Preliminary report on Distributed ASAX

Abdelaziz Mounji Baudouin Le Charlier Denis Zampunieris
Naji Habra,
Institut D’Informatique,
FUNDP,
rue Grangagnage 21,
5000 Namur
E-mail: {amo, ble, dza, nha}@info.fundp.ac.be

May 27, 1994

Contents

1 Introduction 3

2 Desirable functionalities for distributed network monitoring 5

2.1 Introduction 5
2.2 Single Point Administration 5
2.3 Local Analysis (Filtering) 6
2.4 Global Analysis L o 6
2.5 Availability 7
2.6 Audit Trail Control 7
2.7 Security e 7
2.8 Multi Point Administration 8
2.9 Portability 8
2.10 Proposed solution oo 8

3 The SunOS 4.1 Security level C2 9
3.1 Imstallation, 9
3.2 Processauditstate L. 9
3.3 Naming conventions 10
3.4 Command interface 10

4 General Architecture 11
4.1 Filtering 11
4.2 Global Analysis o o 12

5 Detailed Functionalities 14
5.1 Imtroduction 14
5.2 Imitialization 14
5.3 Audit Trail Control 15
54 Login control 15
5.5 NADF file management 16
5.6 Distributed Analysis 16
5.7 Portability 18

6 Command Interface 19
6.1 Introduction, 19
6.2 Initialization, 20
6.2.1 Activation of Format Adaptor. 20

6.3

6.4

6.5

The
7.1
7.2
7.3
7.4

7.5
7.6

Analysis Control 21

6.3.1 Distributed Evaluator Description File 21
6.3.2 Distributed Evaluator execution 22
6.3.3 Changing current filtering 23
6.3.4 Changing the time interval of the analysis 23
Login Control 24
6.4.1 Notations and definitions 24
6.4.2 Temporary change of user audit state 26
6.4.3 Permanent change of user audit state 26
6.4.4 Host login control 27
6.4.5 Network login control 27
Miscellaneous Commands 27
6.5.1 Stopping an evaluator 27
6.5.2 Reinitializing the system 28
6.5.3 Current active evaluators 28
6.5.4 Audit trail size controlo oo 28
6.5.5 The configuration 29
6.5.6 Help command 29
implementation 30
Introductiono 30
PVM . . . 30
Format Adaptors oL 30
The Parallel Virtual Machine Configuration 31
7.4.1 The audit state controller processes 31
7.4.2 Evaluator processes 32
7.4.3 The supplier processes 32
7.4.4 The console process 32
Specification of the exchanged messages 33
A typical session oo 34
7.6.1 Initialization 34
7.6.2 Distributed Analysis 34
7.6.3 Termination 35

Chapter 1

Introduction

The purpose of this report is to present a distributed on-line system capable
of performing efficient, intelligent and network-level analysis of security audit
trails in a network of SUN workstations. The distributed system is in fact
an extension of ASAX ([1], [2], [3]) whose main features can be summarized
by the following:

Universality: by supporting any kind of native audit trail format. This is
achieved by means of user-provided Format Adaptors translating the
native format to the NADF (Normalized Audit Data Format) format;

Power: by devoting a brand new rule-based language especially designed
for formulating arbitrary complex queries on the audit trail;

Efficiency: by allowing to resolve multiple queries in a single pass analysis
of the audit trail using a bottom-up method.

However, ASAX was originally designed for analyzing a single audit trail
generated on a single machine.

In effect, the present and future integration of computer systems and net-
works suggest more elaborate analysis that should be carried out at the
network level. This stems from the fact that (from security analysis stand-
point at least) some pattern of actions may appear legitimate if considered
at the host level but could reveal malicious behaviour if related to actions
occurring on other hosts of the network. On the other hand, such a dis-
tributed system potentially provides a coherent and integrated control of
the network auditing/analysis system.

The distributed analysis should be ideally applied to an heterogeneous net-
work but in this paper, we suggest an experimental system restricted to a
network of Sun workstations. However, the paper presents high level, user-
oriented functionalities general enough to be applicable to an heterogeneous
network. In this regard, the experimental distributed system will serve a
twofold goal. First, it will demonstrate the usefulness of these functionalities
in achieving network security monitoring and intrusion/anomaly detection.
Second, it will prove the feasibility of these functionalities by implementing

a functioning prototype version on a network of SUN workstations.

Distributed Analysis should not be restricted to security audit trails. In
this first attempt, we concentrate on the security aspects but we hope that
many design choices are applicable to the analysis of distributed systems in
general.

The rest of the paper is organized as follows. The next chapter describes
the functionalities a distributed system for audit trail analysis should pro-
vide. Chapter 3 introduces some basic features of the SunOS 4.1 security
level C2. Chapter 4 depicts a general architecture of a distributed system
for audit trail analysis and explains the interactions between the various
components (machines, processes, ... etc). Chapter 5 describes the detailed
functionalities implemented by the experimental system and shows how the
user-oriented requirements of chapter 2 can all be fulfilled using the detailed
functionalities. Chapter 6 is a specification of the Security Administrator
command interface for the distributed system. Chapter 7 addresses the
implementation design issue.

Chapter 2

Desirable functionalities for
distributed network
monitoring

2.1 Introduction

In this chapter we will examine the high level functionalities of a distributed
on-line system for audit trail analysis. We claim that the provided function-
alities are essential for the Security Administrator to accomplish his task in
the most effective and convenient way.

2.2 Single Point Administration

In a network of computers and in the context of auditing/analysis of secu-
rity related events, it is desirable that the security administrator could gain
control over the auditing/analysis system of the whole network from a single
machine. To be accomplished, none of his (security-related) duties should
require multiple (physical or remote) login to numerous machines. Rather,
he must be provided with an (command/graphical) interface which allows
management and control of the auditing/analysis resources, programs and
parameters in a transparent way. For instance, remote hosts should be ac-
cessed using logical names without need of multiple connections to remote
hosts. This is especially useful in case the security administrator wants to
apply the same administration tasks (set up auditing parameters such as
audit directories, level of granularity, analysis, ... etc) on a group of hosts
in the network.

