
GNU cflow
version 1.0, 7 October 2005

Sergey Poznyakoff.

Published by the Free Software Foundation, 51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA
Copyright c© 2005 Sergey Poznyakoff
Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant
Sections, with the Front-Cover texts being “A GNU Manual”, and with the
Back-Cover Texts as in (a) below. A copy of the license is included in the
section entitled “GNU Free Documentation License”.
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

i

Short Contents

1 Introduction to cflow . 1

2 Simple Ways to Analyze Programs with cflow. 3

3 Two Types of Flow Graphs. 5

4 Various Output Formats. 7

5 Handling Recursive Calls.. 9

6 Controlling Symbol Types . 13

7 Running Preprocessor . 17

8 Using ASCII Art to Produce Flow Graphs. 19

9 Cross-Reference Output.. 23

10 Configuration Files and Variables. 25

11 Using cflow in Makefiles. 27

12 Complete Listing of cflow Options. 29

13 Using cflow with GNU Emacs. 33

14 How to Report a Bug. 35

A Source of wc command . 37

B GNU Free Documentation License 41

Concept Index . 49

ii GNU cflow

iii

Table of Contents

1 Introduction to cflow . 1

2 Simple Ways to Analyze Programs with cflow.
. 3

3 Two Types of Flow Graphs. 5

4 Various Output Formats. 7

5 Handling Recursive Calls. 9

6 Controlling Symbol Types 13

7 Running Preprocessor. 17

8 Using ASCII Art to Produce Flow Graphs.
. 19

9 Cross-Reference Output. 23

10 Configuration Files and Variables. 25

11 Using cflow in Makefiles. 27

12 Complete Listing of cflow Options. 29

13 Using cflow with GNU Emacs. 33

14 How to Report a Bug . 35

Appendix A Source of wc command 37

iv GNU cflow

Appendix B GNU Free Documentation License
. 41

B.1 ADDENDUM: How to use this License for your documents . . . 48

Concept Index . 49

Chapter 1: Introduction to cflow 1

1 Introduction to cflow

The cflow utility analyzes a collection of source files written in C program-
ming language and outputs a graph charting dependencies between various
functions.

The program is able to produce two kind of graphs: direct and reverse.
Direct graph begins with the main function (main), and displays recursively
all functions called by it. In contrast, reverse graph is a set of subgraphs,
charting for each function its callers, in the reverse order. Due to their
tree-like appearance, graphs can also be called trees.

In addition to these two output modes, cflow is able to produce a cross-
reference listing of all the symbols encountered in the input files.

The utility also provides a detailed control over symbols that will appear
in its output, allowing to omit those that are of no interest to the user. The
exact appearance of the output graphs is also configurable.

2 GNU cflow

Chapter 2: Simple Ways to Analyze Programs with cflow. 3

2 Simple Ways to Analyze Programs with
cflow.

Let’s begin our acquaintance with the GNU cflow utility with an example.
Suppose you have a simple implementation of whoami command and you
wish to obtain a graph of function dependencies. Here is the program:

/* whoami.c - a simple implementation of whoami utility */

#include <pwd.h>

#include <sys/types.h>

#include <stdio.h>

#include <stdlib.h>

int

who_am_i (void)

{

struct passwd *pw;

char *user = NULL;

pw = getpwuid (geteuid ());

if (pw)

user = pw->pw_name;

else if ((user = getenv ("USER")) == NULL)

{

fprintf (stderr, "I don’t know!\n");

return 1;

}

printf ("%s\n", user);

return 0;

}

int

main (int argc, char **argv)

{

if (argc > 1)

{

fprintf (stderr, "usage: whoami\n");

return 1;

}

return who_am_i ();

}

Running cflow produces the following output:
$ cflow whoami.c

main() <int main (int argc,char **argv) at whoami.c:26>:

fprintf()

who_am_i() <int who_am_i (void) at whoami.c:8>:

getpwuid()

geteuid()

getenv()

fprintf()

printf()

4 GNU cflow

This is a direct call graph showing caller—callee dependencies in the input
file. Each line starts with a function name, followed by a pair of parentheses
to indicate that it is a function. If this function is defined in one of the
input files, the line continues by displaying, within a pair of angle brackets,
a function signature and the location of its definition. If the function calls
another functions, the line ends with a colon. For example, the line

main() <int main (int argc,char **argv) at whoami.c:25>:

shows that function main is defined in file ‘whoami.c’ at line 25, as int main
(int argc, char **argv). Terminating colon indicates that main invokes
other functions.

The lines following this one show which functions are called by main.
Each such line is indented by fixed amount of white space (by default four
spaces) for each nesting level.

Usually cflow prints a full function signature. However, some-
times you may wish to omit some part of it. Several options are
provided for this purpose. To print signatures without function
names, use ‘--omit-symbol-names’ option. To omit argument list, use
‘--omit-arguments’. These options can be needed for a variety of reasons,
one of them being to make the resulting graph more compact. To illustrate
their effect, here is how would the first line of the above graph look if you
had used both ‘--omit-’ options:

main() <int () at whoami.c:25>:

By default, cflow starts outputting direct graph from the function called
main. It is convenient when analyzing a set of input files comprising an entire
C program. However, there are circumstances where a user would want to
see only a part of the graph starting on particular function. Cflow allows
to select such function using ‘--main’ (‘-m’) command line option. Thus,
running

cflow --main who_am_i whoami.c

on the above file will produce following graph:
who_am_i() <int who_am_i (void) at whoami.c:8>:

getpwuid()

geteuid()

getenv()

fprintf()

printf()

Chapter 3: Two Types of Flow Graphs. 5

3 Two Types of Flow Graphs.

In the previous chapter we have discussed direct graphs, displaying caller—
callee dependencies. Another type of cflow output, called reverse graph,
charts callee—caller dependencies. To produce a reverse graph, run cflow
with ‘--reverse’ (‘-r’) command line option. For example, using a sample
‘whoami.c’:

$ cflow --reverse whoami.c

fprintf():

who_am_i() <int who_am_i (void) at whoami.c:8>:

main() <int main (int argc,char **argv) at whoami.c:26>

main() <int main (int argc,char **argv) at whoami.c:26>

getenv():

who_am_i() <int who_am_i (void) at whoami.c:8>:

main() <int main (int argc,char **argv) at whoami.c:26>

geteuid():

who_am_i() <int who_am_i (void) at whoami.c:8>:

main() <int main (int argc,char **argv) at whoami.c:26>

getpwuid():

who_am_i() <int who_am_i (void) at whoami.c:8>:

main() <int main (int argc,char **argv) at whoami.c:26>

main() <int main (int argc,char **argv) at whoami.c:26>

printf():

who_am_i() <int who_am_i (void) at whoami.c:8>:

main() <int main (int argc,char **argv) at whoami.c:26>

who_am_i() <int who_am_i (void) at whoami.c:8>:

main() <int main (int argc,char **argv) at whoami.c:26>

This output consists of several subgraphs, each describing callers for a
particular function. Thus, the first subgraph tells that the function fprintf
is called from two functions: who_am_i and main. First of them is, in turn,
also called directly by main.

The first thing that draws attention in the above output is that the
subgraph starting with who_am_i function is repeated several times. This is
verbose output. To make it brief, use ‘--brief’ (‘-b’) command line option.
For example:

$ cflow --brief --reverse whoami.c

fprintf():

who_am_i() <int who_am_i (void) at whoami.c:8>:

main() <int main (int argc,char **argv) at whoami.c:26>

main() <int main (int argc,char **argv) at whoami.c:26> [see 3]

getenv():

who_am_i() <int who_am_i (void) at whoami.c:8>: [see 2]

geteuid():

who_am_i() <int who_am_i (void) at whoami.c:8>: [see 2]

getpwuid():

who_am_i() <int who_am_i (void) at whoami.c:8>: [see 2]

main() <int main (int argc,char **argv) at whoami.c:26> [see 3]

printf():

who_am_i() <int who_am_i (void) at whoami.c:8>: [see 2]

who_am_i() <int who_am_i (void) at whoami.c:8>: [see 2]

6 GNU cflow

In brief output, once a subgraph for a given function is written, subse-
quent instances of calls to that function contain only its definition and the
reference to the output line where the expanded subgraph can be found.

If the output graph is large it can be tedious to find out the required
line number (unless you use Emacs cflow-mode, see Chapter 13 [Emacs],
page 33). For such cases a special option ‘--number’ (‘-n’) is provided,
which makes cflow begin each line of the output with a reference number,
that is the ordinal number of this line in the output. With this option, the
above output will look like:

$ cflow --number --brief --reverse whoami.c

1 fprintf():

2 who_am_i() <int who_am_i (void) at whoami.c:8>:

3 main() <int main (int argc,char **argv) at whoami.c:26>

4 main() <int main (int argc,char **argv) at whoami.c:26> [see 3]

5 getenv():

6 who_am_i() <int who_am_i (void) at whoami.c:8>: [see 2]

7 geteuid():

8 who_am_i() <int who_am_i (void) at whoami.c:8>: [see 2]

9 getpwuid():

10 who_am_i() <int who_am_i (void) at whoami.c:8>: [see 2]

11 main() <int main (int argc,char **argv) at whoami.c:26> [see 3]

12 printf():

13 who_am_i() <int who_am_i (void) at whoami.c:8>: [see 2]

14 who_am_i() <int who_am_i (void) at whoami.c:8>: [see 2]

Of course, ‘--brief’ and ‘--number’ options take effect for both direct
and reverse flow graphs.

Chapter 4: Various Output Formats. 7

4 Various Output Formats.

The output format described in previous chapters is called GNU Output.
Beside this, cflow is also able to produce output format defined in POSIX
standard (The Open Group Base Specifications Issue 6: cflow utility). In this
format, each line of output begins with a reference number, i.e. the ordinal
number of this line in the output, followed by indentation of fixed amount of
columns per level (see [setting indentation], page 19). Following this are the
name of the function, a colon and the function definition, if available. The
function definition is followed by the location of the definition (file name and
line number). Both definition and location are enclosed in angle brackets.
If the function definition is not found, the line ends with an empty pair of
angle brackets.

This output format is used when either a command line option
‘--format=posix’ (‘-f posix’) has been given, or environment variable
POSIXLY_CORRECT was set.

The output graph in POSIX format for our sample ‘whoami.c’ file will
look as follows:

$ cflow --format=posix whoami.c

1 main: int (int argc,char **argv), <whoami.c 26>

2 fprintf: <>

3 who_am_i: int (void), <whoami.c 8>

4 getpwuid: <>

5 geteuid: <>

6 getenv: <>

7 fprintf: <>

8 printf: <>

It is not clear from the POSIX specification whether the output should
contain argument lists in function declarations, or not. By default cflow
will print them. However, some programs, analyzing cflow output expect
them to be absent. If you use such a program, add ‘--omit-arguments’
option to cflow command line (see [omit signature parts], page 4).

Future versions of cflow will offer more output formats, in-
cluding XML and HTML outputs. Currently, you can use VCG tool
(http://rw4.cs.uni-sb.de/users/sander/html/gsvcg1.html) to
create graphical representation of the produced graphs. To trans-
form cflow output to xvcg input syntax, use cflow2vcg program
(http://cflow2vcg.sourceforge.net/). Both programs are available
under GPL.

Cflow2vcg expects POSIX call graphs, indented with exactly one horizon-
tal tabulation character per nesting level, with an additional tab character
for zeroth level and without argument lists in function declaration. So, to
produce an output suitable for cflow2vcg, invoke cflow as follows1:

1 (See Chapter 8 [ASCII Tree], page 19, for the detailed description of ‘--level-indent’
option

http://www.opengroup.org/onlinepubs/009695399/utilities/cflow.html
http://rw4.cs.uni-sb.de/penalty z@ users/penalty z@ sander/penalty z@ html/gsvcg1.html
http://cflow2vcg.sourceforge.net/

8 GNU cflow

cflow --format=posix --omit-arguments \

--level-indent=’0=\t’ --level-indent=’1=\t’ \

--level-indent=start=’\t’

You can use the following script to visualize call graphs using the three
tools:

#! /bin/sh

cflow --format=posix --omit-arguments \

--level-indent=’0=\t’ --level-indent=’1=\t’ \

--level-indent=start=’\t’ $* |

cflow2vcg | xvcg -

Chapter 5: Handling Recursive Calls. 9

5 Handling Recursive Calls.

Sometimes programs contain functions that recursively call themselves.
GNU output format provides a special indication for such functions. The
definition of the recursive function is marked with an ‘(R)’ at the end of line
(before terminating colon). Subsequent recursive calls to this function are
marked with a ‘(recursive: see refline)’ at the end of line. Here, refline
stands for the reference line number where the recursion root definition was
displayed.

