NOTRE-DAME DE LA PAIX NAMUR, BELGIUM

Institut d’Informatique

Rue Grandgagnage, 21
B-5000 Namur
BELGIUM

Distributed Audit Trail Analysis

Abdelaziz Mounji, Baudouin Le Charlier,

Denis Zampunieris, Naji Habra

BP—94—007 November1994J

Phone: +32 81 72.49.66 Fax: +32 81 72.49.67 E-mail: cleroy@info.fundp.ac.be

Distributed Audit Trail Analysis*

Abdelaziz Mounji

Baudouin Le Charlier

Denis Zampuniéris

Naji Habra,

Institut d’Informatique,
FUNDP,
rue Grangagnage 21,
B-5000 Namur Belgium
E-mail: {amo, ble, dza, nha}@info.fundp.ac.be

15 November 1994

Abstract

An implemented system for on-line analysis of mul-

tiple distributed data streams is presented. The system
is conceptually universal since it does not rely on any
particular platform feature and uses format adaptors
to translate data streams into its own standard format.
The system is as powerful as possible (from a theoret-
ical standpoint) but still efficient enough for on-line
analysis thanks to its novel rule-based language (RUS-
SEL) which is specifically designed for efficient pro-
cessing of sequential unstructured date streams.
In this paper, the generic concepts are applied to secu-
rity audit trail anaelysis. The resulting system provides
powerful network security monitoring and sophisti-
cated tools for intrusion/anomaly detection. The rule-
based and command languages are described as well as
the distributed architecture and the implementation.
Performance measurements are reported, showing the
effectiveness of the approach.

1 Introduction

Auditing distributed environments is useful to un-
derstand the behavior of the software components. For
instance this is useful for testing new applications: one
execution trace can be analyzed to check the correct-
ness wrt the requirements. In the area of real-time
process control, critical hardware or software compo-
nents are supervised by generating log data describing
their behavior. The collection and analysis of these log
files has often to be done real-time, in parallel with
the audited process. This analysis can be conducted
for various purposes such as investigation, recovery
and prevention, production optimization, alarm and
statistics reporting. In addition, correlation of results
obtained at different nodes can be useful to achieve a
more comprehensive view of the whole system.

Computer and network security is currently an ac-
tive research area. The rising complexity of today

*To appear in the ISOC’ 95 Symposium on Network and
Distributed System Security.

networks leads to more elaborate patterns of attacks.
Previous works for stand-alone computer security have
established basic concepts and models [3, 4, 5, 7, 8] and
described a few operational systems [1, 6, 9, 12, 18].
However, distributed analysis of audit trails for net-
work security is needed because of the two following
facts. First, the correlation of user actions taking place
at different hosts could reveal a malicious behavior
while the same actions may seem legitimate if consid-
ered at a single host level. Second, the monitoring of
network security can potentially provide a more coher-
ent and flexible enforcement of a given security policy.
For instance, the security officer can set up a common
security policy for all monitored hosts but choose to
tighten the security measures for critical hosts such as
firewalls [2] or for suspicious users.

A software architecture and a rule-based language
for universal audit trail analysis were developed in the
first phase of the ASAX project [10, 11, 12]. The dis-
tributed system presented here uses this rule-based
language to filter audit data at each monitored host
and to analyze filtered data gathered at a central host.
The analysis language is exactly the same at both local
and central levels. This provides a tool for a flexible
and a gradual granularity control at different levels:
users, hosts, subnets, domains, etc.

The rest of this paper is organized as follows. Sec-
tion 2 briefly describes the system for single audit trail
analysis and its rule-based language. Section 3 details
the functionalities offered by the distributed system.
Section 4 presents the distributed architecture. Sec-
tion 5 describes the command interface of the security
officer. In section 6, the implementation of the main
components is outlined. Performance measurements
are reported in section 7. Finally, section 8 contains
the conclusion and indicates possible improvements of
this work.

2 Single Audit Trail Analysis

In this section, the main features of the stand alone
version of ASAX for single audit trail analysis are ex-
plained. However, we only emphasize interesting func-
tionalities. The reader is referred to [12] for a more de-

tailed description of these functionalities!. A compre-
hensive description of ASAX is presented in [10, 11].

2.1 A motivating example

The use of the RUSSEL language for single audit
trail analysis is better introduced by a typical exam-
ple: detecting repeated failed login attempts from a
single user during a specified time period. This ex-
ample uses the SunOS 4.1 auditing mechanism. Na-
tive audit trails are translated into a standard format
(called NADF). The translation can be applied on-line
or off-line. Hence, the description below is based on
the NADF format of the audit trail records.

Assuming that login events are pre-selected for au-
diting, every time a user attempts to log in, an audit
record describing this event is written into the audit
trail. Audit record fields (or audit data) found in a
failed login record include the time stamp (au_time),
the user id (eu_tezt_3) and a field indicating success
or failure of the attempted login (au_tezt_4). Notice
that audit records representing login events are not
necessarily consecutive since other audit records can
be inserted for other events generated by other users
of the system. In the example (see Figure 1),

RUSSEL keywords are noted in bold face charac-
ters, words in italic style identify fields in the current
audit record, while rule parameters are noted in ro-
man style. Two rules are needed to detect a sequence
of failed logins. The first one (failed_login) detects the
first occurrence of a login failure. If this record is
found, this rule triggers off the rule count_rule which
remains active until it detects count_down failed lo-
gins among the subsequent records or until its expi-
ration time arrives. The parameter target_uid of rule
count_rule is needed to count only failed logins that are
issued by the same user (target_uid). If the current au-
dit record does not correspond to a login attempt from
the same user, count_rule simply retriggers itself for
the next record otherwise. If the user id in the current
record is the same as its argument and the time stamp
is lower than the expiration argument, it retriggers it-
self for the next record after decrementing the count
down argument. If the latter drops to zero, count_rule
writes an alarm message to the screen indicating that
a given user has performed maztimes unsuccessful lo-
gins within the period of time duration seconds. In
addition, count_rule retriggers the failed login rule in
order to search for other similar patterns in the rest
of the audit trail.