That is, the single point administration requirement means that remote
audited nodes should be considered as logical objects on which security ad-
ministration operations could be applied as if they were directly available
on the local machine.

2.3 Local Analysis (Filtering)

The distributed auditing/analysis system is able to perform analysis on any
node taking part in the network of audited nodes. The analysis is considered
local in the sense that the audit data subject to analysis represents events
taking place at the audited host. No assumption is otherwise made about
which node is actually performing the analysis.

Local analysis requires that the auditing mechanism is activated. It can
be carried out in two different modes. In the on-line (or real-time) mode,
analysis is applied to audit records as soon as they are generated by the
auditing subsystem. In off-line mode, the system analyzes audit trails pre-
viously stored by the auditing subsystem. The outcome of a local analysis
is a sequence of audit records from the local audit trail which satisfy the
analysis. Local analysis is also called filtering since at the network level, it
serves as a pre-selection of audit records. The various audit records obtained
at each node will subsequently be subject to a more elaborate analysis.

2.4 Global Analysis

The distributed auditing/analysis system is able to perform more intelligent
analysis of a global audit trail gathering audit records that result from the
various local analyses. Global analysis aims at identifying correlations be-
tween events occurring at different nodes. The overall benefit is reducing
the complexity of malicious behaviour detection. In effect, a malicious be-
haviour can be viewed as an elaborate sequence of actions involving many
nodes. On the other hand, these actions could in turn be as complex rather
than mere pre-selection of audit records on record type basis for instance.

As a result, concerted local filtering and global analysis leads to a more in-
telligent monitoring and intrusion/anomaly detection system for computer
networks. Moreover, this combination yields a better balancing of the pro-
cessing resources since the total amount of cpu time is distributed over the
network.

If the current global analysis indicates that a security violation is suspected,
it can trigger a finer granularity of generated events on certain nodes. It can
also affect the current local analysis by asking such nodes to apply a more
appropriate filter in order to capture more audit records.

In the following, the node performing the global analysis is called the central
(or master) machine while filtering takes place at slave machines.

Note that the master machine can also analyze its own local audit trail and
then be considered slave at the same time.

2.5 Availability

In the case where any host goes down, auditing must continue on any other
machines and the global analysis of the rest must continue. If the central
machine breaks down, analysis can be restarted from another machine and
resumed from the time of the crash (i.e. the global analysis will still be
completely performed albeit delayed).

2.6 Audit Trail Control

Appropriate audit trail control is driven by 2 factors:

Huge volume of audit data at the finest level of granularity, audit data
for a single user can exceed 10 MB of data per day;

The network context audit data could span over numerous hosts and
hence introduces the difficulty of coherent maintenance.

Consequently, audit trail control requirement should include:
At the host level common methods for reducing the required storage i.e:

e atradeoff between a finer granularity (in order to achieve detailed
analysis) and the resulting big amount of data;

e archiving policy to removable media;

e data compression.

At the network level since audit data is scattered over many hosts, a
centralized management is necessary in order to avoid inconsistencies
between audit trail controls applied at each host.

2.7 Security

Audit data must be protected from corruption and/or unauthorized access.
The whole effort devoted to audit trail analysis is meaningless if appropriate
access control to audit data is not enforced. Multi-user operating systems
support access control mechanism to ordinary files that must be used for
this purpose. Only a very few number of users (user audit in Unix systems)
should be allowed access to audit trails.

Note that audit trails analysis could also be used as the last line of de-
fense against unauthorized access to audit trails themselves.

Again, in a network audit context, audit record transmission between a slave
machine and the master machine must be secured against users listening to
the transmission media.

2.8 Multi Point Administration

It is desirable that the audit files could be queried by several persons with
different interests and privileges. In this perspective, the system must be
able to manage access control to audit trails at the record or at the audit
data (audit record fields) level. For example, the accounting department
executive should be able to access audit data relevant to accounting while
he must be denied access to security related audit data. At the network level,
different persons (accounting auditor, security officer, ... etc) can perform
different kinds of analysis on different machines depending on their domain
of investigation.

2.9 Portability

The distributed on-line analysis system should be highly independent of any
machine or network architecture in order to allow monitoring/analysis of
networks as heterogeneous as possible. Provisions should be made for most
system and network architectures which can be supported with a minimum
reprogramming effort.

2.10 Proposed solution

The solution that we describe in the rest of this paper provides a complete
treatment of requirement 2.2, 2.3, 2.4 and 2.5 (Single Point Administration,
Local Analysis, Global Analysis and Availability). Partial solutions are
provided to requirements 2.6 and 2.7 (Audit Trail Control and Security).
They amount to reusing mechanisms which are provided by the SunOS 4.1.
Security level C2. Requirement 2.8 (Multiple Point Administration) is not
addressed formally because its satisfactory treatment requires defining the
notion of shared data with access privileges defined at the data field level.
Nevertheless, our solution could be naturally extended to handle Multiple
Point Administration. Requirement 2.9 (Portability) is addressed at the
architecture and language level, but the implementation and the audit trail
generation control are specific. However the implementation will isolate
the system dependent parts in a few modules to allow ”portability with
minimum reprogramming”.

Chapter 3

The SunOS 4.1 Security
level C2

3.1 Installation

Under the security level C2, the SunOS 4.1 operating system provides audit-
ing of security-related events in the so-called audit trails. For a host (namely
a Sun workstation) to run in this security level, the Security option must
be selected when installing SunOS. The system kernel must be configured
with SYSAUDIT option and the machine must be rebooted.

3.2 Process audit state

Security-related events could be audited at different levels of granularity. For
less granular auditing, an event can be considered atomic and represented by
a single audit record while it could be decomposed into a sequence of events
(represented by several audit records) in a more granular level of auditing.
The process audit state for a given process determines the set of event types
to be audited for it. The system audit value characterizes which events
should be audited for an arbitrary process running on a host while a user
audit value for a given user specifies what events should be audited for an
arbitrary process initiated by this user on this host. As a result, the audit
state of an arbitrary process is completely determined by the system audit
value and the associated user audit value.

