
**

 Guide To Gcc[Part 1]

 By, Asis Biswas
**

Introduction:

This is a simple tutorial[1] about how to teach yourself Gcc, the
master compiler.Just
read this tutorial step by step and i think you will find a new angle of
c programming.At first
i'll give you the idea how you can compile small programs with it.Then i
will give you the idea of
making libraries, both static and dynamic.Next parts of this tutorial
will contain more
advenced features like inline assembly, module programming etc.

Things U need:

I hope that you know simple C programming.And softwares you need
are:
a)Gcc compiler,b)As(Gnu assembler),c)Ld(Gnu Linker).If you are a linux
user then probably you
have all these things already installed ,if not download them from
www.gnu.org and if you are
a windows user then download Djgpp compiler(windows port of Gcc) from
www.delorie.com/Djgpp and
binutils package for windows from Gnu site for As and Ld. If you
download full Djgpp then you
will get As and Ld with it.

History of Gcc:

Richard Stallman, the founder of Free Software Foundation was
developing Gnu operating
system.But for coding of it he had not a good optimized,customizable C
compiler which can output
object files in various formats.Then he made the Gcc compiler.

At the time of developing,Gcc was an acronym of GNU C Compiler.But
now it has a name
GNU Compiler Collection that means today Gcc can compile many source
programs like C,C++,Java,
Fortran and many more. And it has been ported into 30(around!!)
different architectures.

Installation:

Install Gcc or Djgpp properly according to the instruction
accompanying them.Here i
will use GNU/Linux environment and save all my programs in my home
directory, And i recommend
you to do the same.But they are applicable to windows gcc too.Just
change the pathname and
other convensions.

So let's start:

Here i will give you the idea of compiling a small program in
Gcc.Just follow the steps

a)Go to command prompt,

b)Editing with vi editor:
--
i)In command prompt type-

 $vi test.c
 this will open vi editor for editing test.c file

ii)Press insert or i key once,

iii)write the following code:
 #include<stdio.h>

int main()
{
 printf("Hello World.\n");
 return 0;
}

iv)Press Esc key once,

v)Press :

vi)Now you should see a : in lower left corner of the editor, if not
goto step iv and continue.

vii)Press wq and enter, that means save and quit.
--

c)Now you are again in command prompt,

d)Compiling the program:

 $gcc test.c

 Basically this command compiles test.c and links all the library.So
this is not only
compiling but compiling+linking.

e)If compile goes successfully then you will get an executable a.out
(stands for assembly out) in
your current directory.

f)Running or executing the program:

 $./a.out

 here . means current directory so by ./a.out we are giving a
command to execute a.out
which is under current directory.

g)You will get the output "Hello World".

 And this is the simplest form of using gcc.

Gcc Options:

 You can specify a lot of command line options at the time of
compiling your program
depending on what you want.I am not going to list all the options but
few of them are really
important and necessary----

a)If you don't like the name a.out or you want to give another name to
the exeutable then
specify it with -o option.

For example: if you want you can give the executable the name hw
by following commnd
 $gcc -o hw test.c

then execute it by ./hw instead of ./a.out

b)If you want to output the object file only then you can do it by -c
command line option.
Technically it means you want to compile the program but not link
it.This is useful when you
are creating libary or mixing assembly program with c.
 For example:
 $gcc -c test.c

 This will output a file named test.o(o means object file).You
can make executable from
test.o too.Just type
 $gcc -o hw test.o

 which will give you executable named hw

c)You can specify include directory by -I option. Suppose you want to
use a header file that
is not in a standard place.Then you can do two things---copy the header
file at standard
place and use or
 $gcc -o hw -I/usr/mine/asis test.c
 [here we assume that test.c needs a header file
existed in the
 /usr/mine/asis directory which is not a
standard place]
in this command gcc will find header files necessary in specified as
well as standard
directory.

