Advanced Security Audit Trail Analysis on uniX
(ASAX also called SAT-X)
Implementation design of the NADF Evaluator

Naji Habra Baudouin Le Charlier
Abdelaziz Mounji,
Institut D’Informatique,
FUNDP,
rue Grangagnage 21,
5000 Namur
E-mail: {nha, ble, amo}@info.fundp.ac.be

September 26, 1994

Contents

1 Introduction

2 Implementation design of the current environment
2.1 The current recordo
2.1.1 Current record table
2.1.2 Audit data representation
2.1.3 Representation of a list of values
2.2 Representation of the local environment
2.3 The threesetsofrules
2.4 Access to actual parameters and local variables

3 Implementation design of the language constructs
3.1 Imtroduction
3.2 Box notation and abstract machine language
3.3 Imternalcodes
3.3.1 Simple expressions
3.3.2 Compound arithmetic expressions
3.3.3 Compound conditions
3.3.4 Consistency with the abstract semantics
3.3.5 Relational expressions
3.3.6 Simple expression involving the current record
3.4 Actions
3.4.1 Introduction oL,
3.4.2 Skip statement 0oL
343 Assignment,
3.4.4 Conditional and repetitive actions
3.4.5 Compound action,
3.4.6 Representationofarule
3.4.7 Rule triggering
3.4.8 Predefined procedures
3.4.9 Example of a rule internal code
3.5 Abstract machine instruction set
3.5.1 arithmetic Lo oo
3.5.2 relational L oL
3.5.3 assignment,
3.5.4 audit data presence

3.5.5 rule triggering
3.5.6 Pre-defined routinecall
3.5.7 Cdeclarations

4 Overview of the syntax analyser implementation

4.1
4.2
4.3

4.4

4.5

4.6

Introduction oo
Analysis principles
Main global data structures
4.3.1 Rule descriptors table
4.3.2 Current record table
4.3.3 Standard library table
4.3.4 Holes and list of holes
4.3.5 Names mapping table
The lexical analyser
4.4.1 Introduction
4.4.2 Lexical analysis principle
4.4.3 Specification of the scanner
4.4.4 Auxiliary functions specification
Functions handling the global data structures
4.5.1 add_ruledescriptor
4.5.2 addfieldname,
453 getauditdataid
4.5.4 insert_incomplete
4.5.5 concateincomplete Lo
Specification of the parser functions
4.6.1 Common features
4.6.2 Parsing functions specification

A System parameters

B Compiler error messages

37
37
37
39
39
40
42
42
44
45
45
46
46
48
50
50
50
51
51
52
52
52
53

56

58

Chapter 1

Introduction

This report is devoted to the implementation design of the NADF evaluator.
Knowledge of [1] is assumed.

The report consists of three main parts. Chapter 2 describes general data
structures used by the evaluator. Chapter 3 explains how the rule based
language is implemented by means of an efficiently implementable abstract
machine language. Chapter 4 presents the syntax analyser able to translate
the rule based language into abstract machine language form. Annex A
defines system parameters and how to maintain them, Annex B gives the
list of compiler error messages their description and how to correct them.

Chapter 2

Implementation design of
the current environment

2.1 The current record

During the analysis process, the audit trail is likely to be heavily accessed
by the active rules. This is due to the fact that most of the time the system
is evaluating expressions involving the current record fields. As a result,
access to the current record must be designed and organized with care.
The overall system performance depends strongly on efficient access to the
current record.

2.1.1 Current record table

Before being processed for all current rules, the current record is pre-processed
to update an indirection table that will speed up access to it. This process-

ing is similar to what is currently done in the SATUT and is detailed below:

The current record is accessed from a location called the current record
buffer. An entry of the indirection table is composed of two fields: an audit

data id and a pointer inside the current record buffer.

At compile time, all declared rules are scanned for references to the current

record fields. A list or ”catalogue” of all these references is made. Every

subsequent reference to the current record will necessarily involve one of
this catalogue items. The corresponding field identifiers are stored in this

indirection table with ascending order. At this step, each first component of
each table entry contains a field identifier (there may be some unused area

at the end of the table.) All indirection table entries are located at a fixed

storage location well known to the system at compile time.

During the audit trail analysis, when an audit record becomes current, it is

scanned in parallel with the indirection table so as to update the audit data

pointers. Note that this scanning takes place only once and that during

all the processing of the current record, the indirection table remains un-

changed. Finally every reference to an audit data in the rule internal codes

will be represented by the location of the corresponding indirection table

entry. This way, audit data are directly available®.