The system audit value is represented in the file audit_control while the
user audit value is represented in the file passwd.adjunct. The latter file is
an adjunct to the file /etc/passwd and contains encrypted passwords. Users
are denied access to /etc/passwd.adjunct in order to avoid insider password
attacks.

3.3 Naming conventions

Audit trails are stored in the directory /etc/security/audit/server/files
where server is the name of the audited host. This directory is automat-
ically created when the system is booted C2. Furthermore, some naming
conventions are used for audit files: when auditing starts, a file designated
dateg.not_terminated (where dateg is made up of the year, month, day, hour
minutes and seconds) is created. When this file is closed, its name is changed
to datey.date; (where date; is the date of the close operation), at which time,
auditing continues on a the file named date; .not_terminated and so on. The
audit deamon writes audit records to the current file unless it receives a sig-
nal forcing it to switch to an other file. When audit trails quota is exceeded,
the audit daemon (auditd) informs the security administrator of such event
and suspends auditing until some arrangements are made; at that time,
auditing can resume.

3.4 Command interface

The audit system interface audit(8) command can be used to

e signal audit daemon to close the current audit file and open a new
audit file in the current audit directory;

e signal audit daemon to read audit control file. The audit daemon
stores the information internally;

e signal audit daemon to disable auditing and die;

e change the process audit state of all processes owned by a user by
changing his user audit value and/or the system audit value. These
two values are contained in the file audit_control and passwd.adjunct
respectively.

See audit(8) man page and Administering C2 Security of the System and
Network Administration for more details.

10

Chapter 4

General Architecture

In order to understand clearly the architecture of our proposed solution, it
is worth considering two different levels.: the local level (or filtering) and
the global level. In the following, we outline each level in turn. The current
chapter only aims at giving an intuitive view of the solution. The exact
functionalities are detailed in chapter 5.

4.1 Filtering

The system is built on a network of Sun workstations. At the host level,
there are 4 main components (see Figure 4.1) :

| Auditing Mechanisml | Audit State Controller
Y
I NATIVE
B FILE OFF-LINE
— + =i Evaluator
Y
Format Adaptor g NADF
' FILE
ON-LINE
_’l Evaluator

Figure 4.1: Filtering

Audit State Controller: it is able to alter the granularity level used by
the auditing mechanism. This granularity can be controlled for all pro-
cesses running on this host or on a user basis by controlling the granu-
larity of processes belonging to that user. The Auditing Mechanism
is the original mechanism provided by the SunOS 4.1 security level C2

11

and there is no possibility to modify it. It runs independently of our
distributed system. The audit state controller is a separated process
of our distributed system which receives commands from the central
console (see 4.2) and sends messages to the auditing mechanism by
means of the (SunOS security level C2) audit(8) interface;

Format Adaptor: thisis the module responsible for translating the O.S.

generated audit trail to a canonical format. The Format Adaptor is
linked to the SunOS4.1 Auditing Mechanism in a pipeline fashion.
The native file is erased automatically after translation. NADF files
are kept until the auditor decides to erase them. Precise naming con-
ventions are used for NADF files. They allow to select files on a ”time
of generation” basis.
Keeping converted files instead of native files has several advantages:
the files are converted only once and can be reanalyzed several times
without requiring a new conversion. Moreover, in the context of an
heterogeneous network, they provide a standard and unique format;

Evaluator: performs analysis on the file (in canonical format) previously
generated by the Format Adaptor. Note that several evaluators can be
active at the same time. They perform different analysis on different
NADF files or possibly on the same file. Off-line and on-line analyses
are implemented in the same way. The only difference is that on-line
evaluation applies to the currently generated NADF file.

Audit records resulting from local analysis on slave machines are sent to the
central machine for further analysis.

4.2 Global Analysis

At the network level, the system consists of one central or master machine
and one or more slave machines. Slave machines analyze their local audit
trails and send the filtered audit records to the master machine which then
performs a more intelligent analysis. Two processes are run on the central
machine (see Figure 4.2):

Central Evaluator performs global analysis on a global audit trail con-
taining the audit records resulting from local analysis and sent by the
slave machines. The result of the central evaluation can be network
wide reports, alarms and statistics;

Console: is an interactive command interface used by the Security Ad-
ministrator to control the network monitoring system. It can be used
to affect the level of auditing granularity on host or user basis. It can
also be used to apply a given analysis on any host. More generally,
the console is used by the auditor to specify any change to the system
current behaviour. The set of available commands are described in
chapter 6.

12

FLITERING FILTERING

| Format Adaptorl | Format Adaptorl

Evaluator | Evaluator |

Y Y

AUDIT RECORDS

NETWORK

&

7

Y

CENTRAL
EVALUATOR

GLOBAL
ANALYSIS

Figure 4.2: Global Analysis

13

Chapter 5

Detailed Functionalities

5.1 Introduction

In chapter 2 we described high level functionalities and user-oriented re-
quirements. The present chapter deals in detail with the functionalities
supported by the proposed solution of a distributed on-line system for audit
trail analysis. It aims also to show how the following detailed functionalities
address the user-oriented requirements.

5.2 Initialization

We distinguish 2 kinds of initialization:

o installation of the security feature by rebooting under the security level
C2. Refer to Administering C2 Security of the System and Network
Admanastration for more details;

e Initialization of the analysis system for all hosts attached to the net-
work to be monitored.

At completion of the initialization procedure, the distributed system must
be ready for starting network analysis. This initialization consists of the
following steps:

o starting of the Format Adaptor module on each host so that all local
native audit trails are translated to NADF files. This translation must
be on-line;

e activation of an evaluator on each host so that it is ready for processing

local NADF files;

e activation of the interactive console process on one of the hosts. This
host is chosen by the Security Administrator and is considered to be
the master machine.

At this point, and using the interactive console, the Security Administrator is
able to launch any analysis he wants on any host. This is done by specifying a

14

host name and a rule module that implement this analysis. Chapter 6 lists
the command language used by the console. Note that the initialization
procedure automatically starts the Format Adaptors and evaluators on the
various hosts and then activates the Security Administrator console that
prompts the Security Administrator for commands.