To illustrate this, let’s consider the following program, that prints recur-
sive listing of a directory, allowing to cut off at the arbitrary nesting level:

#include <sys/types.h>

#include <sys/stat.h>

#include <dirent.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <stdlib.h>

#include <string.h>

/* Return true if file NAME is a directory. */

static int

isdir (char *name)

{

struct stat st;

if (stat (name, &st))

{

perror (name);

return 0;

}

return S_ISDIR (st.st_mode);

}

static char *ignored_names[] = { ".", "..", NULL };

/* Return true if NAME should not be recursed into */

int

ignorent (char *name)

{

char **p;

for (p = ignored_names; *p; p++)

if (strcmp (name, *p) == 0)

return 1;

return 0;

}

int max_level = -1;

/* Print contents of the directory PREFIX/NAME.

10 GNU cflow

Prefix each output line with LEVEL spaces. */

void

printdir (int level, char *name)

{

DIR *dir;

struct dirent *ent;

char cwd[512];

if (!getcwd(cwd, sizeof cwd))

{

perror ("cannot save cwd\n");

_exit (1);

}

chdir (name);

dir = opendir (".");

if (!dir)

{

perror (name);

_exit (1);

}

while ((ent = readdir (dir)))

{

printf ("%*.*s%s", level, level, "", ent->d_name);

if (ignorent (ent->d_name))

printf ("\n");

else if (isdir (ent->d_name))

{

printf ("/");

if (level + 1 == max_level)

putchar (’\n’);

else

{

printf (" contains:\n");

printdir (level + 1, ent->d_name);

}

}

else

printf ("\n");

}

closedir (dir);

chdir (cwd);

}

int

main (int argc, char **argv)

{

if (argc < 2)

{

fprintf (stderr, "usage: d [-MAX] DIR [DIR...]\n");

return 1;

}

Chapter 5: Handling Recursive Calls. 11

if (argv[1][0] == ’-’)

{

if (!(argv[1][1] == ’-’ && argv[1][2] == 0))

max_level = atoi (&argv[1][1]);

--argc;

++argv;

}

while (--argc)

printdir (0, *++argv);

return 1;

}

Running cflow on this program produces the following graph:
$ cflow --number d.c

1 main() <int main (int argc,char **argv) at d.c:85>:

2 fprintf()

3 atoi()

4 printdir() <void printdir (int level,char *name) at d.c:42> (R):

5 getcwd()

6 perror()

7 chdir()

8 opendir()

9 readdir()

10 printf()

11 ignorent() <int ignorent (char *name) at d.c:28>:

12 strcmp()

13 isdir() <int isdir (char *name) at d.c:12>:

14 stat()

15 perror()

16 S_ISDIR()

17 putchar()

18 printdir()

<void printdir (int level,char *name) at d.c:42>

(recursive: see 4)

19 closedir()

The printdir description in line 4 shows that the function is recursive.
The recursion call is shown in line 18.

12 GNU cflow

Chapter 6: Controlling Symbol Types 13

6 Controlling Symbol Types

An alert reader has already noticed something strange in the above output:
the function _exit is missing, although according to the source file it is called
twice by printdir. It is because by default cflow omits from its output all
symbols beginning with underscore character. To include these symbols as
well, specify ‘-i _’ (or ‘--include _’) command line option. Continuing our
example:

$ cflow --number -i _ d.c

1 main() <int main (int argc,char **argv) at d.c:85>:

2 fprintf()

3 atoi()

4 printdir() <void printdir (int level,char *name) at d.c:42> (R):

5 getcwd()

6 perror()

7 _exit()

8 chdir()

9 opendir()

10 readdir()

11 printf()

12 ignorent() <int ignorent (char *name) at d.c:28>:

13 strcmp()

14 isdir() <int isdir (char *name) at d.c:12>:

15 stat()

16 perror()

17 S_ISDIR()

18 putchar()

19 printdir()

<void printdir (int level,char *name) at d.c:42>

(recursive: see 4)

20 closedir()

In general, ‘--include’ takes an argument specifying a list of symbol
classes. Default option behavior is to include the requested classes to the
output. If the argument begins with a minus or caret sign, this behavior is
reversed and the requested symbol classes are excluded from the output.

The symbol class ‘_’ includes symbols whose names begin with an un-
derscore. Another useful symbol class is ‘s’, representing static functions
or data. By default, static functions are always included in the output. To
omit them, one can give ‘-i ^s’ (or ‘-i -s’1) command line option. Our
sample program ‘d.c’ defines static function isdir, running cflow -i ^s,
completely omits this function and its callees from the resulting graph:

$ cflow --number -i ^s d.c

1 main() <int main (int argc,char **argv) at d.c:85>:

2 fprintf()

3 atoi()

4 printdir() <void printdir (int level,char *name) at d.c:42> (R):

1 Notice that ‘-i -s’ is a single option, in spite of -s beginning with a minus sign. Since
this might be confusing, we prefer using ‘^’ instead of ‘-’ to denote symbol exclusion.

14 GNU cflow

5 getcwd()

6 perror()

7 chdir()

8 opendir()

9 readdir()

10 printf()

11 ignorent() <int ignorent (char *name) at d.c:28>:

12 strcmp()

13 putchar()

14 printdir()

<void printdir (int level,char *name) at d.c:42>

(recursive: see 4)

15 closedir()

Actually, the exclusion sign (‘^’ or ‘-’) can be used any place in ‘-i’
argument, not only at the beginning. Thus, option ‘-i _^s’ means “include
symbols, beginning with underscore and exclude static functions”. Several
‘-i’ options accumulate, so the previous example can also be written as ‘-i
_ -i ^s’.

