number given to the
constructor of this class. The input/output protocol messages from and to the
prover are transmitted on the streams in and out, respectively. This method
returns true, if the shuffle operation was successfully verified.

[Method on SchindelhauerTMCG]bool TMCG_VerifyStackEquality (const
TMCG_Stack<VTMF_Card>& s, const TMCG_Stack<VTMF_Card>& s2,
bool cyclic, BarnettSmartVTMF_dlog* vtmf, std::istream& in,
std::ostream& out)

This method should be executed by the verifier to check whether or not a shuffle
operation was performed correctly. The parameters s and s2 are the input and
the result of TMCG_MixStack, respectively. Of course, the parameters s and s2
should be of the same size. The parameter cyclic determines whether a cyclic
shift or a full permutation was used to shuffle the stack. The parameter vtmf

Chapter 2: Application Programming Interface 38

is a pointer to an already initialized VTMF instance, i.e. the key generation
protocol MUST be successfully finished. The input/output protocol messages
from and to the verifier are transmitted on the streams in and out, respectively.
This method returns true, if the shuffle operation was successfully verified.

[Method on SchindelhauerTMCG]bool TMCG_VerifyStackEquality_Groth
(const TMCG_Stack<VTMF_Card>& s, const
TMCG_Stack<VTMF_Card>& s2, BarnettSmartVTMF_dlog* vtmf,
GrothVSSHE* vsshe, std::istream& in, std::ostream& out)

This is a method like above. The only difference is that the more efficient shuffle
verification protocol of Groth is used. Thus vsshe is a pointer to an initialized
instance of GrothVSSHE. The rest of the arguments and the returned values are
the same.

[Destructor on SchindelhauerTMCG]~SchindelhauerTMCG ()
This destructor releases all occupied resources.

Chapter 3: Examples 39

3 Examples

The following examples explain most of the steps that are necessary to create a secure card
game with LibTMCG. We consider an application with five permanent players (denoted by
P0, P1, P2, P3, and P4) and a regular deck of 52 different cards. For convenience only the
more efficient card encoding scheme of Barnett and Smart [BS03] is described. Additionally,
we complete our exposition with code fragments which show the usage of the fast shuffle
verification protocol due to Groth [Gr05].

Throughout the remaining pages we suppose that all players are pairwise connected by
authenticated communication channels. These channels are organized in input resp. out-
put streams, where input_stream[i] resp. output_stream[i] denote the corresponding
std::istream resp. std::ostream instance for the communication with player Pi.1

3.1 Library Initialization

The first step that should be performed is the initialization of LibTMCG. That can be done
very simply by calling the function init_libTMCG and evaluating the return code.� �
if (!init_libTMCG())

std::cerr << "Initialization of LibTMCG failed!" << std::endl;
 	
3.2 Session Initialization and Key Generation

In the next step we create an instance of the class SchindelhauerTMCG. The first parameter
determines the number of protocol iterations t which upper-bounds the cheating probability
by 2−t. In our example the used value 64 defines a maximum cheating probability of
5.421010862 · 10−20 which is reasonable small for our purposes. The second parameter
passes the number of players to the instance which is simply 5 in our case. The last
argument defines the number of bits that are necessary to encode all card types in a binary
representation. The given value 6 allows the encoding of 26 = 64 different card types at
maximum. This is enough to form our deck of 52 cards.� �
SchindelhauerTMCG *tmcg = new SchindelhauerTMCG(64, 5, 6);
 	

We would like to use the more efficient encoding scheme of Barnett and Smart, thus we
create an instance of BarnettSmartVTMF_dlog. However, a particular player has to act as
a leader who performs the generation of the group G. In our case P0 will be the session
leader. First, he executes the constructor of BarnettSmartVTMF_dlog.� �
BarnettSmartVTMF_dlog *vtmf = new BarnettSmartVTMF_dlog();
 	

Afterwards he checks the generated group G and sends the public parameters to all other
players (corresponding stream indices are 1, 2, 3, and 4, respectively).