**standard include directory is /usr/include

d)In the same way if you have a libary file in a nonstandard location
then you can specify it
with -L option.
 Suppose you want to compile a mysql client program which needs a
library named
libmysqlclient.a which exists in /usr/lib/mysql directory what is
different from standard
directory /usr/lib.It also uses a nonstandrd header directory
/usr/include/mysql.Then you

should use the following command line--

$gcc -o exe_name -I/usr/include/mysql -L/usr/lib/mysql source.c -
lmysqlclient
 | | | |
 | | | |--
link with libmysqlclient
 | | |
 | | |-search for library in
/usr/lib/mysql as well as
 | | standard location
 | |-search for header files in
/usr/include/mysql as well as standard
 | location
 |-executable file name of your choice.

e)If you want that gcc will output all warnings at the time of compiling
then use -Wall option.
By default gcc doesn't output all warnings at the time of compiling.This
is useful when you are
intended in developing a bug free software or debugging.

-----OK that should be enough for beginners, After all this is not a
guide for experts.If you
want to know how many options Gcc provides then open man page of gcc.But
be careful.....because
I experienced a minor heart attack....

Now you know simple editing with vi editor, compiling your program and
some useful command line
options, Now let's create library file----

What?? Library! Header files!

Simply libraries are precompiled functions. And header files hold
the prototype
declarations of those functions and other useful definitions.When you
use a function like
printf in your program you must have to include the stdio.h header file
because it holds the
prototype declaration stdio.h. you can see it by opening stdio.h file.
 And for each functions like printf there is a low level handler
funtion that is already
compiled in a library file.Every operating system has its own mechanism
to handle input/output.
So as printf is an output function,it is very much operating system
dependent.To provide you
a standard interface of c programming compiler designers hides the
system dependencies by
provideing the precompiled system dependent functions in form of library
files.Thats why you
can use same printf in your program wheather you are using Linux or
Windows or Dos or...
But all functions in libary are not system dependent but they provide
those too to follow a
standard like ANSI, and libraries gives the opportunity to reuse the
code,which is very crucial

thing in programming.So make a library and use it in any program that
needs a function of this
library.

Basically libraries are object files, when you use $gcc test.c
then at first gcc makes a
object file from test.c and links this file with the libabry named libc
which contains actual
implementation of printf function and makes a.out executable file.

Static and Dynamic Library:

There are two types of library static and dynamic(or shared!).When
you are compiling a
program and linking it with a static library then the whole libary code
is added in the
executable file like following way:

|-----------| |------------| |-----------
|-----------|
| | | | | |
|
| your | + | Static |--------Gcc----> | Your |
Library |
| program | | Library | | Code |
Code |
| | | | | |
|
|-----------| |------------| |-----------
|-----------|
Source Program Library Program Executable
Program

so in this case both codes loaded in momory as a single exexutable and
each program uses this
library has its own copy of library code.

But when you are using Dynamic library then library code in not added in
the executable but it
holds a reference to this library.When executable calls a function of
that library then system
first looks wheather it is already in memory loaded by another program
or not.If loaded then
both programs share the library code saving the memory.If it is not
loaded yet then system
loads it in memory and all subsequent calls to this library shares the
same library code.
static libraries exists in the form *.o or *.a and dynamic counterparts
have the form *.so.

-----------		------------		-----------	-
					R
your	+	Dynamic	--------Gcc---->	Your	E
program		Library		Code	F
-----------		------------		-----------	-
Source Program Library Program Executable
Program

so, shared libraries are much more sophisticated and has a great
influence over system
performance bacause it provides a mechanism of saving memory.

There is another benefit of using dynamic library. Suppose you
made a static library
named libasis.a and you used this library in 5 executable programs.After
some days you
discover a bug in the library and then by proper coding you make the
library bug free. Now you
want to use this bug free libasis.a in all 5 programs.You have only one
option that is
recompile or relink all 5 programs with this library.

But if you had this library dynamic i.e. libasis.so then only
thing you have to do is
replace the buggy library with new bug free library.The next time system
will load the bug free
library.Thus it saves compile time.