5.3 Audit Trail Control

Audit trail control involves elimination of native audit trails, login control,
and management of audit trails. These points are described in the following:

e native audit trails must be systematically removed since they are re-
dundant with the corresponding NADF files. When the native file
reaches a given size (say 1IMB), it is removed and the format adaptor
resumes the translation of a new native file;

e naming conventions must be chosen so that audit trails are automat-
ically assigned standard names as they are generated by the format
adaptor. An NADF file name has the following general format:

crtime_cltime. NADF

where crtime is the date of the NADF file creation and cltime is the
date at which the file was closed. If an NADF file is still been gen-
erated by the Format Adaptor, cltime is set to the conventional value
not_terminated.

In order to allow easier management of NADF files, it is necessary to
specify a maximum size that these files may grow before a new NADF file is
created. Choosing a small value for this maximum size results in excessive
file switches and leads to the proliferation of small files on the host. Con-
versely, choosing a too large value yields too large and unmanageable files
especially for back-up and restore operations. The system uses a default
value for an NADF file (say 1MB). However, this value can be set up to a
different one at the initialization procedure if needed.

5.4 Login control

The login control requirement aims at tuning the auditing granularity level.
Under the SunOS 4.1, this is achieved by setting up the system audit value
and the user audit value for each user. It is desirable to allow a dynamic
login control which can change the audit state of current processes either
temporarily or permanently. Under SunOS level C2, there is a certain num-
ber of C library interface routines that can be used to read the audit control
file and alter process audit states.

15

5.5 NADF file management

The NADF file management is left to the Security Administrator who bears
the responsibility of choosing:

e a back-up/restore policy;

e secure the audit data contained in the NADF file by choosing the right
access control available in the O.S;

e organize the NADF file system so that the NADF files are well classi-
fied.

5.6 Distributed Analysis

The Security Administrator is able to apply local analysis on any host at-
tached to the audited network by specifying a rule module implementing
such an analysis and the host (Sun workstation) this analysis must be ap-
plied to. He can also activate a central analysis on the central machine. The
result of the central analysis could be reports, alarms or statistical measures
on network, host and user basis.

In order to choose one or more NADF file, the Security Administrator
must supply at the interactive console a time stamp or a time interval which
will completely determine the sequence of NADF files to be analyzed by the
local evaluators. If a time interval is specified, one or more NADF file is
selected for analysis. This analysis terminates when it encounters the first
record with a time stamp greater than the upper bound of this interval.
Otherwise, if a time stamp is given, the analysis is applied to the NADF file
whose name reflects the time interval the time stamp falls into. The analysis
is started from the first record whose time stamp is greater or equal to the
given time stamp. In this case, the analysis continues until the end of the
last generated NADF file and then becomes on-line. When no time stamp
is given, the analysis is performed on-line i.e, starting from the next record
generated by the audit subsystem and converted to NADF format. This is
the default option.

On the central machine side, the central evaluator analyzes only au-
dit records incoming from the other slave machines. As mentioned before,
there is (at least) two versions running on the central machine: the central
(or master) version which performs the network level analysis and a slave
version which performs a local analysis. These two versions differ only by
the origin of the NADF records stream that is analyzed. However, the mas-
ter evaluator makes no special distinction between audit records incoming
from the local evaluator and the other audit records sent by the remote
workstations.

16

The above functionalities clearly fulfill the high-level global and local
analysis presented in chapter 2. On-line (local or global) analysis is realized
by activating the desired rule module on the chosen host (slave or master).
Off-line analysis (global or local) analysis is also fulfilled by specifying a time
stamp or a time interval.

In addition, nothing precludes the possibility of running more than one
evaluator process on a single workstation. Moreover, this lends itself to the
very interesting possibility of having scalable network analysis by consider-
ing many different global analysis as local analysis that produces records for
a second level global analysis and so on. This feature can be implemented
without any special additional arrangements.

The availability requirement is also adequately addressed thanks to the
NADF files produced by the Format Adaptors. On the one hand, suppose
that a given slave workstation goes down. The rest of the slave machines
as well as the central machine are not affected and the analysis (local and
global) can continue. This analysis is not incomplete since no audit records
are lost as long as the slave machine is down. Moreover, when it is up again,
the format adaptor attached to it is restarted immediately to store audit
records in NADF files. This host can subsequently resume analysis from the
time just before the crash and the analysis is recovered.

On the other hand, if the master machine breaks down during analysis,
any other (up) host can be chosen to perform the global analysis. This is
achieved by stopping all the local analysis still running on the other hosts
and resuming them from the time just before the central machine crashed.
All the records sent by the slave machines to the central machine while the
latter was down are not lost since they are retrieved from the various local

NADF files.

It is interesting to note that node crash recovery is treated as an ex-
pected and normal behaviour rather than an exception condition. Node
crash recovery amounts to the application of another rule module (the same
as before the crash in fact) yet with an earlier starting time. The only ad-
ditional arrangement is rebooting the workstation under the security level
C2 and activating the initialization procedure.

17

5.7 Portability

Two levels of portability can be identified:

At the design level: the distributed nature of the monitoring/analysis
system makes it reusable for other network and machine architectures
since no assumption is made about the underlying communication pro-
tocol, host architecture and operating system;

At the code level: this derives from the universality feature of the ASAX
evaluator (hiding of the native format by using NADF files). In ad-
dition, the evaluator code proved highly portable to many machine
architectures (IBM PC, SINIX, BS2000 SunOS, Ultrix, and currently
under work VAX VMS).

18

Chapter 6

Command Interface

6.1 Introduction

This chapter presents the Security Administrator Console Interface. It de-
scribes the command interpreter for the command language by giving a
specification of each command. These commands implement the detailed
functionalities given in the previous chapter and support concepts such as
master and slave machine. A distributed evaluator is a set of evaluators
performing filtering and an evaluator (the master) responsible for the global
analysis. In order to be able to check the validity of certain commands, the
state! of a particular host is described by 3 variables:

isAlive = 1 if the host is alive; = 0 if the host is down;

isC2 = 1if the host is C2 security level; = 0 otherwise. This easily checked
by verifying the presence of the file /etc/security/passwd.adjunct;

haveFA = 1 if a Format Adaptor process is running on the host; = 0
otherwise.