In order to initialize the analysis process, the special
rule init_action makes the failed_login rule active for
the first record and also makes the print_results rule
active at completion of the analysis. The latter rule is

! Notice however that [12] is a preliminary description of a
system under implementation. The examples in the present
paper have been actually run on the implemented system

global v: integer;
rule failed login(max times, duration: integer);

if event = ’login logout’
and au_text 4 = ’incorrect password’
--> trigger off for_next
count_rule(au_tezrt_ 3,
strTolnt (au_time)+duration,
max_times-1)

fi;

rule count rule(targetuid: string;
expiration,
count down: integer);

if auid = suspect_auid
and event = ’login logout’
and au_tert 4 = ’incorrect password’

and au_text 3 = target.uid
and strToIlnt(au_time) < expiration
--> if count down > 1
--> trigger off for_next
count rule(target uid,
expiration,
count_down-1);
count down = 1
--> begin
v :=v + 1;
println(gettime (au_time) ,
’: 3 FAILED LOGINS ON °’,
target_uid);
trigger off for_next
failed login(3,120)
end
fi;
strToIlnt (au_time) > expiration
--> trigger off for next failed login(3,120);
true
--> trigger off for_next
count rule(target nid,
expiration,
count_down)

fi;

rule print results;
begin

println(v, ’ sequence(s) of bad logins found’)
end;

init_action;
begin
v := 0;
trigger off for next failed login(3, 120);
trigger off at_completion print results
end.

Figure 1: RUSSEL module for failed login detection on
Sun0S4.1

used to print results accumulated during the analysis
such as the total number of detected sequences.

2.2 Salient features of ASAX
2.2.1 Universality

This feature means that ASAX is theoretically able
to analyze arbitrary sequential files. This is achieved
by translating the native file into a format called
NADF (Normalized Audit Date Format). According
to this format, a native record is abstracted to a se-
quence of audit data fields. All data fields are consid-
ered as untyped strings of bytes. Therefore, an audit
data in the native record is converted to three fields?:

an identifier (a 2-bytes integer) identifies the data
field among all possible data fields;

a length (a 2-bytes integer;)
a value i.e., a string of bytes.

A native record is encoded in NADF format as the
sequence of encodings of each data field with a leading
4-bytes integer representing the length of the whole
NADF record. Note that the NADF format is similar
to the TLV (Tag, Length, Value) encoding used for the
BER (Basic Encoding Rules) which is used as part of
the Abstract Syntaz Notaiion ASN.1 [14]. However,
the TLV encoding is more complex since it supports
typed primitive data values such as boolean, real, etc
as well as constructor data types. Nevertheless, any
data value can be represented as a string of bytes in
principle. As a result, the flexibility of the NADF
format allows a straightforward translation of native
files and a fast processing of NADF records by the
universal evaluator.

2.2.2 The RUSSEL language

RUSSEL (RUle-baSed Sequence Evaluation Lan-
guage) is a novel language specifically tailored to the
problem of searching arbitrary patterns of records in
sequential files. The built-in mechanism of rule trig-
gering allows a single pass analysis of the sequential
file from left to right.

The language provides common control structures
such as conditional, repetitive, and compound actions.
Primitive actions include assignment, external routine
call and rule triggering. A RUSSEL program simply
consists of a set of rule declarations which are made
of a rule name, a list of formal parameters and lo-
cal variables and an action part. RUSSEL also sup-
ports modules sharing global variables and exported
rule declarations.

The operational semantics of RUSSEL can be sketched
as follows:

e records are analyzed sequentially. The analysis of
the current record consists in executing all active
rules. The execution of an active rule may trigger
off new rules, raise alarms, write report messages
or alter global variables, etc;

2In fact, native files can be translated to NADF format in
many different ways depending on the problem at hand. The
standard method proposed here was however sufficient for the
applications we have encountered so far.

e rule triggering is a special mechanism by which a
rule is made active either for the current or the
next record. In general, a rule is active for the
current record because a prefix of a particular se-
quence of audit records has been detected. (The
rest of this sequence has still to be possibly found
in the rest of the file.) Actual parameters in the
set of active rules represent knowledge about the
already found subsequence and is useful for se-
lecting further records in the sequence;

e when all the rules active for the current record
have been executed, the next record is read and
the rules triggered for it in the previous step are
executed in turn;

e toinitialize the process, a set of so-called initrules
are made active for the first record.

User-defined and built-in C-routines can be called
from a rule body. A simple and clearly specified in-
terface with C allows to extend the RUSSEL language
with any desirable feature. This includes simulation
of complex data structures, sending an alarm message
to the security officer, locking an account in case of
outright security violation, etc.