1 We assume that the players are ordered in a natural way such that we can use the same nomenclature.

Chapter 3: Examples 40� �
if (!vtmf->CheckGroup())

std::cerr << "Group G was not correctly generated!" << std::endl;
for (size_t i = 1; i < 5; i++)

vtmf->PublishGroup(output_stream[i]);
 	
The other players receive the group parameters from P0 and use them to initialize their

corresponding instances of BarnettSmartVTMF_dlog. It is very important that they also
check, whether the group G was correctly generated by the leader.� �
BarnettSmartVTMF_dlog *vtmf =

new BarnettSmartVTMF_dlog(input_stream[0]);
if (!vtmf->CheckGroup())

std::cerr << "Group G was not correctly generated!" << std::endl;
 	
Afterwards the key generation protocol is carried out. First, every player generates his

own VTMF key. The secret key material is stored internally and will never be exposed.� �
vtmf->KeyGenerationProtocol_GenerateKey();
 	

Then every player Pj sends the public part of his VTMF key along with a non-interactive
zero-knowledge proof of knowledge to each other player. The appended proof shows that
he indeed knows the corresponding secret key. However, due to the non-interactive nature
of this proof we have to be careful, if same group G is used again.� �
for (size_t i = 0; i < 5; i++)
{

if (i != j)
vtmf->KeyGenerationProtocol_PublishKey(output_stream[i]);

}
 	
After sending Pj receives the public keys. Simultaneously he checks, whether the keys

are correctly generated, and updates the common public key h.� �
for (size_t i = 0; i < 5; i++)
{

if (i != j)
{

if (!vtmf->KeyGenerationProtocol_UpdateKey(input_stream[i]))
std::cerr << "Public key was not correctly generated!" << std::endl;

}
}
 	

Finally, every player must finalize the key generation protocol.� �
vtmf->KeyGenerationProtocol_Finalize();
 	

Chapter 3: Examples 41

If we want to use the more efficient shuffle verification protocol of Groth, then P0 must
also create an instance of GrothVSSHE. The first argument determines the maximum stack
size of which the correctness of a shuffle will be proven. The other parameters are obtained
from the former created VTMF instance vtmf. It is important that the key generation
protocol has been finalized before the common public key h (i.e. vtmf->h) is passed.� �
GrothVSSHE *vsshe = new GrothVSSHE(52, vtmf->p, vtmf->q, vtmf->k,

vtmf->g, vtmf->h);
 	
Again, P0 will send the public parameters of the VSSHE instance to all other players.� �

for (size_t i = 1; i < 5; i++)
vsshe->PublishGroup(output_stream[i]);
 	
The other players receive these parameters from the leader and use them to initialize

their corresponding instances of GrothVSSHE. Again, it is important to check, whether the
parameters were correctly chosen by the leader.� �
GrothVSSHE *vsshe = new GrothVSSHE(52, input_stream[0]);
if (!vsshe->CheckGroup())

std::cerr << "VSSHE was not correctly generated!" << std::endl;
if (mpz_cmp(vtmf->h, vsshe->com->h))

std::cerr << "VSSHE: Common public key does not match!" << std::endl;
if (mpz_cmp(vtmf->q, vsshe->com->q))

std::cerr << "VSSHE: Subgroup order does not match!" << std::endl;
if (mpz_cmp(vtmf->p, vsshe->p) || mpz_cmp(vtmf->q, vsshe->q) ||

mpz_cmp(vtmf->g, vsshe->g) || mpz_cmp(vtmf->h, vsshe->h))
std::cerr << "VSSHE: Encryption scheme does not match!" << std::endl;
 	

3.3 Operations on Cards

Now we are ready to perform several operations on cards. We start with some basic stuff
which might be of interest in particular situations. However, it is often more convenient to
work directly with stacks, as explained later.