Making Static Library:

Now we want to make a static library because it is very simple.We
will make libtest.a
library with two simple functions.First function has the name add which
adds two numbers passed
to it as parameters and returns the sum and Second function(putst) takes
a string as a
parameter and just prints it.So follow the steps---

a)At first you should make a header file containing prototypes of these
two functions.So create
 a file named test.h containing following code-

 //file test.h
 float add(float,float);
 int putst(char *);

b) Then Open your favourite editor and write down the following code--

 //Give this file a name.I am giving first.c

 #include "test.h" //for prototypes

 float add(float a,float b)
 {
 float c;
 c=a+b;
 return c;
 }

 then save it.

b)Create another file

 //Give a name of your choice, I am giving second.c

 #include<stdio.h> //Because we are going to use printf in this

function
 #include "test.h" //For prototypes

 int putst(char *str) //You should make this int instead of void but
you can void it too..
 {
 printf("\n%s\n",str);
 return 0;
 }

c)watch that in these two files there is no main().Because we are
creating a library.

d)Next in command prompt--

 $gcc -c first.c //This will output a file named first.o
 $gcc -c second.c //This will output a file named second.o

e)After that we will make a archive of these two files.So in command
prompt--

 $ar crv libtest.a first.o second.o

 This will make a library named libtest.a containing two functions add
() and putst().

f)Now we have to make a index in this library.How? simple.Just type-

 $ ranlib iibtest.a

 That's all.We made a static library named libtest.a

Now we want to make use of this static library in our
program.Create a file named
testing.c containing following code--

#include<stdio.h>
#include"test.h"

int main() //Look here is main
{
 float a=3.4,b=5.6,sum;
 char str[]="Test Library";

 sum = add(a,b); //Wow!We are using our library here

 printf("\nThe sum is: %f",sum); //Print the sum

 putst(str); //Here too.
 return 0;
}

 Then in command prompt---

 $gcc -o testing -I. -L. testing.c -ltest
 [here . means current directory we are using this because
library and header file
is in our current directory]

 Execute it at command line $./testing

 Thats all about static library.

Making Dynamic Library:

Making Dynamic library is easy but proper installation is
necessary.And in installation
there are a lot of issues which I'll not discuss here.I will give you
very simple concept.

Every dynamic library has a special name called soname.Actually it
is the name of the
library.
The usual convention of naming a shared library is--
 lib"soname".so."version" //Ofcource without
quote.Soname and version number
 can be anything of your
choice.

 For example libmytime.so.3.0

 Now we will make a shared library with previous two functions. So
now you have files
test.h,first.c,second.c ready...

a)In command promp:
 $gcc -fPIC -Wall -c first.c //This will create a file name first.o

Then
 $gcc -fPIC -Wall -c second.c //This will create a file name
second.o

Here fPIC flag tells gcc to output "Position Independent Code" in
object format.PIC is
necessary in making shared library.

b)Choice a soname(I am using test)

c)Choice a version Number(I am using 1.0.1).An issue to remember::->here
1.0.1 means increment 1
in major version 1 as in 2.0.1 means increment 1 in major version 2.

d)In command prompt type--

 $gcc -shared -W1,-soname,libtest.so.1 -o libtest.so.1.0.1 first.o
second.o -lc

e)Copy libtest.so.1.0.1 in directory /usr/lib [Must Do this Else it will
fail because Linux
 searches this location when loading shared library]

e)Thats all now write a program named testing.c as before and compile it
using following
command---
 $gcc -o testing -I. testing.c -ltest
 Here shared library is in standard location because we
copied it there.So there is
no -L option.

and enjoy executing $./testing .That's Gcc power!

 Now let me ask a question to you. Have you checked the size of
testing executable in two
cases? I mean after using static library and after using dynamic
library?

 If not do that.Watch that executable size using dynamic library is
much smaller than
executable using static library.Why? Answer yourself.

Note: Dynamic library may not work as expected. Next part of this
tutorial will contain this in
detail.