2.2.3 Efficiency

Is a critical requirement for the analysis of large
sequential files, especially when on-line monitoring is
involved. RUSSEL is efficient thanks to its opera-
tional semantics which exhibits a bottom-up approach
in constructing the searched record patterns. Fur-
thermore, optimization issues are carefully addressed
in the implementation of RUSSEL: for instance, the
internal code generated by the compiler ensures a
fast evaluation of boolean expressions and the cur-
rent record is pre-processed before evaluation by all
the current rules, in order to provide a direct access
to its fields.

3 Administrator Minded

Functionalities

3.1 Introduction

The previous sections showed that ASAX is a uni-
versal, powerful and efficient tool for analyzing sequen-
tial files, in general, and audit trails, in particular.
In this section, the functionalities of a distributed ver-
sion of ASAX are presented in the context of dis-
tributed security monitoring of networked computers.
The implemented system applies to a network of SUN
workstations using the C2 security feature and uses
PVM (Parallel Virtual Machine) [15] as message pass-
ing system. However, the architecture design makes
no assumption about the communication protocol, the
auditing mechanism or the operating system of the in-
volved hosts.

3.2 Single point administration

In a network of computers and in the context of se-
curity auditing, it is desirable that the security officer
has control of the whole system from a single machine.
The distributed on-line system must be manageable
from a central point where a global knowledge about
the status of the monitoring system can be maintained

and administered in a flexible fashion. Management of
the monitoring system involves various tasks such as
activation of distributed evaluators and auditing gran-
ularity control. Therefore, monitored nodes are, in a
sense, considered as local objects on which adminis-
tration tasks can be applied in a transparent way as
if they were local to the central machine.

3.3 The local and global analyses

Local analysis requirement corresponds to the abil-
ity of analyzing any audit trail associated to a moni-
tored host. This is achieved by applying an appropri-
ate RUSSEL module to a given audit trail of a given
host. The analysis is considered local in the sense that
analyzed audit data represents events taking place at
the involved host. No assumption is otherwise made
about which host is actually performing the analy-
sis. Local analysis is also called filtering since at the
network level, it serves as a pre-selection of relevant
events. In fact, pre-selected events may correspond to
any complex patterns of subject behaviors.

Audit records filtered at various nodes are com-
municated to a central host where a global (network
level) analysis takes place. In its most interesting use,
global analysis aims at detecting patterns related to
global network security status rather than host secu-
rity status. In this regard, global analysis encompasses
a higher level and a more elaborate notion of security
event.

Concerted local and global analysis approach lends
itself naturally to a hierarchical model of security
events in which components of a pattern are detected
at a lower level and a more aggregate pattern is de-
rived at the second higher level and so on. Note that
an aggregate pattern could exhibit a malicious secu-
rity event while corresponding sub-patterns do not at
all. For instance, a login failure by a user is not an
outright security violation but the fact that this same
user is trying to connect to an abnormally high num-
ber of hosts may indicate that a network attack is
under course. Organizations often use networks of in-
terconnected Lans corresponding to departments. The
hierarchical model can be mapped on the organization
hierarchy by applying a distributed analysis on each of
the Lans and an organization-wide analysis carried out
on audit data filtered at each Lan. Thus, concerted
filtering and global analysis can lead to the detection
of very complex patterns.

In the following, the node performing the global
analysis is called the central or master machine while
filtering takes place at slave machines. Correspond-
ingly, we will also refer to master and slave evaluators.
A distributed evaluator is a master evaluator together
with its associated slave evaluators.

3.4 Availability

This requirement means that a distributed evalua-
tor must survive any of its slave evaluators failure and
must easily be recovered in case of a failure of the mas-
ter evaluator. The availability of a distributed evalu-
ator ensures that if for some reasons a given slave is
lost (broken connection, fatal error in the slave code
itself, node crash, etc), the distributed analysis can
still be carried on the rest of monitored hosts. On

the other hand, if the master evaluator fails, the dis-
tributed analysis can be resumed from an other avail-
able host. In all cases, and especially for on-line anal-
ysis, all generated audit records must remain available
for analysis (no records are lost). Distributed analy-
sis recovery must also be done in a flexible way and
require a minimum effort.

3.5 Logging control

This functionality involves control of the granular-
ity of security events at the network, host and user
levels. Typically, the security officer must be able to
set up a standard granularity for most audited hosts
and to require a finer granularity for a particular user
or all users of a particular host. According to the sin-
gle point administration requirement, this also means
that logging control is carried out from the central
machine without need for multiple logging to remote
hosts.

4 Architecture

The architecture of the distributed system is ad-
dressed at two different levels. At the host level, a
number of processes cooperate to achieve logging con-
trol and filtering. The global architecture supports the
network level analysis. This section aims at giving an
intuitive view of the overall distributed system.

4.1 Host level

Processes in the local architecture are involved in
the generation of audit data, control of its granularity
level, conversion of audit data to NADF format, anal-
ysis of audit records and finally transmission of filtered
sequences to the central evaluator. At the master host,
a network level analysis subsequently takes place on
the stream of records resulting from merging records
incoming from slave machines. Both global and local
analyses are performed by a slightly modified version
of the analysis tool outlined in the previous section.
4.1.1 Audit trail generation

This mechanism is operating system dependent. It
generates audit records representing events such as op-
erations on files, administrative actions, etc. It is as-
sumed that all monitored hosts provide auditing ca-
pabilities and mechanism for controlling granularity
level. The process generating audit records is called
the audit daemon (euditd for short).