3.3.1 Creating an Open Card

The creation of an open card is very simple. The following code creates a card of type 7.� �
VTMF_Card c;
tmcg->TMCG_CreateOpenCard(c, vtmf, 7);
 	
3.3.2 Masking and Re-masking of a Card

Now the previously created card c will be masked to hide its type. Then cc is sent to P1.

Chapter 3: Examples 42� �
VTMF_Card cc;
VTMF_CardSecret cs;
tmcg->TMCG_CreateCardSecret(cs, vtmf);
tmcg->TMCG_MaskCard(c, cc, cs, vtmf);
out_stream[1] << cc << std::endl;
 	

P1 receives the card cc, re-masks them, and sends the result ccc back to the player P0.
Further he proves that the masking operation was performed correctly.� �
VTMF_Card cc, ccc;
VTMF_CardSecret ccs;
in_stream[0] >> cc;
if (!in_stream[0].good())

std::cerr << "Read or parse error!" << std::endl;
tmcg->TMCG_CreateCardSecret(ccs, vtmf);
tmcg->TMCG_MaskCard(cc, ccc, ccs, vtmf);
out_stream[0] << ccc << std::endl;
tmcg->TMCG_ProveMaskCard(cc, ccc, ccs, vtmf, in_stream[0], out_stream[0]);
 	

P0 receives the card, verifies the proof, and sends the card to all other players.� �
VTMF_Card ccc;
in_stream[1] >> ccc;
if (!tmcg->TMCG_VerifyMaskCard(cc, ccc, vtmf, in_stream[1], out_stream[1]))

std::cerr << "Verification failed!" << std::endl;
for (size_t i = 1; i < 5; i++)

out_stream[i] << ccc << std::endl;
 	
Finally, all other players receive and store the masked card ccc.

3.3.3 Opening a Masked Card

Suppose that P1 would like to know the type of the masked card ccc. Of course, P0

could simply reveal it, but that isn’t verifiable. Anyway, if all players cooperate, then P1

can compute the type in a verifiable way. First, every player (except P1) will execute the
following code.� �
tmcg->TMCG_ProveCardSecret(ccc, vtmf, in_stream[1], out_stream[1]);
 	

On the other hand, P1 will execute the following commands exactly in the given order.
Finally, he obtain the card type in the variable type.

Chapter 3: Examples 43� �
tmcg->TMCG_SelfCardSecret(ccc, vtmf);
for (size_t i = 0; i < 5; i++)
{

if (i == 1)
continue;

if (!tmcg->TMCG_VerifyCardSecret(ccc, vtmf, in_stream[i], out_stream[i]))
std::cerr << "Verification failed!" << std::endl;

}
type = tmcg->TMCG_TypeOfCard(ccc, vtmf);
 	

3.4 Operations on Stacks

There exist a lot of basic operations on stacks, e.g. pushing a card to a stack or importing a
stack. These functions are to simple for explaining them here, but they are used implicitly.
However, a short description can be found in the API part of the manual (see TMCG_Stack
and TMCG_OpenStack).

3.4.1 Creating the Deck

A quite common operation is the creation of a card deck. The deck will initially be repre-
sented by an open stack (see TMCG_OpenStack) called deck. Every player creates his own
deck which consists of 52 different open cards in our example.� �
TMCG_OpenStack<VTMF_Card> deck;
for (size_t type = 0; type < 52; type++)
{

VTMF_Card c;
tmcg->TMCG_CreateOpenCard(c, vtmf, type);
deck.push(type, c);

}
 	
3.4.2 Shuffling the Deck

Each player must perform a shuffle of the deck, because only such a procedure guarantees
that no coalition has influence on the outcome. Thus we build a shuffle chain such that
every player shuffles the deck. Consider the code fragment for the player Pj.