For concise specifications, the variables corresponding to a host hostname
are referred to as:

e hostname.isAlive;
e hostname.isC2;
e hostname.haveFA.

In the following specifications, precondition corresponds to a set of conditions
to be fulfilled in order that the specified command operates consistently. In
case one or more of these conditions does not hold, an error message is
generated on the standard output of the console process to indicate the
kind of the error.

'In fact, additional items must be included in describing a host state such as the fact
that a host is attached to a network and that all requirements for communicating with
other monitored hosts are fulfilled. However, these issues are considered irrelevant as far
as the interactive command interface description is concerned.

19

6.2 Initialization

The Distributed Asax Console is invoked by the command console. It
aims at starting the command interpreter. The command language is fully
described by the specification of the commands found in the rest of this
chapter. .

6.2.1 Activation of Format Adaptor

purpose executes the Format Adaptor on a given host, a specified list of
hosts or all known hosts;

synopsis
fa -b
fa -h hostname

fa -f hostfile
precondition

e hostname.isAlive = 1;
e hostname.C2 = 1;

e hostname.haveFA = 0;
postcondition

e hostname.isAlive = 1;
e hostname.C2 = 1;
e hostname.haveFA = 1;

e a Format Adaptor process is started on the host hostname using
the file with the standard extension not_terminated as input file.

The command fa -b is equivalent to the sequence of commands:
fa hostname; ... fa hostname,,

where hostname, ..., hostname, is the sequence of the known hosts. Simi-
larly, the command fa -f hostfile is equivalent to the sequence of commands:

fa hostname; ... fa hostname,

where hostname, ..., hostname, is the sequence of host names contained in
the file hostfile.

This command is not actually implemented since the distributed FAs are
automatically started at boot time from /etc/rc.local.

20

6.3 Analysis Control

6.3.1 Distributed Evaluator Description File

All evaluator processes making up a distributed evaluator are assigned a
unique identification number. A distributed evaluator is fully described by
giving the following items:

o the set of slave machines and the master machine making up the dis-
tributed evaluator;

e the module name used by each slave machine to perform its own fil-
tering;

e the module name used by the master machine to perform the global
analysis;

e and optionally a time stamp or a time interval which determines the
NADF files involved in the distributed analysis.

Commands used to activate a distributed analysis are supplied in a text file
(Distributed Evaluator Description File) describing the distributed evaluator
to be activated. We choose the following BNF syntax for such files:

(description file) ::= (slave description) ;
(master description) .

(slave description) =
slaves (slave group) ; ... ; (slave group)

(master description) =
master (host name): (module name) [: (time spec)]

(slave group) ::= (hosts list) : (module name)
(hosts list) ::= (host name), ... , (host name)
(time spec) = (time stamp)

| (time interval)

(time stamp) =
(vear) (month) (day) (hour) (minutes) (seconds)

(time interval) = [(time stamp), (time stamp)]

(year), (month), (day) ::= 2 decimal digits

(hour), (minutes), (seconds) ::= 2 decimal digits
(host name) ::= identifier
(module name) ::= identifier

21

The system performs some checks on the given file before creating a new

distributed evaluator. These checks include valid hosts (alive, in the security
level C2 and having a Format Adaptor) and time specifications.
Figures 6.1, 6.2, 6.3 are examples of distributed analysis description files.
The first one is on-line, the second analyses all records generated since
19940215060000 while the third one analyses records with a time stamp
falling in the time interval [19940215060000, 19940216000000].

master patate: global;
slaves patate, salade, poireau, endive: filter.

Figure 6.1: Distributed Analysis Description File: Examplel.
master patate: global: 19940215060000;
slaves patate, salade, poireau, endive: filter.

Figure 6.2: Distributed Analysis Description File: Example2.

master patate: global: [19940215060000, 19940216000000] ;
slaves patate, salade, poireau, endive: filter.

Figure 6.3: Distributed Analysis Description File: Example3.

6.3.2 Distributed Evaluator execution

purpose receives a Distributed Evaluator Description file and initiates fil-
tering on slave machines and global analysis on the master machine
according to this description. The created distributed evaluator re-
ceives an identification number.

synopsis run descr_file
precondition

e descr_file is valid wrt the above syntax;

e for each host hostname listed in the file descr_file
we have:

e hostname.isAlive = 1;
e hostname.C2 = 1;

e hostname.haveFA = 1;
postcondition

o the state of the hosts is not changed;

o for each group of slaves, an evaluator process is initiated on each
host of the group with the same module name;

22

e an evaluator process is initiated on the master host with associ-
ated module name;

o if a time stamp is given, it is used to determine the NADF files
used for slaves as well as for the master machine. Otherwise, all
analyses are performed on-line.

6.3.3 Changing current filtering

purpose receives an evaluator instance number and replaces the corre-
sponding analysis by the one supplied as argument to the command.

synopsis rerun instanceNumber -m module_name
precondition

e module_name is a valid path name;

e instanceNumber is a valid evaluator instance number;

postcondition let cur be the current NADF record being analyzed at the
time this command is invoked.

e the current analysis performed by the evaluator identified by
instanceNumber is suspended and the completion rules are ex-
ecuted;

e the analysis is resumed from the NADF record cur using the
module name module_name.

6.3.4 Changing the time interval of the analysis

purpose receives a distributed evaluator instance number and a time spec-
ification and replaces the corresponding global analysis by the omne
supplied as argument to the command.

synopsis rerun instNum [-t low] | [-1 low high]
precondition instNum is a valid master evaluator instance number;
postcondition

e all evaluators making up the distributed evaluator whose master
evaluator is the one identified by instNum are stopped;

e with -t option, the analyses on slave machines are resumed from
the NADF record having the time stamp low or greater and using
the same module name as before this command is invoked;

e with -i option, the analyses on slave machines are resumed on the
NADF records falling in the time interval [low, high] and using
the same module name as before this command is invoked;

e on the master machine, the analysis is resumed from the NADF
record next received by the master evaluator and using the same
module name as before this command is invoked;

23

6.4 Login Control

6.4.1 Notations and definitions

The following definitions and notations are necessary for an effective use
and understanding of the logentl command described in the next sections.
Most of the notations and definitions are excerpts form [5] where auditing
installation and administration are fully described.