4.1.2 Login controller

This process communicates with euditd in order to
alter the granularity. It is able to change the set of pre-
selected events. This can be done on a user, host and
network basis. Furthermore, we distinguish between
a temporary change which applies to the current lo-
gin session and a permanent change affecting also all
subsequent sessions.
4.1.3 Format adaptor

This process translates audit trails generated by au-
ditd to the NADF format. Native files can be erased
after being converted since they are semantically re-
dundant with NADF files. Keeping converted files in-
stead of native files has several advantages: the files
are converted only once and can be reanalyzed several
times without requiring a new conversion. Moreover,

FILTERING FILTERING

| Format Adaptor |

Jr_l—&

| Format Adaptor |

'!'_l—'!'

NADFRH . . . NADF "7 7l| NADF R NADF
FILE FILE FILE FILE
Evaluator Evaluator
i \ 4

Audit
Records
NETWORK
3
4
. CENTRAL
ANALYSIS EVALUATOR

Figure 2: System Architecture

in the context of an heterogeneous network, they pro-
vide a standard and unique format.

4.1.4 Local evaluator

It analyzes the NADF files generated by the format
adaptor. Note that several instances of the evaluator
can be active at the same time to perform analyses on
different NADF files or possibly on the same file. Off-
line and on-line analyses are implemented in the same
way. The only difference is that in on-line mode, the
evaluator analyzes the currently generated file. These
processes will be further described in section 6.
Audit records filtered by slave evaluators on the var-
ious monitored slave machines are sent to the central
machine for global analysis.

4.2 Network level

At the network level, the system consists of one or
more slave machines running the processes previously
described and a master machine running the master
evaluator (see Figure 2).

The latter performs global analysis on the audit
record stream resulting from local filtering. The re-
sult of the central analysis can be network security
status reports, alarms and statistics, etc. In addition,
a console process is run on the master machine. It
provides an interactive command interface to the dis-
tributed monitoring system. This command interface
is briefly described in the next section.

5 The Command Language of
the Distributed System

5.1 Preliminaries

This section presents the command interface used
by the security officer. In the following, evaluator in-
stances are identified by their PVM instance numbers
which are similar to Process Ids in UNIX systems. Au-
ditable events are determined by a comma separated
list of audit flags which are borrowed from the SunOS
4.1 C2 security notation for event classes. (The SunOS
4.1 C2 security features are described in detail in [16].)
These audit flags are listed in Table 1.

flags | short description example
dr data read stat(2)
dw | data write utimes(2)
de object create/delete mkdir(2)
da | object access change chmod(2)
lo Login, Logout login(1)
ad Administrative operation | su(1)

p0 Privileged operation quota(1)
pl Unusual operation reboot(2)

Table 1: SunOS C2 security audit flags

Audit flags can optionally be preceded by -+
(resp. -) to select only successful (resp. failed)
events. For instance, the list of audit flags
+dr,-dw,lo,p0,p1 specifies that successful data read,
failed data writes, all new logins and all privi-
leged operations are selected. Under SunOS, the
file /etc/security/audit/audit_control contains
(among other things) a list of audit flags determin-
ing the set of auditable events for all users of the sys-
tem. /etc/security/passwd.adjunct is called the
shadow file and contains a line per user which indicates
events to be audited for this particular user. The ac-
tual set of auditable events for a given user is derived
from the system audit value and the user audit value
according to some priority rules. Finally, audit trails
in NADF format respect naming conventions based on
creation and closing times. This allows to easily se-
lect files generated during a given time interval. For
instance, the file named time;.time; .NADF contains
events generated by euditd in the time interval [time;,
time;]. Supported commands fall into two categories:

5.2 Analysis control commands

The commands for distributed analysis allow to
start, stop and modify a distributed analysis. To
start a new distributed analysis on a set of monitored
hosts, one first prepares a text file specifying the in-
volved hosts, the RUSSEL modules to be applied on
the hosts, and optionally an auditing period (a time
interval which is the same for each node). By default,
analysis is performed on-line. This file 1s given as an
argument to the run command.

Using the rerun command, the security officer can
change attributes of an active distributed evaluator
either by changing rule modules on some hosts (master

or slave) or by changing the time interval used by the
whole distributed evaluator. The rerun command is
parameterized by an evaluator instance number and a
rule module or a time interval.

The kill command stops an evaluator identified by
its instance number. ps reports the attributes of all
active distributed evaluators. Attributes of an evalu-
ator include instance number, instance number of the
corresponding master evaluator, host name, rule mod-
ule and time interval.

It is possible to activate several distributed evalu-
ators which run independently of each others. The
command reset stops all current distributed evalua-
tors.

5.3 Logging control commands

The command logentl implements the logging con-
trol functionality (see 3.5). It allows to alter the gran-
ularity level for any monitored user or host. The se-
curity officer is so able to change the auditable events
for a particular user on a particular host according to
the list of audit flags supplied to logcentl. With the
option -t the change takes effect immediately, how-
ever, the settings are in effect only during the current
login session. With the option -p, the change takes
effect the next time the user logs in and for every sub-
sequent login session until this command is invoked
again. On the host basis, the security officer can alter
the system audit value of a specified host by supplying
a host name and a list of audit flags.