The regular stack s is initialized with open cards from deck. Then each player shuffles
the stack (see TMCG_MixStack) and proves the correctness of this operation (see TMCG_
ProveStackEquality). Consequently, every player should verify these proofs (see TMCG_
VerifyStackEquality). Finally, the stack s contains the shuffled result.

Chapter 3: Examples 44� �
TMCG_Stack<VTMF_Card> s;
s.push(deck);

for (size_t i = 0; i < 5; i++)
{

TMCG_Stack<VTMF_Card> s2;
if (i == j)
{

TMCG_StackSecret<VTMF_CardSecret> ss;
tmcg->TMCG_CreateStackSecret(ss, false, s.size(), vtmf);
tmcg->TMCG_MixStack(s, s2, ss, vtmf);
for (size_t i2 = 0; i2 < 5; i2++)
{

if (i2 == j)
continue;

out_stream[i2] << s2 << std::endl;
tmcg->TMCG_ProveStackEquality(s, s2, ss, false, vtmf,

in_stream[i2], out_stream[i2]);
}

}
else
{

in_stream[i] >> s2;
if (!in_stream[i].good())

std::cerr << "Read or parse error!" << std::endl;
if (!tmcg->TMCG_VerifyStackEquality(s, s2, false, vtmf,

in_stream[i], out_stream[i]))
std::cerr << "Verification failed!" << std::endl;

}
s = s2;

}
 	

If you want to use the more efficient shuffle verification protocol of Groth, then you
must simply replace TMCG_ProveStackEquality and TMCG_VerifyStackEquality by TMCG_
ProveStackEquality_Groth and TMCG_VerifyStackEquality_Groth, respectively.

3.4.3 Drawing a Card from the Deck

Now every player has the same shuffled deck s and nobody knows in which order the 52 cards
are stacked. Therefore you can simply use any drawing strategy to obtain a players hand.
For example, look at the following code that draws two cards from s for each player.

Chapter 3: Examples 45� �
TMCG_Stack<VTMF_Card> hand[5];
for (size_t i = 0; i < 5; i++)
{

VTMF_Card c1, c2;
s.pop(c1), s.pop(c2);
hand[i].push(c1), hand[i].push(c2);

}
 	
Further, probably you want disclose the card types to the corresponding player. Consider

the code fragment for the player Pj: Every player receives the necessary information from
the other players and computes the card types of his hand hand[j]. Finally, these types
are stored together with the masked cards in the open stack private_hand. The example
can be modified in a straightforward way to publicly disclose a card from a players hand or
from the remaining stack s.� �
TMCG_OpenStack<VTMF_Card> private_hand;
for (size_t i = 0; i < 5; i++)
{

if (i == j)
{

for (size_t k = 0; k < hand[j].size(); k++)
{

tmcg->TMCG_SelfCardSecret(hand[j][k], vtmf);
for (size_t i2 = 0; i2 < 5; i2++)
{
if (i2 == j)
continue;

if (!tmcg->TMCG_VerifyCardSecret(hand[j][k], vtmf,
in_stream[j], out_stream[j]))

std::cerr << "Verification failed!" << std::endl;
}
private_hand.push(tmcg->TMCG_TypeOfCard(hand[j][k], vtmf),

hand[j][k]);
}

}
else
{

for (size_t k = 0; k < hand[i].size(); k++)
{

tmcg->TMCG_ProveCardSecret(hand[i][k], vtmf,
in_stream[i], out_stream[i]);

}
}

}
 	

Chapter 3: Examples 46

3.5 Quit a Session

The last step should release all occupied resources.� �
delete vsshe, delete vtmf, delete tmcg;
 	

Appendix A: Licenses 47

Appendix A Licenses

A.1 GNU General Public License
Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Lesser General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Appendix A: Licenses 48

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Appendix A: Licenses 49

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

Appendix A: Licenses 50

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software

Appendix A: Licenses 51

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix A: Licenses 52

Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Lesser General Public License instead of this License.