It is important to notice that by default cflow graphs contain only func-
tions. You can, however, request displaying variables as well, by using sym-
bol class ‘x’. This class contains all data symbols, both global and static, so
to include these in the output, use option ‘-i x’. For example:

$ cflow --number -i x d.c

1 main() <int main (int argc,char **argv) at d.c:85>:

2 fprintf()

3 stderr

4 max_level <int max_level at d.c:37>

5 atoi()

6 printdir() <void printdir (int level,char *name) at d.c:42> (R):

7 DIR

8 dir

9 getcwd()

10 perror()

11 chdir()

12 opendir()

13 readdir()

14 printf()

15 ignorent() <int ignorent (char *name) at d.c:28>:

16 ignored_names <char *ignored_names[] at d.c:24>

17 strcmp()

18 isdir() <int isdir (char *name) at d.c:12>:

19 stat()

20 perror()

21 S_ISDIR()

22 NULL

23 max_level <int max_level at d.c:37>

24 putchar()

25 printdir()

<void printdir (int level,char *name) at d.c:42>

(recursive: see 6)

Chapter 6: Controlling Symbol Types 15

26 closedir()

Now, lines 3, 4, 16 and 23 show data symbols, with their definitions when
available. Notice, however, lines 7 and 8. Why both type name DIR and
automatic variable dir are listed as data?

To answer this question, let’s first describe the cflow notion of symbols.
The program keeps its symbol tables, which are initially filled with C pre-
defined keywords. When parsing input files, cflow updates these tables. In
particular, upon encountering a typedef, it registers the defined symbol as
a type.

Now, DIR is not declared in ‘d.c’, so cflow has no way of knowing it is
a data type. So, it supposes it is a variable. But then the input:

DIR *dir;

is parsed as an expression, meaning “multiply DIR by dir”.
Of course, it is wrong. There are two ways to help cflow out of this

confusion. You can either explicitly declare DIR as data type, or let cflow
run preprocessor, so it sees the contents of the include files and determines it
by itself. Running preprocessor is covered by the next chapter (see Chapter 7
[Preprocessing], page 17). In the present chapter we will concentrate on the
first method.

Command line option ‘--symbol’ (‘-s’) declares a type of the symbol.
Its argument consists of two strings separated by a colon:

--symbol sym:t

The first string, sym is a C identifier to be recorded in the symbol table. The
second string, t, specifies a type to be associated with this symbol. If t is a
string ‘type’, the symbol sym will be recorded as a C type definition. Thus,
to fix the above output, run:

$ cflow --number -i x --symbol DIR:type d.c

Another important symbol type is a parameter wrapper. It is a kind of a
macro, often used in sources that are meant to be compatible with pre-ANSI
compilers to protect parameter declarations in function prototypes. For
example, in the declaration below, taken from ‘/usr/include/resolv.h’,
__P is a parameter wrapper:

void res_npquery __P((const res_state, const u_char *, int, FILE *));

For cflow to be able to process such declarations, declare __P as a wrap-
per, for example:

cflow --symbol __P:wrapper *.c

Another usage for wrapper symbol type is to declare special attributes
often used with gcc. For example, the following declaration:

void fatal_exit (void) __attribute__ ((noreturn));

will confuse cflow. To correctly process it, use option ‘--symbol
__attribute__:wrapper’.

For the complete list of ‘--symbol’ supported types, See [symbol types],
page 31.

16 GNU cflow

Notice, finally, that when using preprocess mode, there is no need to
use ‘--symbol’, since in this mode cflow is able to correctly determine all
symbol types by itself.

Chapter 7: Running Preprocessor 17

7 Running Preprocessor

Cflow can preprocess input files before analyzing them, the same way cc
does before compiling. Doing so allows cflow to correctly process all sym-
bol declarations, thus avoiding the necessity to define special symbols using
‘--symbol’ option, described in the previous chapter. To enable preprocess-
ing, run the utility with ‘--cpp’ (‘--preprocess’) command line option. For
our sample file ‘d.c’, this mode gives:

$ cflow --cpp -n d.c

1 main() <int main (int argc,char **argv) at d.c:85>:

2 fprintf()

3 atoi()

4 printdir() <void printdir (int level,char *name) at d.c:42> (R):

5 getcwd()

6 perror()

7 chdir()

8 opendir()

9 readdir()

10 printf()

11 ignorent() <int ignorent (char *name) at d.c:28>:

12 strcmp()

13 isdir() <int isdir (char *name) at d.c:12>:

14 stat()

15 perror()

16 putchar()

17 printdir()

<void printdir (int level,char *name) at d.c:42>

(recursive: see 4)

18 closedir()

Compare this graph with the one obtained without ‘--cpp’ option (see
[sample flowchart], page 11). As you see, the reference to S_ISDIR is gone:
the macro has been expanded. Now, try running cflow --cpp --number -i
x d.c and compare the result with the graph obtained without preprocessing
(see [x flowchart], page 14). You will see that it produces correct results
without using ‘--symbol’ option.

By default ‘--cpp’ runs ‘/usr/bin/cpp’. If you wish to run another
preprocessor command, specify it as an argument to the option, after an
equal sign. For example, cflow --cpp=’cc -E’ will run the C compiler as a
preprocessor.

18 GNU cflow

Chapter 8: Using ASCII Art to Produce Flow Graphs. 19

8 Using ASCII Art to Produce Flow
Graphs.

You can configure the exact appearance of cflow output flow graph using
‘--level-indent’ option. The simplest use for this option is to change the
default indentation per nesting level. To do so, give the option a numeric
argument specifying the number of columns to indent for each nesting level.
For example, the following command sets the indentation level to 2, which
is half of the default:

cflow --level-indent 2 d.c

It can be used, for instance, to keep the graph within the page margins.
However, ‘--level-indent’ can do much more than that. Each line in

the flow graph consists of the following graphical elements: a start marker,
an end marker, with several indent fills between them. By default, both
start and end markers are empty, and each indent fill contains four spaces.