Event class An event class defines a set of occurrences to be audited. The
classes defined to date are listed in the following table:

short name | long name short description

dr data_read Read of data, open for reading. etc.
dw data_write write or modification of data

dc data_create creation or deletion of objects

da data_access_change | change in object access (modes, owner)
lo login_logout Login, Logout, creation by at

ad administrative Normal administrative operation

p0 manor_privilege Privileged operation

pl major_privilege Unusual privileged operation

Audit Flag An audit flag describes a particular audit class in an audit
state definition. An audit flag is an indication of what to do with an
event. The format is,

< option >< class >

where option is either +, - or not present, and class is any event class.
A plus means to audit successful events. A minus means to audit
failed events. The absence of either means to audit both successful
and failed events.

Audit Value Definition An audit value definition is a comma-separated
list of audit flags. Here is a sample definition:

+dr,-dw,lo,p0,p1

This means: audit successful data read, failed data writes, all new
login, and both kinds of privileged operations.

System Audit Value Definition Is the audit value definition contained
in the flags: line in the /etc/security/audit/audit _control file.
As said in chapter 3, it determines what event to be audited for all
users on the system. Here is a sample content of an audit_control file:

dir:/etc/security/audit/poireau/files
flags:+dr,-dw,lo,p0,pl
minfree:20

24

The dir: line identifies the directory where audit trails are generated.
The audit threshold line minfree: specifies the percentage of free
space that must be present in the file system containing the current
audit file. If free space falls below this threshold, the audit daemon
auditd(8) informs the auditing administrator to take appropriate ac-
tions. The flags: entry was described above. The following table
gives examples of what programs or system -or library- calls each of
the flags audits. A more complete list can be obtained from Appendix
E, Formats of Audit Records in [5].

flag | examples

dr | stat(2) statfs(2) access(2)

dw | ftruncate(2) kill(2) utimes(2)

de | link(2) mkdir(2) rmdir(2)

da | chmod(2) chown(2) fchmod(2)

lo login(1) rezd(8) rezecd(8)

ad | su(l) passwd(1) clri(8)

p0 | chroot(2) quota(l) quotaon(8)

pl | reboot(2) setdomainname(2) sethostname(2)

In addition, the special flag all (not listed in the above table) indicates
that all events should be audited; -all indicates that failed attempts
are to be audited, and +all indicates that successful attempts are to
be audited. The prefixes =, “- and “+ turn off flags specified earlier
in the audit value definition. They are typically useful for updating a
user audit value in /etc/security/passwd.adjunct.

User Audit Value the user audit value for a particular user is determined
by two audit value definitions. The first one corresponds to what event
classes must always be audited. The second one refer to what event
classes must never be audited. These two audit value definitions are
contained in the file /etc/security/passwd.adjunct. For each user,
an entry in this file is a colon-separated list of 7 fields the sixth and
seventh of which determines the user audit value for this particular
user. Here is a sample entry in this file:

amo : < encrypted password>:::-dw:-dr

These flags mean never to audit successful data reads and always audit
failed data writes.

Process Audit State as described in chapter 3, every process has an as-
sociated audit state that determines which events are to be audited
for that process. The audit state is set at login time. It is the result
of a combination of the system audit value and the user audit value
according to the following rules:

o If the system audit state defines auditing for an event and the
user audit state has nothing to say, the event will be audited;

25

o If the system audit state defines auditing for an event and the
user audit state says to ignore this event, the event will not be
audited;

o If the user audit state defines auditing for an event, it will be
audited regardless of the system audit state.

Since a process inherits its audit state from its parent process, all children
have the same audit state as the login shell. The process audit state can be
manipulated with the logentl command described below.

6.4.2 Temporary change of user audit state

purpose receives audit flags and modify temporarily process audit states
on a user basis.

synopsis logentl -t host user auditflags

precondition user is a valid user name, host is a valid host name and
auditflags are valid audit flags;

postcondition set the processes audit state of all processes running on
the host host and owned by the user user using auditflags. This done
following the rules:

o if the previous audit state defines auditing for an event and the
auditflags have nothing to say, the event will be audited;

o if the previous audit state defines auditing for an event and this
event is turned off (using the flag ~) in auditflags this event will
not be audited;

o if auditflags defines auditing for an event, this event will be au-

dited, regardless of the previous audit state.

A new login session for user on host reconstructs the process audit state
from the audit flags in the audit_control and passwd.adjunct files.

6.4.3 Permanent change of user audit state

purpose receives audit flags and modify permanently process audit states
on a user basis.

synopsis logentl -p host user always never

precondition user is a valid user name, host is a valid host name, always
and never are valid audit values;

postcondition The process audit state for processes owned by user on host
is reconstructed using the system audit value and the flags always and
never instead of those found in the passwd.adjunct file on the host host.
This is done following the combination rules described in 6.4.1. This
change in audit state process takes effect immediately (i.e, all current

26

processes of user are affected on host) and lasts for all subsequent
sessions of this user.
6.4.4 Host login control

purpose receives audit flags and modify process audit states on a host
basis.

synopsis logentl -h host auditflags
precondition host is a valid host name and auditflags are valid audit flags;

postcondition replaces the system audited value (as represented by the
flags: line of the audit_control file) by the audit flags auditflags on
the host host. All current user sessions are not affected by this change,
but all new login sessions will apply this new flags. .

6.4.5 Network login control

purpose receives audit flags and modify process audit states on a network
basis.

synopsis logentl -f hostfile

precondition hostfile is a text file where each line is composed of a host
name and (possibly enclosed in quotes) an audit value to be applied
for that host. These two items must be separated by at least one white
space;

postcondition The effect of this command is the same as successively ex-
ecuting the previous command with each pair of host name and audit
value contained in the file hostfile.