Appendix A: Licenses 53

A.2 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix A: Licenses 54

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix A: Licenses 55

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix A: Licenses 56

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix A: Licenses 57

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix A: Licenses 58

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: Licenses 59

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix B: General and API Index 60

Appendix B General and API Index

General Index

C
Card . 2
Card Encoding Schemes . 8
Card Secret . 2
Card Type . 2
Classes . 23

D
Data Types . 8

E
Examples . 39

F
FDL, GNU Free Documentation License 53

G
GPL, GNU General Public License 47

H
Header Files . 4

I
Initialization . 5, 39

K
Key Generation. 39
Keys . 18

M
Masked Card . 2
Masking . 2

N
Name Spaces . 4

O
Observer . 2
Open Card . 2

P
Player . 2
Private Card . 2
Prover . 2

S
Security . 3
Security Advice . 3
Security Parameters . 6
Stack . 2
Stacks . 13

T
Terminology . 2

V
Verifier. 2

Appendix B: General and API Index 61

API Index

!
!= on TMCG_Card . 9
!= on TMCG_OpenStack . 15
!= on TMCG_Stack . 13
!= on VTMF_Card . 11

<
<< on TMCG_Card . 10
<< on TMCG_CardSecret . 11
<< on TMCG_PublicKey . 22
<< on TMCG_SecretKey . 20
<< on TMCG_Stack . 14
<< on TMCG_StackSecret . 17
<< on VTMF_Card . 12
<< on VTMF_CardSecret . 13

=
= on TMCG_Card . 9
= on TMCG_CardSecret . 10
= on TMCG_OpenStack . 15
= on TMCG_PublicKey . 21
= on TMCG_SecretKey . 19
= on TMCG_Stack . 13
= on TMCG_StackSecret . 17
= on VTMF_Card . 11
= on VTMF_CardSecret . 12
== on TMCG_Card . 9
== on TMCG_OpenStack . 15
== on TMCG_Stack . 13
== on VTMF_Card . 11

>
>> on TMCG_Card . 10
>> on TMCG_CardSecret . 11
>> on TMCG_PublicKey . 22
>> on TMCG_SecretKey . 20
>> on TMCG_Stack . 14
>> on TMCG_StackSecret . 17
>> on VTMF_Card . 12
>> on VTMF_CardSecret . 13

[
[] on TMCG_OpenStack . 15
[] on TMCG_Stack . 13
[] on TMCG_StackSecret . 17

~
~BarnettSmartVTMF_dlog on

BarnettSmartVTMF_dlog 25

~BarnettSmartVTMF_dlog_GroupQR on
BarnettSmartVTMF_dlog_GroupQR 27

~GrothVSSHE on GrothVSSHE 29
~SchindelhauerTMCG on SchindelhauerTMCG . . . 38
~TMCG_Card on TMCG_Card . 9
~TMCG_CardSecret on TMCG_CardSecret 11
~TMCG_OpenStack on TMCG_OpenStack 16
~TMCG_PublicKey on TMCG_PublicKey 22
~TMCG_PublicKeyRing on TMCG_PublicKeyRing

. 23
~TMCG_SecretKey on TMCG_SecretKey 20
~TMCG_Stack on TMCG_Stack 14
~TMCG_StackSecret on TMCG_StackSecret 17
~VTMF_Card on VTMF_Card . 12
~VTMF_CardSecret on VTMF_CardSecret 12

A
AM_PATH_LIBTMCG . 5

B
BarnettSmartVTMF_dlog . 23
BarnettSmartVTMF_dlog on

BarnettSmartVTMF_dlog 24
BarnettSmartVTMF_dlog_GroupQR 25
BarnettSmartVTMF_dlog_GroupQR on

BarnettSmartVTMF_dlog_GroupQR 26

C
check on TMCG_PublicKey . 21
check on TMCG_SecretKey . 19
CheckGroup on BarnettSmartVTMF_dlog 24
CheckGroup on BarnettSmartVTMF_dlog_GroupQR