If the argument to ‘--level-indent’ option has the form element=string,
it specifies a character string that should be output in place of a given graph
element. The element names are:
start Start marker
0 Indent fill 0
1 Indent fill 1
end0 End marker 0
end1 End marker 1

Why are there two kinds of indent fills and end markers? Remember that
the flow graph represents a call tree, so it contains terminal nodes (leaves),
i.e. the calls that end a function, and non-terminal nodes (the calls followed
by another ones on the same nesting level). The end marker 0 is for non-
terminal nodes, and end marker 1 is for terminal nodes.

As for indent fills, indent fill 1 is used to represent graph edge, whereas
fill 0 is used to keep the output properly aligned.

To demonstrate this, let’s consider following sample program:
/* foo.c */

int

main()

{

f();

g();

f();

}

int

f()

{

i = h();

}

Now, let’s represent line elements by the following strings:

20 GNU cflow

start ‘::’
0 ‘ ’ (two spaces)
1 ‘| ’ (a vertical bar and a space)
end0 ‘+-’
end1 ‘\-’

The corresponding command line will be: cflow --level begin=::
--level ’0= ’ --level ’1=| ’ --level end0=’+-’ --level end1=’\\-’
foo.c. Notice escaping the backslash characters in end1: generally
speaking, string in ‘--level-option’ can contain usual C escape sequences,
so the backslash character itself must be escaped. Another shortcut,
allowed in string is the notation CxN , where C is any single character and
N is a decimal number. This notation means “repeat character C N times”.
However, character ‘x’ looses its special meaning if used at the beginning of
the string.

This command will produce the following output:
::+-main() <int main () at foo.c:3>:

:: +-f() <int f () at foo.c:11>:

:: | \-h()

:: \-g()

Thus, we obtained an ASCII art representation of the call tree. GNU
cflow provides a special option ‘--tree’ (‘-T’), which is a shortcut for
--level ’0= ’ --level ’1=| ’ --level end0=’+-’ --level end1=’\\-’.
The following is an example of flow graph produced with this option. The
source file ‘wc.c’ is a simple implementation of UNIX wc command, See
Appendix A [Source of wc command], page 37.

Chapter 8: Using ASCII Art to Produce Flow Graphs. 21

$ cflow --tree --brief --cpp wc.c

+-main() <int main (int argc,char **argv) at wc.c:127>

+-errf() <void errf (char *fmt,...) at wc.c:34>

| \-error_print()

| <void error_print (int perr,char *fmt,va_list ap) at wc.c:22>

| +-vfprintf()

| +-perror()

| +-fprintf()

| \-exit()

+-counter() <void counter (char *file) at wc.c:108>

| +-fopen()

| +-perrf() <void perrf (char *fmt,...) at wc.c:46>

| | \-error_print()

| | <void error_print (int perr,char *fmt,va_list ap)

| | at wc.c:22> [see 3]

| +-getword() <int getword (FILE *fp) at wc.c:78>

| | +-feof()

| | \-isword() <int isword (unsigned char c) at wc.c:64>

| | \-isalpha()

| +-fclose()

| \-report()

| <void report (char *file,count_t ccount,

| count_t wcount,count_t lcount) at wc.c:57>

| \-printf()

\-report()

<void report (char *file,count_t ccount,

count_t wcount,count_t lcount) at wc.c:57> [see 17]

22 GNU cflow

Chapter 9: Cross-Reference Output. 23

9 Cross-Reference Output.

GNU cflow is also able to produce cross-reference listings. This mode is
enabled by ‘--xref’ (‘-x’) command line option. Cross-reference output lists
each symbol occurrence on a separate line. Each line shows the identifier and
the source location where it appears. If this location is where the symbol
is defined, it is additionally marked with an asterisk and followed by the
definition. For example, here is a fragment of cross-reference output for
‘d.c’ program:

printdir * d.c:42 void printdir (int level,char *name)

printdir d.c:74

printdir d.c:102

It shows that the function printdir is defined in line 42 and referenced
twice, in lines 74 and 102.

The symbols included in cross-reference listings are controlled by
‘--include’ option (see [–include], page 13). In addition to character
classes discussed in chapter “Controlling Symbol Types” (see Chapter 6
[Symbols], page 13), an additional symbol class t controls listing of type
names defined by typedef keyword.

24 GNU cflow

Chapter 10: Configuration Files and Variables. 25

10 Configuration Files and Variables.

As shown in the previous chapters, GNU cflow is highly configurable. Differ-
ent command line options have different effects, as specifying new operation
modes or altering some aspects of the output. You will likely use some op-
tions frequently, while you will use others from time to time, or not at all
(See Chapter 12 [Options], page 29, for a full list of options).

The CFLOW_OPTIONS environment variable specifies default options to be
placed in front of any explicit options. For example, if you set CFLOW_
OPTIONS="--format=posix --cpp" in your ‘.profile’, cflow will behave
as if the two options ‘--format=posix’ and ‘--cpp’ had been specified before
any explicit options.

There is also another possibility to specify your default options. After
incorporating eventual content of CFLOW_OPTIONS variable, cflow checks the
value of the environment variable CFLOWRC. This value, if not empty, specifies
the name of the configuration file to read. If CFLOWRC is not defined or is
empty, the program attempts to read file ‘.cflowrc’ in the user’s home
directory. It is not an error if any of these files does not exist. However, if
the file does exist but cannot be processed, cflow will issue an explicit error
message.

The configuration file is read line by line. Empty lines and lines beginning
with usual shell comment character (‘#’) are ignored. Otherwise, the line
is split into words, the same way shell does, and the resulting words are
placed in the command line after any options taken from CFLOW_OPTIONS
variable, but before any explicit options.

Pay attention when using such options as ‘-D’ in the configuration file.
The value of ‘-D’ option will be added to the preprocessor command line and
will be processed by the shell, so be careful to properly quote its argument.
The rule of thumb is: “use the same quoting you would have used in the shell
command line”. For example, to run cc -E as a preprocessor, you can use
the following configuration file:

--symbol __const:type

--symbol __restrict:type

--cpp=’cc -E’

-D__extension__=

-D__attribute__\\\(c\\\)=

-D__asm__\\\(c\\\)=

It may sometimes be necessary to cancel the effect of a command line
option. For example, you might specify ‘--brief’ in your configuration file,
but then occasionally need to obtain verbose graph. To cancel effect of
any GNU cflow option that does not take arguments, prepend ‘no-’ to the
corresponding long option name. Thus, specifying ‘--no-brief’ cancels the
effect of the previous ‘--brief’ option.