6.5 Miscellaneous Commands

6.5.1 Stopping an evaluator

purpose receives an evaluator instance number and stops the correspond-
ing analysis

synopsis kill instance Number
precondition instanceNumber is a valid evaluator instance number;
postcondition

e if instanceNumberis a slave evaluator instance number, this eval-
uator is terminated;

e if instanceNumber is a master evaluator instance number, this
evaluator and all slave evaluators associated with it are termi-
nated.

27

6.5.2 Reinitializing the system
purpose stop all current distributed evaluators
synopsis reset

precondition Let H be the set of known hosts. For each element hostname
in H we have:

e hostname.isAlive = 1;
e hostname.C2 = 1;

e hostname.haveFA = 1;

postcondition all evaluators running on any of the hosts in H are termi-
nated.
6.5.3 Current active evaluators

purpose show characteristics of current active evaluators on the various
hosts.

synopsis ps
precondition

postcondition For each active evaluator, the following characteristics are
shown on the standard output:

e instance number;

e instance number of the corresponding master evaluator. If this is
a master evaluator, it is considered to be its own master.

e name of the host on which it is running;
e module name used by the evaluator;

e starting and ending time of the distributed analysis. If a colon is
given as a time stamp, the analysis is on line.

6.5.4 Audit trail size control

purpose change default maximum size for native and NADF files.
synopsis dflsize host [-1 adf_size] [-0 nadf_size]
precondition host is a valid host name

postcondition with option -i (resp. -0) change the default maximum size
for native (resp. NADF) files to adf_size (resp. nadf_size) on host.

28

6.5.5 The configuration

purpose show the list of known hosts and their state.
synopsis conf
precondition

postcondition For each known host, the following characteristics are shown
on the standard output:

e host name;

e is it up or down;

e architecture name;

e internet address;

o is it C2 Security level;

e does it have a Format Adaptor.

This command is not yet implemented.

6.5.6 Help command

purpose gives a short description of commands.
synopsis help [command name]
precondition

postcondition If a command name is given, a short description of its pur-
pose as well as its syntax is given. If no argument is given, it prints a
short description of the purpose of all commands.

29

Chapter 7

The implementation

7.1 Introduction

This chapter examines the implementation issue of the detailed function-
alities addressed in chapter 5. This prototype version uses PVM (Parallel
Virtual Machine) as inter-process communication support. This choice is
justified for two reasons: the prototyping phase could not afford the cost of
implementing process communication built on IPC (interprocess communi-
cation) and sockets. On the other hand, PVM is architecture and network
independent and is also a freely distributed software.

The next section is a brief overview of PVM. Section 3 describes the pro-
cesses living in each host and their interaction. Section 4 specifies all the
messages exchanged between processes. Section 5 contains a description of
a typical session which illustrates the main ideas.

7.2 PVM

PVM is a software system that allows the utilization of an heterogeneous
network of parallel and serial computers as a single computation resource.
These computing elements may be interconnected by one or more networks,
which may themselves be different (e.g. Ethernet, the Internet, and fiber
optic networks). These computing resources are accessed by applications via
a library of standard interface routines. These routines allow the initiation
and termination of processes across the network as well as communication
and synchronization between processes.

Application programs are composed of components that are subtasks at a

moderately large level of granularity. During execution, multiple instances
of each component may be initiated. Refer to [4] for further informations.

7.3 Format Adaptors

On each host participating in the virtual machine, a single Format Adaptor
is running on-line. This is implemented by piping the Format Adaptor with

30

audit record generator of the SunOS 4.1 so that audit records are caught
on the fly and translated to NADF format and then written to the current
NADF file. The Format Adaptor reads an audit record from the current
native audit file. If the end of file is reached, it sleeps for 1 second and
then looks for possible subsequent audit records. Observation of the target
system shows that, in the average, an audit record is written to the native
file in about the same period of time.

When the current NADF file exceeds the size limit, the following opera-
tions are performed:

e suppose date0 is the date at which this NADF file was open. Then the
current NADF file has the standard name date0_not_terminated. NADF.
Then this file is closed and its name is changed to date0_datel. NADF
where datel is the date of the close operation;

e a new current NADF file named datel not_terminated. NADF is cre-
ated;

e the Format Adaptor signals audit deamon to close the current audit
file and to open a new audit file;

e the Format Adaptor erases the old native file and then resumes the
translation process using the newly created files.

Native and NADF files reside under the same directory which is
/etc/security /audit/server/files

where server is the name of the workstation the Format Adaptor is running
on. Format Adaptors are not part of the PVM system so that they are not
affected when the virtual machine is lost for some reason. This is mandatory
in order to ensure the Distributed system availability requirement.

7.4 The Parallel Virtual Machine Configuration

Using PVM it is possible to view the network of audited Sun workstations
as a single computing resource that may be analyzed using the ASAX eval-
uvators. Each workstation runs SunOS 4.1 under the security level C2. The
virtual machine consists of a certain number of concurrent ASAX evaluators
capable of performing local analysis and exchanging messages. A detailed
description of these processes follows.

7.4.1 The audit state controller processes

The audit state controller process is responsible for maintaining the process
audit state of all processes running on the same host. It is always blocked
waiting for control messages to arrive. A control message that can be re-
ceived by such a process contains the audit flags representing the new audit

31

state to be applied. The audit state controller process put the host in the
state represented in the control message and sleeps again waiting for further
control messages.

It uses the C library which offer a relatively complete set of routines to
control the audit state. It also uses the PVM system library routines for
receiving the above control messages. There is also one such a process on
each host of the PVM system.

7.4.2 Evaluator processes

An evaluator process is responsible for performing audit trail analysis proper.
At a given time, it has a memory area containing the internal code of rule
module to be applied and a set of active rules. The effect of the evaluator
process is to apply the set of all active rules to the NADF record previously
stored (by some body) in its receive buffer and then to wait for the next re-
ceived audit record. The evaluator process can also receive a module name.
In this case, it first executes all rules active at completion, release all mem-
ory areas for rule module internal code and active rules then it compiles this
rule module yielding internal code and a list of init actions. It next executes
init actions and waits for the next received record. If one is received, the
current active rules are applied to it and so on. Note that many evaluator
processes can coexist in the same host.