. 26
CheckGroup on GrothVSSHE 29
clear on TMCG_OpenStack . 16
clear on TMCG_Stack . 14
clear on TMCG_StackSecret 17

D
decrypt on TMCG_SecretKey 20

E
empty on TMCG_OpenStack . 16
empty on TMCG_Stack . 14
encrypt on TMCG_PublicKey 22
encrypt on TMCG_SecretKey 20

F
find on TMCG_OpenStack . 16

Appendix B: General and API Index 62

find on TMCG_Stack . 14
find on TMCG_StackSecret 17
find_position on TMCG_StackSecret 17
fingerprint on TMCG_PublicKey 21
fingerprint on TMCG_SecretKey 19

G
GrothVSSHE . 28
GrothVSSHE on GrothVSSHE 28

I
import on TMCG_Card . 9
import on TMCG_CardSecret 11
import on TMCG_PublicKey 22
import on TMCG_SecretKey 20
import on TMCG_Stack . 14
import on TMCG_StackSecret 17
import on VTMF_Card . 11
import on VTMF_CardSecret 12
init_libTMCG . 5

K
KeyGenerationProtocol_Finalize on

BarnettSmartVTMF_dlog 25
KeyGenerationProtocol_Finalize on

BarnettSmartVTMF_dlog_GroupQR 27
KeyGenerationProtocol_GenerateKey on

BarnettSmartVTMF_dlog 24
KeyGenerationProtocol_GenerateKey on

BarnettSmartVTMF_dlog_GroupQR 26
KeyGenerationProtocol_PublishKey on

BarnettSmartVTMF_dlog 25
KeyGenerationProtocol_PublishKey on

BarnettSmartVTMF_dlog_GroupQR 27
KeyGenerationProtocol_RemoveKey on

BarnettSmartVTMF_dlog 25
KeyGenerationProtocol_RemoveKey on

BarnettSmartVTMF_dlog_GroupQR 27
KeyGenerationProtocol_UpdateKey on

BarnettSmartVTMF_dlog 25
KeyGenerationProtocol_UpdateKey on

BarnettSmartVTMF_dlog_GroupQR 27
keyid on TMCG_PublicKey . 22
keyid on TMCG_SecretKey . 19
keyid_size on TMCG_PublicKey 22
keyid_size on TMCG_SecretKey 19

M
move on TMCG_OpenStack . 16

P
pop on TMCG_OpenStack . 16
pop on TMCG_Stack . 14

PublishGroup on BarnettSmartVTMF_dlog 24
PublishGroup on

BarnettSmartVTMF_dlog_GroupQR 26
PublishGroup on GrothVSSHE 29
push on TMCG_OpenStack 15, 16
push on TMCG_Stack . 14
push on TMCG_StackSecret 17

R
remove on TMCG_OpenStack 16
remove on TMCG_Stack . 14
removeAll on TMCG_OpenStack 16
removeAll on TMCG_Stack . 14
resize on TMCG_Card . 9
resize on TMCG_CardSecret 10

S
SchindelhauerTMCG . 29
SchindelhauerTMCG on SchindelhauerTMCG 29
selfid on TMCG_PublicKey 21
selfid on TMCG_SecretKey 19
sigid on TMCG_PublicKey . 22
sigid on TMCG_SecretKey . 20
sign on TMCG_SecretKey . 20
size on TMCG_OpenStack . 15
size on TMCG_Stack . 14
size on TMCG_StackSecret 17

T
TMCG_Card. 9
TMCG_Card on TMCG_Card . 9
TMCG_CardSecret . 10
TMCG_CardSecret on TMCG_CardSecret 10
TMCG_CreateCardSecret on SchindelhauerTMCG

. 30, 31
TMCG_CreateOpenCard on SchindelhauerTMCG . . 30
TMCG_CreatePrivateCard on SchindelhauerTMCG