26 GNU cflow

Chapter 11: Using cflow in Makefiles. 27

11 Using cflow in Makefiles.

If you wish to use cflow to analyze your project sources, ‘Makefile’ or
‘Makefile.am’ is the right place to do so. In this chapter we will describe a
generic rule for ‘Makefile.am’. If you do not use automake, you can deduce
the rule for plain ‘Makefile’ from this one.

Here is a check list of steps to do to set up a ‘Makefile.am’ framework:
− If you use a configuration file, add it to EXTRA_DIST variable.
− Add variable CFLOW_FLAGS with any special cflow options you wish to

use. The variable can be empty, its main purpose is making it possible
to override cflow options by running make CFLOW_FLAGS=... chart.

− For each program from your dir_PROGRAMS list, for which you want to
generate a flow chart, add the following statements:

program_CFLOW_INPUT=$(program_OBJECTS:.$(OBJEXT)=.c)

program.cflow: program_CFLOW_INPUT cflow.rc Makefile

CFLOWRC=path-to-your-cflow.rc \

cflow -o$@ $(CFLOW_FLAGS) $(DEFS) \

$(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \

$(CPPFLAGS) \

$(program_CFLOW_INPUT)

Replace program with program name and path-to-your-cflow.rc with
the full file name of your ‘cflow.rc’ file (if any). If you do not wish to
use preprocessing, remove from the cflow command line all variables,
except CFLOW_FLAGS.

− If there are several programs built by this ‘Makefile.am’, you may wish
to add a special rule, allowing to create all flow charts with a single
command, for example:

flowcharts: prog1.cflow prog2.cflow ...

As an example, here are the relevant statements which we use in cflow
‘src/Makefile.am’:

EXTRA_DIST=cflow.rc

CFLOW_FLAGS=-i^s

cflow_CFLOW_INPUT=$(cflow_OBJECTS:.$(OBJEXT)=.c)

cflow.cflow: $(cflow_CFLOW_INPUT) cflow.rc Makefile

CFLOWRC=$(top_srcdir)/src/cflow.rc \

cflow -o$ $(CFLOW_FLAGS) $(DEFS) \

$(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \

$(CPPFLAGS) \

$(cflow_CFLOW_INPUT)

28 GNU cflow

Chapter 12: Complete Listing of cflow Options. 29

12 Complete Listing of cflow Options.

This chapter contains an alphabetical listing of all cflow command line
options, with brief descriptions and cross references to more in-depth expla-
nations in the body of the manual. Both short and long option forms are
listed, so you can use this table as a quick reference.

Most of the options have a negation counterpart, an option with a re-
verse meaning. The name of a negation option is formed by prefixing the
corresponding long option name with a ‘no-’. This feature is provided to
cancel default options specified in the configuration file.

In the table below, options with negation counterparts are marked with
a bullet (•).

‘-a’
‘--ansi’ • Assume input to be written in ANSI C. Currently this means

disabling code that parses K&R function declarations. This
might speed up the processing in some cases.

‘-b’
‘--brief’ • Brief output. See [–brief], page 5.

‘--cpp[=command]’
• Run the specified preprocessor command. See Chapter 7 [Pre-
processing], page 17.

‘-D name[=defn]’
‘--define=name[=defn]’

Predefine name as a macro. Implies ‘-cpp’ (see Chapter 7 [Pre-
processing], page 17).

‘-d number ’
‘--depth=number ’

Set the depth at which the flow graph is cut off. For example,
‘--depth=5’ means the graph will contain function calls up to
the 5th nesting level.

‘--debug[=number]’
Set debugging level. Default number is 1. Use this option if you
are developing and/or debugging cflow.

‘--emacs’ • Prepend the output with a line telling Emacs to use cflow
mode when visiting this file. Implies ‘--format=gnu’. See [–
emacs], page 33.

‘-f name ’
‘--format=name ’

Use given output format name. Valid names are gnu (see [GNU
Output Format], page 3) and posix (see [POSIX Output For-
mat], page 7).

30 GNU cflow

‘-?’
‘--help’ Display usage summary with short explanation for each option.

‘-I dir ’
‘--include-dir=dir ’

Add the directory dir to the list of directories to be searched
for header files. Implies ‘--cpp’ (see Chapter 7 [Preprocessing],
page 17).

‘-i spec ’
‘--include=spec ’

Control the number of included symbols. Spec is a string con-
sisting of characters, specifying what class of symbols to include
in the output. Valid spec symbols are:

-
^ Exclude symbols denoted by the following letters.

+ Include symbols denoted by the following letters
(default).

Symbols whose names begin with an underscore.

s Static symbols.

t Typedefs (for cross-references only, see Chapter 9
[Cross-References], page 23).

x All data symbols, both external and static.

For more information, See Chapter 6 [Symbols], page 13.

‘-L’
‘--license’

Print license and exit.

‘-l’ See [–print-level], page 31.

‘--level-indent=string ’
Use string when indenting to each new level. See Chapter 8
[ASCII Tree], page 19.

‘-m name ’

‘--main=name ’
Assume main function to be called name. See [start symbol],
page 4.

‘-n’
‘--number’

• Print line numbers. See [–number], page 6.

‘-o file ’
‘--output=file ’

Set output file name. Default is ‘-’, meaning standard output.

Chapter 12: Complete Listing of cflow Options. 31

‘--ommit-arguments’
• Do not print argument lists in function declarations. See [omit
signature parts], page 4.

‘--omit-symbol-names’
• Do not print symbol names in declarations. See [omit signature
parts], page 4. This option is turned on in ‘posix’ output mode
(see [POSIX Output Format], page 7.

‘-r’
‘--reverse’

• Print reverse call graph. See Chapter 3 [Direct and Reverse],
page 5.

‘-x’
‘--xref’ • Produce cross-reference listing only. See Chapter 9 [Cross-

References], page 23.

‘-p number ’
‘--pushdown=number ’

Set initial token stack size to number tokens. Default is 64. The
token stack grows automatically when it needs to accommodate
more tokens than its current size, so it is seldom necessary to
use this option.

‘--preprocess[=command]’
Run the specified preprocessor command. See [–cpp], page 29.