Evaluator processes use a predefined C routine send_current to send the
current record contained in the receive buffer to the (unique) central evalu-
ator process.

7.4.3 The supplier processes

On each host taking part in the PVM system, there is one or more supplier
processes running on that host. A supplier process reads audit records from
one of the NADF files stored in the local host and send them in sequence to
an evaluator process. The receiving evaluator could be the local evaluator or
any other one belonging to the PVM system. It continues sending records in
sequence unless it is interrupted. It can subsequently receive an other signal
in order to read another NADF file and send its records to a perhaps different
evaluator. The supplier process uses PVM library routines for sending audit
records and receiving control messages.

7.4.4 The console process

In addition to the above component processes, a console process can be
activated on a specified machine in order to offer an interactive Security
Administrator interface to the PVM system. This process implements the
set of commands described in the previous chapter. It parses the commands

32

entered by the Security Administrator, constructs the corresponding mes-
sage and then send it to the specified instance.

7.5 Specification of the exchanged messages

In the following, the set of all exchanged messages are described by specifying
the sending and receiving processes, the content of the message and the
actions performed by the receiver upon reception. All messages are tagged
so that a process can distinguish easily the format of the rest of the message.

Sending of an NADF record: au rec_msg this message may originate
from an evaluator or a supplier process and can only be received by an
evaluator process. It contains the audit record exchanged. When an
evaluator process receives such a message, it applies the set of active
rules to it and then blocks waiting for a further record;

Modification of a set of analysis rules: mod _name_msg this message
may originate from a console process or an evaluator process and can
only be received by an evaluator process. It contains a string repre-
senting the path name of a rule module. When an evaluator process
receives such a message, it returns to the sender an error code if the
path name is incorrect, it otherwise compiles the named rule module
and restarts analysis using this module and starting from the nezt
received audit record;

Request to send an NADF record: supply_msg this message may orig-
inate from a console process or an evaluator process and can only be
received by a supplier process. It contains optionally a time stamp or
a time specification. Upon reception of such a message, a supplier pro-
cess starts sending audit records to its associated evaluator process. If
the message does not contain a time specification, the supplier process
starts sending on-line. Otherwise, the specified time stamp or time
interval is used to determine the first NADF record that must be sent.
All audit records are appended a new audit data host_name specify-
ing the sending host name. This continues until the next idle_msg or
supply_msg message is received;

Request to stop sending NADF records: idle_msg this message may
originate from a console process or an evaluator process and can only
be received by a supplier process. It only contains its message tag.
When receiving such a message, a supplier process stops reading and
sending of audit records from its local audit trail until the next (if any)
supply_msg message is received;

Modification of the granularity level: au_state_msg this message may
originate from a console process or an evaluator process and is only
received by an audit state process. It contains a string representing
a system or a user audit state. When an audit state process receives

33

such a message, it changes the audit state to the one specified by the
message.

7.6 A typical session

7.6.1 Initialization

Suppose that all participating hosts are C2 Security level. The Security
Administrator can specify a list of hosts he wants to monitor by editing a text
file (ex. hostfile) containing this list. He invokes the Security Administrator
Console using the command dasax. He can start a Format Adaptor process
on each of these hosts using the command fa -f hostfile. This causes an
NADF file to be generated on each of the hosts and the analysis can be
started.

7.6.2 Distributed Analysis

The Security Administrator prepares a text file (ex. descr_file) describing
the distributed analysis he wants to launch from his console. Figure 7.1
shows a sample file representing a distributed analysis description. The dis-

master patate: global;
slaves patate, salade, poireau, endive: filter.

Figure 7.1: Distributed Analysis Description File.

tributed (on-line) analysis is triggered with the command run descr_file.
At this point he can expect report messages resulting from this analysis.
Suppose that a message indicates a suspicious behaviour on a given host,
the Security Administrator can first change the audit state of that user to a
more granular one. This is done by informing the corresponding audit state
instance using the command logentl and supplying the user name and the
audit flags as arguments. He can subsequently activate an appropriate anal-
ysis on the master host (for example a record show to screen up the user
actions). This is done using the command rerun instance Number show.asa
where instanceNumber is the instance number of the master evaluator.

Suppose that the master host (patate) suddenly goes down at 4pm and
is up again at 16:17, he can first reactivate the Format Adaptor on patate
(fa -h patate) and then the analysis is resumed by adding a time stamp to
the file descr_file as shown in Figure 7.2.

master patate: show: 19931202155900;
slaves patate, salade, poireau, endive: filter.

Figure 7.2: Distributed Analysis Description File.

The analysis is automatically recovered and the monitoring can continue.
Similarly he can trigger other analysis on certain group of hosts and he can

34

use the command ps to see what analysis are currently running.

7.6.3 Termination

A distributed analysis can be stopped by sending a signal to the correspond-
ing master evaluator. This is done by the command kill instance Number
where instanceNumber is the instance number of the master evaluator. All
slave evaluators depending on this master evaluator are stopped automati-
cally. The only thing to do in order to terminate analysis on all hosts is to
invoke the command reset which keeps only Format Adaptor processes and
put the system in the state just after initialization.

35

Bibliography

[1]

N.Habra, B. Le Charlier, A. Mounji. Preliminary report on Advanced
Security Audit Trail Analysis on Uniz 15.12.91. 34 pages

N.Habra, B. Le Charlier, A. Mounji. Advanced Security Audit Trail
Analysis on Uniz. Implementation design of the NADF FEvaluator Mar
93. 62 pages

N.Habra, B. Le Charlier, I. Mathieu, A. Mounji. ASAX: Software Ar-
chitecture and Rule-based Language for Universal Audit Trail Analysis.

Proceedings of the Second European Symposium on Research in Com-
puter Security (ESORICS). Toulouse, France, November 1992.

A. Beguelin, J. Dongarra, A. Geist, R. Manchek, V. Sunderam. A User
Guide to PVM (Parallel Virtual Machine). ORNL/TM-11826. July,
1991. 13 pages

Sun Microsystems. System and Network Administration Part Number
800-3850-10 Revision A of 27 March, 1990.

36