. 31
TMCG_CreateStackSecret on SchindelhauerTMCG

. 35
TMCG_DDH_SIZE . 6
TMCG_DLSE_SIZE . 6
TMCG_GCRY_MD_ALGO . 6
TMCG_GROTH_L_E . 6
TMCG_HASH_COMMITMENT . 8
TMCG_KEY_NIZK_STAGE1 . 7
TMCG_KEY_NIZK_STAGE2 . 7
TMCG_KEY_NIZK_STAGE3 . 7
TMCG_KEYID_SIZE . 6
TMCG_LIBGCRYPT_VERSION . 7
TMCG_LIBGMP_VERSION . 7
TMCG_MaskCard on SchindelhauerTMCG 31, 32
TMCG_MAX_CARDS . 7
TMCG_MAX_FPOWM_T . 8
TMCG_MAX_PLAYERS . 7

Appendix B: General and API Index 63

TMCG_MAX_TYPEBITS . 7
TMCG_MixStack on SchindelhauerTMCG 36
TMCG_MPZ_IO_BASE . 7
TMCG_MR_ITERATIONS . 6
TMCG_OpenStack on TMCG_OpenStack 15
TMCG_OpenStack<CardType> 15
TMCG_PRAB_K0 . 8
TMCG_ProveCardSecret on SchindelhauerTMCG

. 33
TMCG_ProveMaskCard on SchindelhauerTMCG . . . 32
TMCG_ProveStackEquality on SchindelhauerTMCG

. 36, 37
TMCG_ProveStackEquality_Groth on

SchindelhauerTMCG . 37
TMCG_PublicKey . 20
TMCG_PublicKey on TMCG_PublicKey 21
TMCG_PublicKeyRing . 22
TMCG_PublicKeyRing on TMCG_PublicKeyRing . . 22
TMCG_QRA_SIZE . 8
TMCG_SAEP_S0 . 8
TMCG_SecretKey . 18
TMCG_SecretKey on TMCG_SecretKey 19
TMCG_SelfCardSecret on SchindelhauerTMCG . . 34

TMCG_Stack on TMCG_Stack 13
TMCG_Stack<CardType> . 13
TMCG_StackSecret on TMCG_StackSecret 16
TMCG_StackSecret<CardSecretType> 16
TMCG_TypeOfCard on SchindelhauerTMCG . . . 34, 35
TMCG_VerifyCardSecret on SchindelhauerTMCG

. 33, 34
TMCG_VerifyMaskCard on SchindelhauerTMCG

. 32, 33
TMCG_VerifyStackEquality on

SchindelhauerTMCG . 37
TMCG_VerifyStackEquality_Groth on

SchindelhauerTMCG . 38

V
verify on TMCG_PublicKey 22
verify on TMCG_SecretKey 20
VTMF_Card . 11
VTMF_Card on VTMF_Card . 11
VTMF_CardSecret . 12
VTMF_CardSecret on VTMF_CardSecret 12

	Introduction
	Further Reading
	Getting Started
	Preliminaries
	Terminology
	Security

	Preparation
	Header Files and Name Spaces
	Building Sources
	Building Sources Using GNU Automake

	Initializing the Library

	Application Programming Interface
	Preprocessor Defined Global Symbols
	Data Types and Classes
	Data Types
	Encoding Schemes for Cards
	Stacks
	Cryptographic Keys

	Classes
	Verifiable k-out-of-k Threshold Masking Function
	Verifiable Secret Shuffle of Homomorphic Encryptions
	Toolbox for Mental Card Games

	Examples
	Library Initialization
	Session Initialization and Key Generation
	Operations on Cards
	Creating an Open Card
	Masking and Re-masking of a Card
	Opening a Masked Card

	Operations on Stacks
	Creating the Deck
	Shuffling the Deck
	Drawing a Card from the Deck

	Quit a Session

	Licenses
	GNU General Public License
	GNU Free Documentation License

	General and API Index