Although the logentl command relies closely on the
SunOS formalism for specifying auditable events and
altering the set of events currently audited, it could be
possible to develop a system-independent event clas-
sification as well as a portable auditing configuration.
Nevertheless, as the SunOS 4.1 uses an event classifi-
cation and auditing configuration that are similar to
most O.S, the current solution is sufficient for a pro-
totype system.

5.4 Example

In this section, the failed login detection example
introduced in section 2.1 is reconsidered in the con-
text of a distributed analysis. The purpose is still to
detect repeated failed login attempts, but now failed
login events can occur at any of the monitored hosts
(here we consider two hosts viz. poireasu and epinard).
According to the filtering/global analysis principle, a
slave evaluator is activated on each hosts (poirear and
epinard) and a master evaluator is initiated on poireau.
Each slave evaluator only filters failed login records
from its local host and sends it to the master eval-
uator which then analyzes the filtered record stream
to detect the sequence of failed logins. As indicated
in the evaluator description file shown in Figure 3,
filtering is implemented in RUSSEL by the rule mod-
ule badlogin.ase while the sequence of failed logins is
detected using the rule module nbbadlogin.asa. This
file also contains the time interval to which analysis is
applied. Figures 4 and 5 depict the content of badlo-
gin.asa and nbbadlogin.asa respectively.

Notice that the master evaluator does not check
that records correspond to login failure events since

master poireau:
nbbadlogin: [19940531170431,19940601173829] ;
slaves poireau, epinard: badlogin.

Figure 3: Distributed Analysis Description File

rule failed login;

begin
if event = ’login logout’
and au_tezxt 4 = ’incorrect password’
—-—> send_current
fi;
trigger off for next failed login
end;
init_action;
begin
trigger off for next failed login
end.

Figure 4: Slave evaluator module: badlogin.asa

this is already done by the associated slave evalua-
tors. Figure 6 shows how the distributed evaluator is
activated using the interactive console window.

The lower window contains the distributed analy-
sis interactive console. The security officer has just
invoked the run command with the name of the eval-
uator description file as argument. The upper window
is the Unix console where outputs from the master
evaluator are printed.

6 Overview of the Implementation

The implementation of the rule-based language
RUSSEL is out of the scope of this paper and is fully
explained in [10, 11]. We only consider the implemen-
tation of the distributed aspects. However, it is worth
noticing that very few modifications were necessary to
handle record streams instead of ordinary audit trails.

In addition to the auditd process, the following con-
current processes are attached to each monitored host
(see Figure 7):

6.1 Distributed format adaptor (FA)

The distributed format adaptor fadapter translates
SunOS audit files into NADF format. It also ob-
serves date and time based naming conventions for
NADF files: a NADF file consisting of the chronolog-
ical sequence of audit records Ro, ..., R,_1 is named
timeg.time, . NADF where timeg is the time and date
found in Rg and time, is the time stamp in R,,_1 plus
one second. Both timey and time, are 4 decimal dig-
its year, and 2 decimal digits for each of the month,
day, minute, and second. The current NADF file has a
name of the form timeg.not_terminated. NADF where
timeg is the time stamp of its first record.

The current native and NADF files are limited to a
maximum size which is recorded in the file nadf data.
The process sizer sends a signal to auditd (resp.
fadapter) if the maximum size for the current native

@

cmdtool (CONSOLE) - /binfcsh

begin parsing description file ...
begin parsing description file ...
end of parsing description file ...
end of parsing description file ...

pymd@epinard: begin parsing description file ...
pymd@epinard: end of parsing description file ...
Jfetc/securitysaudit/pyn/SUN4/nbbadlogin. asa
Jetc/securitysaudit/pyn/SUN4/badlogin. asa

asay

asay !
Processing audit trail ...
Processing audit trail ...
pymd@epinard: asax :
pymd@epinard: Processing audit trail

3 FAILED LOGINS ON nha {601}, AT Thu Jul

pymd@epinard:
pymd@epinard: end of analysis{g)

pymd@epinard: Processing completion rules ...

end of analysis(?)
Processing completion rules ...

end of analysis(f)
Processing conpletion rules ...

Fetc/security/audi t/pym/SUN4 fbadlogin. asa

07 11:34:29 1934 from poireau

1_ sequence(s) of failed Togin found

=) cmdtool - /binfcsh

dasan® =
dasax¥ run edflogin %
dasany [a]
dasax%®]

Figure 6: Consolewindows

(resp. NADF) file is reached. When auditd or fadapter
receives such a signal, it closes the current file and
continues on a new one. The maximum size can be
changed at any time by a simple RPC (Remote Pro-
cedure Call) server dfisize_suc after request from the
console process. dfisize_svc updates the file nadf data
accordingly.

The distributed FA is automatically started at boot
time of each monitored host from /etc/rc.local.

6.2 Logging control

Changing the granularity level for a user or a host
is performed remotely from the security officer con-
sole by a remote update of the auditd configuration of
the involved host. Therefore, logging control is imple-
mented by means of RPC. For this purpose, to each
monitored host is attached a server process logentl_svc
accepting requests from the console process running
on the master machine. Depending on the option used
for the command logentl, the console process calls an
appropriate procedure offered by the logcntl_svc server
on the involved host. According to the RPC model,
logentl_svc transfers control to the appropriate service
procedure and then sends back a reply to the console
process indicating the outcome of the call.