‘-s sym:type ’
‘--symbol=sym:type ’

Define symbol sym as having type type. Valid types are:
‘keyword’ (or ‘kw’), ‘modifier’, ‘identifier’, ‘type’,
‘wrapper’. Any unambiguous abbreviation of the above is also
accepted. See [–symbol], page 15.

‘-S’
‘--use-indentation’

• Use source file indentation as a hint. Currently this means that
the closing curly brace (‘}’) in the column zero forces cflow to
close current function definition. Use this option sparingly, it
may cause misinterpretation of some sources.

‘-U name ’
‘--undefine=name ’

Cancel any previous definition of name. Implies ‘--cpp’ (see
Chapter 7 [Preprocessing], page 17).

‘--print-level’
‘-l’ • Print nesting level along with the call graph. The

level is printed after output line number (if ‘--number’ or
‘--format=posix’ is used, enclosed in curly braces.

32 GNU cflow

‘-T’
‘--tree’ • Use ASCII art to print graph. See Chapter 8 [ASCII Tree],

page 19.

‘--usage’ Give a short usage message.

‘-v’
‘--verbose’

• Verbosely list any errors encountered in the input files. The
cflow notion of an error does not match that of C compiler, so
by default error messages are turned off. It is useful to enable
them if you suspect that cflow misinterprets the sources.

‘-V’
‘--version’

Print program version.

Chapter 13: Using cflow with GNU Emacs. 33

13 Using cflow with GNU Emacs.

GNU cflow comes with an emacs module providing a major mode for vis-
iting flow charts in GNU Emacs. If you have a working emacs on your
machine, the module will be installed somewhere in your Emacs load-path.
To load the module at startup, add the following lines to your ‘.emacs’ or
‘site-start.el’ file:

(autoload ’cflow-mode "cflow-mode")

(setq auto-mode-alist (append auto-mode-alist

’(("\\.cflow$" . cflow-mode))))

The second statement associates cflow-mode with any file having suffix
‘.cflow’. If you prefer to have another suffix for flow graph files, use it
instead. You can also omit this option, if you do not use any special suffix
for your graph files. In this case we recommend using ‘--emacs’ command
line option. This option generates the first line telling Emacs to use cflow
major mode when visiting the file.

The buffer opened in cflow mode is made read-only. The following key
bindings are defined:

〈E〉 Temporarily exits from cflow mode and allows you to edit the
graph file. To resume cflow mode type 〈M-x〉 cflow-mode 〈RET〉.
This option is provided mainly for debugging purposes. We do
not recommend you to edit chart files, since this will change line
numbering and thus prevent cflow mode from correctly tracing
line references.

〈x〉 Go to expansion of the current graph vertex. Use this key if
the point stands on a line ending with ‘[see N]’ reference. It
will bring you directly to the referenced line. Use exchange-
point-and-mark (by default 〈C-x C-x〉) to return to the line you
examined.

〈R〉 If the point is standing on a recursive function, go to the next
recursion. Sets mark.

〈r〉 If the point is standing on a recursive function, return to its
definition (a recursion root). Sets mark.

〈s〉 Visit the referenced source file and find the function definition.

34 GNU cflow

Chapter 14: How to Report a Bug 35

14 How to Report a Bug

Send bug reports via electronic mail to bug-cflow@gnu.org.
As the purpose of bug reporting is to improve software, please be sure to

include maximum information when reporting a bug. The minimal informa-
tion needed is:
• Version of the package you are using.
• Compilation options used when configuring the package.
• Detailed description of the bug.
• Conditions under which the bug appears (command line options, input

file contents, etc.)

mailto:bug-cflow@gnu.org

36 GNU cflow

Appendix A: Source of wc command 37

Appendix A Source of wc command

The source file ‘wc.c’, used to produce sample ASCII tree graph (see [ascii
tree], page 20).

/* Sample implementation of wc utility. */

#include <stdlib.h>

#include <stdio.h>

#include <stdarg.h>

typedef unsigned long count_t; /* Counter type */

/* Current file counters: chars, words, lines */

count_t ccount;

count_t wcount;

count_t lcount;

/* Totals counters: chars, words, lines */

count_t total_ccount = 0;

count_t total_wcount = 0;

count_t total_lcount = 0;

/* Print error message and exit with error status. If PERR is not 0,

display current errno status. */

static void

error_print (int perr, char *fmt, va_list ap)

{

vfprintf (stderr, fmt, ap);

if (perr)

perror (" ");

else

fprintf (stderr, "\n");

exit (1);

}

/* Print error message and exit with error status. */

static void

errf (char *fmt, ...)

{

va_list ap;

va_start (ap, fmt);

error_print (0, fmt, ap);

va_end (ap);

}

/* Print error message followed by errno status and exit

with error code. */

static void

perrf (char *fmt, ...)

{

va_list ap;

38 GNU cflow

va_start (ap, fmt);

error_print (1, fmt, ap);

va_end (ap);

}

/* Output counters for given file */

void

report (char *file, count_t ccount, count_t wcount, count_t lcount)

{

printf ("%6lu %6lu %6lu %s\n", lcount, wcount, ccount, file);

}

/* Return true if C is a valid word constituent */

static int

isword (unsigned char c)

{

return isalpha (c);

}

/* Increase character and, if necessary, line counters */

#define COUNT(c) \

ccount++; \

if ((c) == ’\n’) \

lcount++;

/* Get next word from the input stream. Return 0 on end

of file or error condition. Return 1 otherwise. */

int

getword (FILE *fp)

{

int c;

int word = 0;

if (feof (fp))

return 0;

while ((c = getc (fp)) != EOF)

{

if (isword (c))

{

wcount++;

break;

}

COUNT (c);

}

for (; c != EOF; c = getc (fp))

{

COUNT (c);

if (!isword (c))

break;

Appendix A: Source of wc command 39

}

return c != EOF;

}

/* Process file FILE. */

void

counter (char *file)

{

FILE *fp = fopen (file, "r");

if (!fp)

perrf ("cannot open file ‘%s’", file);

ccount = wcount = lcount = 0;

while (getword (fp))