It was not possible to implement such a communi-
cation using PVM since all processes participating in
the Parallel Virtual Machine must belong to the same
user while the logcntl svc server requires root privi-
leges to access the shadow password file. Moreover,
the security officer should not necessarily own root

privileges.
6.3 Supplier process

This process runs on each monitored host. It sends
to its evaluator a record stream corresponding to a
given time interval. It receives from the console pro-
cess on the master machine the instance number of
its associated evaluator and a time interval. It re-
trieves corresponding records from the NADF files and
sends them in sequence using a PVM message for each
record. It is interesting to note that slave and master
evaluators are implemented exactly by the same code.
This is possible at the cost of providing the additional
supplier process which hides the details of how audit
records are retrieved. For slave evaluators, the records
are received from the supplier process while a master
evaluator receives them from its slave evaluators.

6.4 Evaluator process

The evaluator process (on master and slave ma-
chines) is the heart of the distributed system. It an-
alyzes record streams according to a rule module. If
the evaluator is a master evaluator, the record stream
originates from a set of slave evaluators and the re-
sult of the analysis may be reports, alarms, statistics,
etc. If the evaluator is a slave evaluator, there is only
one sending process (the supplier process) and in this
case, the result is a filtered sequence of audit records
which are sent to the master evaluator. The console
process can change the rule module used by an eval-
uator by sending to it the name of the new module

global v: integer;

rule failed login(max times, duration: integer);
begin
trigger off for_next
count_rule(au_tert 3,
strToInt (au_time)+duration,
max_times-1)

end;
rule count rule(targetuid: string;
expiration,
count down: integer);
if au_tert 3 = targetuid

and strToInt(autime) < expiration
--> if count down > 1
--> trigger off for_next
count rule(target uid,
expiration,
count_down-1);
count down = 1
--> begin
v :i=v + 1;
println(gettime (au_time),
’: 3 FAILED LOGINS ON °,
targetuid);
trigger off for_next
failed login(3,120)
end
fi;
strToInt (au_time) > expiration
--> trigger off for_next
failed login(3,120);
true
--> trigger off for_next
count rule(target uid,
expiration,
count_down)

fi;

rule print results;
begin

println(v, ’ sequence(s) of bad logins found’)
end;

init_action;
begin
v := 0;
trigger off for next failed login(3, 120);
trigger off at_completion print results
end.

Figure 5: Master evaluator module: nbbadlogin.asa

nadf_data

' auditd |
NATIVE :
FILE 1 sizer)

audit_control

logentl_sve

passwd.adjunct

T 1
NADF |, NADF Y

Covaluator) >

- — =» : PVM communication
— : Read/write
+ -+ » : Unix signal

Figure 7: Local Architecture

to be applied. At reception, the evaluator executes
the completion rules, compiles the new module, exe-
cutes the resulting init-actions and then waits for audit
records. The time interval can also be changed for all
evaluators participating in a distributed analysis. For
this purpose, the console process sends the new time
interval to all involved supplier processes and notifies
evaluators for such a change. Upon reception, supplier
processes send to the evaluators a record stream deter-
mined by the new time interval. Evaluator processes
only execute completion rules and init-actions. Com-
pletion rules report the results of the previous analysis
before changing the current rule module or the time
interval.

6.5 Console process

This process was already partially described in pre-
vious sections. Only a single instance of the console
process exists and is active on the master machine
under control of the security officer through the com-
mand interface described in section 5. It maintains the
status of all active distributed evaluators and coordi-
nates all processes of the distributed system. Under
interactive control of the security officer, the console
process can also invoke the remote logentl sve RPC
server to change the current granularity level on a
given host.

To activate a distributed analysis as indicated in
a distributed evaluator description file, the console
process initiates an evaluator-supplier pair on each
slave host and a master evaluator on the master host.
It then sends the time interval to all supplier in-
stances and the appropriate rule module to each eval-
uator instance. When all suppliers are positioned
in the time interval and evaluators have successfully
compiled their modules, the console process starts

the analysis by triggering record stream transmissions
from suppliers to slave evaluators.

7 Performance Measurements

7.1 Introduction

This section reports some performance tests of our
system. These measurements aim at showing the fea-
sibility and effectiveness of the distributed system in
terms of response time and network load. It will also
follow from these measurements that on-line monitor-
ing is feasible.

The experiments were carried out on two SUN
SPARCstation 1 running the C2 security level of the
SunOS 4.1 and connected to a 10 Mbytes/sec Ether-
net. Each machine has 16 Mbytes of random access
memory. In addition, a third machine on the Ethernet
is used as a file server where NADF files generated at
each host are stored using NFS (Network File System).

The first experiment measures the overhead due
to the distributed architecture wrt the same analy-
sis performed on a single audit trail. The second one
compares the performance of a distributed audit trail
analysis and of a centralized audit trail analysis. The
last experiment shows the benefits of executing several
analyses in parallel.

7.2 Overhead of the distributed
architecture

In order to measure the overhead introduced by the
distributed architecture, we analyzed a single audit
file of 500 Kbytes using the single audit trail analy-
sis version on the one hand and the distributed ver-
sion on the other hand. The analyzed file represents
a two days usage of the system by two users. Audited
events are file operations as well as normal adminis-
trative operations such as the su and login commands.
In the first case, audit records are simply retrieved
from the audit file using input/output routines. The
second case corresponds to a degenerated distributed
evaluator composed of a single slave evaluator. The
overhead introduced is mainly due to network commu-
nication (using PVM) between the slave and the mas-
ter. [17] describes experiments comparing the com-
munication times for a number of different network
programming environments on isolated two and four
nodes networks. Since messages exchanged in the dis-
tributed system are around 300 bytes in size, it follows
from the measurements conducted in [17] that the av-
erage data transfer rate is around 0.049Mbytes/sec.

The slave evaluator applies the badlogin.ese mod-
ule as explained earlier and the master evaluator runs
the nbbadlogin.asa module. Table 2 gives the mean
values of the CPU and elapsed times (in seconds) for
the stand alone analysis (SAA) and the distributed
analysis (DA).

The results suggest that the distributed audit trail
analysis is feasible since the elapsed time for the anal-
ysis is negligible wrt the time spent in generating the
audit data (2 days). However, the overhead due to
the distributed architecture is significant: most of
the elapsed time is spent in communication between
nodes. Consequently, improvements of the distributed

system response time involves optimization of the net-
work communication.

type usr | sys | total | elapsed
SAA [1.13] 0.68 | 1.81 5.3
DA |3.43|3.73 | 7.20 55.7

Table 2: Stand Alonev.s Distributed Analysis

7.3 Centralized v.s distributed audit trail
analysis

This section reports the performance benefits of a
distributed network security monitoring over a cen-
tralized network security monitoring. In the lat-
ter approach, monitored nodes do not perform any
intelligent® filtering of audit data. All audit records
generated at one node are sent to a central host where
the analysis takes place. As shown in Table 3, the
distributed analysis has the advantage of drastically
reducing the network traffic in comparison with the
centralized analysis (CA). It also achieves a balanc-
ing of the CPU time over several machines. The CPU
time of the master evaluator is smaller since part of
the analysis is carried out by slave evaluators on slave
machines. A system using a centralized architecture
for network audit trail analysis is presented in [18].

type uST sys | total | elapsed | traffic®
CA |[11.90 | 13.60 | 25.56 | 265.78 2,661
DA 1.15 | 7.46 | 8.61 | 188.56 39

2In Kbytes

Table 3: Distributed v.s Centralized Analysis

7.4 Parallel v.s sequential analysis

The RUSSEL language allows to execute more than

one analysis at the same time i.e., during a single anal-
ysis of a given audit file, several independent rule mod-
ules can be executed. For instance, we can search in
parallel for repeated failed logins as well as for re-
peated attempts to corrupt system files.
We used 4 distributed evaluators described by their
distributed evaluator description files. All analyses
are limited to a specified time interval as shown in
Figure 8.

The purpose of the first one is to detect 3 repeated
failures to break a given account using the su com-
mand. Each of the hosts poireau and epinard runs
a slave evaluator which detect unsuccessful su com-
mands. The master evaluator detects sequences of 3
failed su commands invoked at any of the two moni-
tored hosts.

The purpose of the second distributed analysis is
to detect attempts to corrupt system files on either of

3 Assuming that a simple pre-selection of auditable events
cannot be considered as an intelligent filtering.

bad su commands:

master poireau:

nbbadsu: [19940531170524,19940606173854] ;
slaves poireau, epinard: badsu.

System corruption:

master poireau:
fscorrupt: [19940531170524,19940606173854] ;
slaves poireau, epinard: corrupt.

Set user id files:

master poireau:
setuid:[19940531170524,19940606173854] ;
slaves poireau, epinard: create.

trojan su:

master poireau:
trojan: [19940531170524,19940606173854] ;
slaves poireau, epinard: exec.

Figure 8: Multiple Distributed Analyses: RUSSEL modules
for the master and the slaves

the two hosts. System files corruption could be dele-
tion, creation, attribute modification of any of sys-
tem files or directories. Each slave evaluator applies
the RUSSEL module corrupt.asa that detects deletion,
creation or attribute modification of files. The master
evaluators uses the module fscorrupt.asa to check that
such operations involve a system file.

The third analysis aims at detecting new set user

id files. For this purpose, slave evaluators on epinard
and poireau detect creation of files on hidden direc-
tories such as /tmp or /usr/imp and modification of
their access flags. At the master evaluator, the mod-
ule setuid.asa is used to detect the creation of a file on
hidden directory followed by a modification of access
flags of these same file such that the created file is a
set user id file.
The last analysis searches for trojan system programs
such as su. The slaves detect the execution of any
command using the module ezec.ase while the mas-
ter applies the module trojan.asa to check if such an
execution involves a trojan program.

The multiple distributed analysis amounts to ex-
ecute these distributed analyses one after the other
using the run command with the appropriate dis-
tributed evaluator description file as argument. The
corresponding execution times are reported in Table 4.
In the case of parallel execution, we activate a single
distributed evaluator which performs the four analyses
at the same time. For this purpose, the master eval-
uator uses a rule module (master_module.asa) which
includes all modules applied by each of the above 4
masters (see Figure 9).

Similarly, slave evaluators (on epinard and poireau)
run a single module (slave_module.asa) which includes
the 4 ones applied by the previous slave evaluators.

master module.asa:
uses nbbadsu, fscorrupt, setuid, trojan.

slave module.asa:
uses badsu, corrupt, create, exec.