;

fclose (fp);

report (file, ccount, wcount, lcount);

total_ccount += ccount;

total_wcount += wcount;

total_lcount += lcount;

}

int

main (int argc, char **argv)

{

int i;

if (argc < 2)

errf ("usage: wc FILE [FILE...]");

for (i = 1; i < argc; i++)

counter (argv[i]);

if (argc > 2)

report ("total", total_ccount, total_wcount, total_lcount);

return 0;

}

40 GNU cflow

Appendix B: GNU Free Documentation License 41

Appendix B GNU Free Documentation
License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.
We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or
to related matters) and contains nothing that could fall directly within

42 GNU cflow

that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii
without markup, Texinfo input format, LaTEX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque for-
mats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

Appendix B: GNU Free Documentation License 43

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque

44 GNU cflow

copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the
public.
It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct

from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adja-

cent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add

to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If

Appendix B: GNU Free Documentation License 45

there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

46 GNU cflow

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.
In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Enti-
tled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works
of the Document.
If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire

Appendix B: GNU Free Documentation License 47

aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided for under this License. Any other attempt
to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, par-
ties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

http://www.gnu.org/copyleft/

48 GNU cflow

B.1 ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

Appendix B: Concept Index 49

Concept Index

This is a general index of all issues discussed in this manual

-
‘--ansi’ . 29
‘--brief’. 29
‘--brief’ command line option introduced

. 5
‘--cpp’ . 29
‘--cpp’ option introduced. 17
‘--cpp’ option, an example 17
‘--debug’. 29
‘--define’ . 29
‘--depth’. 29
‘--emacs’. 29
‘--emacs’ introduced 33
‘--format’ . 29
‘--format=posix’ . 7
‘--help’ . 29
‘--include’ . 30
‘--include’ introduced 13
‘--include-dir’ . 30
‘--level-indent’ . 30
‘--level-indent’ keywords 19
‘--level-indent’ option introduced. . . 19
‘--level-indent’ string syntax 20
‘--license’ . 30
‘--main’ . 30
‘--main’ command line option introduced

. 4
‘--no-ansi’ . 29
‘--no-brief’ . 29
‘--no-cpp’ . 29
‘--no-emacs’ . 29
‘--no-number’ . 30
‘--no-print-level’ 31
‘--no-reverse’ . 31
‘--no-tree’ . 31
‘--no-use-indentation’ 31
‘--no-verbose’ . 32
‘--no-xref’ . 31
‘--number’ . 30
‘--number’ command line option

introduced . 6
‘--omit-arguments’ 30
‘--omit-arguments’ option introduced . . 4
‘--omit-symbol-names’ 31
‘--omit-symbol-names’ option introduced

. 4
‘--output’ . 30

‘--preprocess’ . 31
‘--preprocess’ option introduced 17
‘--preprocess’ option, an example 17
‘--print-level’ . 31
‘--pushdown’ . 31
‘--reverse’ . 5, 31
‘--symbol’ . 31
‘--symbol’ introduced 15
‘--tree’ . 31
‘--tree’ introduced 20
‘--undefine’ . 31
‘--usage’. 32
‘--use-indentation’ 31
‘--verbose’ . 32
‘--version’ . 32
‘--xref’ . 31
‘--xref’ option introduced 23
‘-?’ . 29
‘-a’ . 29
‘-b’ . 29
‘-b’ command line option introduced . . . 5
‘-d’ . 29
‘-D’ . 29
‘-f’ . 29
‘-f posix’ . 7
‘-i’ . 30
‘-I’ . 30
‘-i’ introduced . 13
‘-l’. 30, 31
‘-L’ . 30
‘-m’ . 30
‘-m’ command line option introduced . . . 4
‘-n’ . 30
‘-n’ command line option introduced . . . 6
‘-o’ . 30
‘-p’ . 31
‘-r’ . 5, 31
‘-s’ . 31
‘-S’ . 31
‘-s’ introduced . 15
‘-T’ . 31
‘-T’ introduced . 20
‘-U’ . 31
‘-v’ . 32
‘-V’ . 32
‘-x’ . 31
‘-x’ option introduced 23

50 GNU cflow

.
‘.cflowrc’ . 25
‘.profile’ . 25

__attribute__, special handling using
‘--symbol’ . 15

__P, special handling using ‘--symbol’
. 15

0
0, ‘--level-indent’ keyword 19

1
1, ‘--level-indent’ keyword 19

B
brief output described 5
brief output, an example of 5

C
cflow . 1
cflow, a description of 1
cflow-mode introduced 33
CFLOW_OPTIONS . 25
cflow2vcg, using with cflow 7
CFLOWRC . 25
Configuration file . 25
Configuration file format 25
configuring output indentation level . . . 19
Cross-References introduced 23

D
Default preprocessor command 17
direct graph defined 1
direct tree defined. 1

E
Emacs . 33
end0, ‘--level-indent’ keyword 19
end1, ‘--level-indent’ keyword 19
Excluding symbol classes 13

F
FDL, GNU Free Documentation License

. 41

G
GNU Output Format described 3
GNU Output Format, an example 3

I
Including symbols that begin with an

underscore . 13

M
‘Makefile.am’ . 27

O
Option cancellation 25
output indentation level, configuring . . 19

P
Parameter wrapper defined 15
POSIX Output described 7
POSIX Output Format, generating 7
POSIXLY_CORRECT . 7
Preprocess mode introduced 17
Preprocessor command, overriding the

default . 17

R
Recursive functions 9
reverse graph defined 1
reverse graph, example 5
reverse tree defined 1
reverse tree, example 5
Running preprocessor 17

S
start symbol . 4
start, ‘--level-indent’ keyword. . . . 19
Symbol classes defined 13

X
xvcg, using with cflow 7

	Introduction to cflow
	Simple Ways to Analyze Programs with cflow.
	Two Types of Flow Graphs.
	Various Output Formats.
	Handling Recursive Calls.
	Controlling Symbol Types
	Running Preprocessor
	Using ASCII Art to Produce Flow Graphs.
	Cross-Reference Output.
	Configuration Files and Variables.
	Using cflow in Makefiles.
	Complete Listing of cflow Options.
	Using cflow with GNU Emacs.
	How to Report a Bug
	Source of wc command
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Concept Index