Figure 9: Parallel analysis: RUSSEL modules for the master
and slave

type uST sys | total | elapsed
nbbadsu | 02.43 | 10.18 | 12.61 | 159.48
fscorrupt | 02.33 | 12.51 | 14.48 | 176.90
setuid 03.10 | 11.98 | 15.08 | 182.46
trojan 02.83 | 11.83 | 14.66 | 184.09
total 10.69 | 46.50 | 57.19 | 702.92
parallel | 08.03 | 15.03 | 23.06 | 209.83

Table 4: Multiple Distributed Analysis v.s Parallel Analysis

The distributed evaluator description file for the par-
allel execution is depicted in Figure 10.

parallel distributed evaluator:

master poireau:
master module: [19940531170524,19940606173854] ;
slaves poireau, epinard: slavemodule.

Figure 10: Parallel Analysis Description File

The execution times for the parallel analysis are
found in the last line of table 4. It follows from this
table that the performance gain is substantial. Note
that the elapsed time of the parallel analysis is not
significantly different from the elapsed time of a single
analysis. This suggests that complex on-line analy-
ses (combining many single analyses in parallel) are
feasible.

8 Conclusions and Future Works

This paper presented an implemented system for
on-line analysis of multiple distributed data streams.
Universality of the system makes it conceptually in-
dependent from any architecture or operating system.
This is achieved by means of format adaptors which
translate data streams to a canonical format. The
rule-based language (RUSSEL) is specifically designed
for analyzing unstructured data streams. This makes
the presented system (theoretically) as powerful as
possible and still efficient enough for solving complex
queries on the data streams. We also presented the
distributed architecture of the system and its imple-
mentation.

Effectiveness of the distributed system was demon-
strated by reporting performance measurements con-
ducted on real network attack examples. These mea-
surements also showed that on-line distributed anal-
ysis is feasible even for complex problems. Further

works will tackle the problem of reducing the over-
head due to network communication. For the present
version of the system, audit records are transmitted
using one PVM message by record. A first improve-
ment is to buffer audit records before packing them in
a single PVM message. Another improvement involves
a direct use of standard communication protocols such
as TCP/IP instead of PVM. More standard protocols
will increase the portability and the robustness of our
system.

References
[1] A. Baur, W. Weiss, Audit Analysis Tool for Systems
with High Demands Regarding Security and Access
Control. Research Report, ZFE F2 SOF 42, Siemens
Nixdorf Software, Munich, November 1988.

[2] W.R. Cheswick, S.M. Bellovin, Firewalls and internet
security: repelling the wily hacker. Addison-Wesley
1994, 306 pages. ISBN 0-201-63357-4.

[3] D.E. Denning, An Intrusion-Detection Model. IEEE
Transactions on Software Engineering, Vol.13 No.2,
February 1987.

[4] Th. D. Garvey, T.F. Lunt, Model-Based Intrusion
Detection. Proceedings of the 14th National Security
Conference, Washington DC., October 1991.

[5] T.Lunt, J. van Horne, L. Halme, Automated Analysis
of Computer System Audit Trails. Proceedings of the
9th DOE Computer Security Group Conference, May
1986.

[6] T. F. Lunt, R. Jagannathan, A Prototype Real-time
Intrusion Detection Ezpert System. Proceedings of the
1988 IEEE Symposium on Security and Privacy, April
1988.

[7] T. F. Lunt, Automated Audit Trail Analysis and In-
trusion Detection: A Survey. Proceedings of the 11th
National Security Conference, Baltimore, MD, Octo-
ber 1988.

[8] T. F. Lunt, Real Time Intrusion Detection. Proceed-
ings of the COMPCON spring 89’, San Francisco, CA,
February 1989.

[9] T. F. Lunt et. al., A Real-Time Intrusion Detection
Ezpert System. Interim Progress Report, Computer

Science Laboratory, SRI International, Menlo Park,
CA, May 1990.

[10] N.Habra, B. Le Charlier, A. Mounji, Preliminary re-
port on Advanced Security Audit Trail Analysis on
Uniz 15.12.91, 34 pages.

[11] N.Habra, B. Le Charlier, A. Mounji, Advanced Se-
curity Audit Trail Analysis on Uniz. Implementation
design of the NADF Evaluator Mar 93, 62 pages.

[12] N.Habra, B. Le Charlier, I. Mathieu, A. Mounj,
ASAX: Software Architecture and Rule-based Lan-
guage for Universal Audit Trail Analysis. Proceed-
ings of the Second European Symposium on Research
in Computer Security (ESORICS). Toulouse, France,
November 1992.

[13] A. Mounji, B. Le Charlier, D. Zampuniéris, N.Habra,
Preliminary report on Advanced Security Audit Trail
Analysis on Uniz 15.12.91, 34 pages.

[14] Marshall T. Rose, The Open Book: a Practical Per-
spective on OSI. Prentice-Hall 1990, 651 pages. ISBN
0-13-643016-3.

[15] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, V.
Sunderam, A User Guide to PVM (Parallel Virtual
Machine). ORNL/TM-11826. July, 1991, 13 pages.

[16] Sun Microsystems, Network Programming Guide,
Part Number 800-3850-10 Revision A of 27 March,
1990.

[17] Craig C. Douglas, Timothy G. Mattson, Martin H.
Shultz, Parallel Programming Systems For Worksta-
tion Clusters. Yale University Department of Com-
puter Science Research Report YALEU/DCS/TR-
975, August 1993, 36 pages.

[18] J.R. Winkler, A Uniz Prototype for Intrusion and
Anomaly Detection in Secure Networks. Planning Re-
search Corporation, R&D, 1990.