Given an audit data identifier in the indirection table, if the current record
contains the corresponding audit data field, then the pointer part of the
indirection table entry is assigned a pointer to this audit data; otherwise,
it is assigned a special value noted here non-present to indicate such a
case. In fact this special value is the address of the null string (’ ’) which
is compatible with the language semantics. More details about the current
record table design as well as the functions for initializing and updating it
can be found in 4.3.2 where the C declarations are also provided.

2.1.2 Audit data representation

Integers are simply represented by their respective values. Strings of bytes
are represented by pointers to areas having the following form:

string ptr

|

L] v

Figure 2.1: Audit data representation
where [is the string length and v is the string value.
This string representation is adequate for managing their variable length
and is more general than null-ended string representation.

Notation

Throughout this document, ri(object) denotes the internal representa-
tion of the object object

Example

If sis a string of bytes, then ri(s) represents a pointer to a dynamic
variable containing the length and value of s.

Remark

A null string ’ ’ is represented by:

'In fact, the rule internal codes are modified in parallel with the indirection table using
a delayed pointer assignment technique which will be detailed in the next chapter.

null_string ptr

i

Figure 2.2: Null string

2.1.3 Representation of a list of values

Let L = [v1,...,Un] be a list of values. These are either string of bytes or
integers. Let 7i(v1), ..., Ti(vm) be their respective internal representations.
Therefore, the internal representation of the list L is a contiguous storage
area built up with the internal representations of vy,...,vm:
ptr
[ri(v1) | e | 1i(vy,) |

Figure 2.3: Liste of values representation

Example

Let v; =123, v, = ’TOTO’, v3 = 127; then ri(/v1, va, vs]) has the form:

ptr

[123 | | [127 |

Y

| 4 | ’TOTO’|

Figure 2.4: Example of a list of values representation

2.2 Representation of the local environment

The local environment is basically a set of variables. These variables may
be either actual parameters or local variables. Consider a rule having z,

.., Ty, as actual parameters and yq, ..., yn as local variables. The internal
representation of the corresponding local environment are the two storage

areas LVA (Local Variables Area) and APA (Actual Parameters Area):

APA: | ri(vy) | | ri(Vom) |

LVA: | ri(uy) | | ri(un) |

Figure 2.5: Representation of the local environment

where v; and u; denote the current values of x; and y; (resp.) (1< ¢
< mand 1< j < n).

Note

The two storage areas, APA and LVA, are not necessarily contiguous.

2.3 The three sets of rules

Recall that at any time during the analysis process, there exist three subsets
of rules:

e rules triggered off for the current record,;
e rules triggered off for the next record;
e rules triggered off for completion of the analysis.

All of these sets have the same operational properties so they are treated
the same way.
The primitive operations defined for these sets are:

e creating an empty set of rules;
e adding a rule to a set of rules;
e removing a rule from a set of rules.

Since the execution of the evaluator is not affected by the order in which rules
are added or removed from a set of active rules, the latter can be indifferently
modeled as a stack or a queue. For the simplicity of the implementation,
a set of rules is modeled as a stack and implemented by a linked list. A
particular cell of this list is a dynamic area related to a particular rule
(instance of a rule schema).

At the logical level, a cell contains:

e a pointer towards the internal code of the rule;

ptr

Figure 2.6: A set of active rules

e a pointer towards an area containing the values of the actual parame-
ters. (this area is copied into the APA when the processing of the rule
is started);

e a pointer to the next cell in the list.

The actual representation of such a linked list is detailed in 3.4.7.

2.4 Access to actual parameters and local vari-
ables

During the execution of a particular rule, local variables and actual param-
eters are frequently accessed. Therefore, actual parameters and variables
must be located as quickly as possible. Considering the implementation of
DStrig, an actual parameter is accessed in the following steps:

determine the base address of the related rule;
determine the relative (or logical) address of the actual parameter;
the location is the sum of the two.

This is a quite acceptable implementation and relative to machine address
conversion can be done fairly quickly. However, we can still improve on the
access speed by having the list of actual parameters and local variables be
located at the particular storage areas Actual Parameter Area and Local
variable Area with well known fixed addresses?. Consequently, the machine
(or absolute) address can be determined at compile time and once for all.
The resulting access speed is then optimal.

When a new rule is to be executed against the current record, the area
containing its actual parameters is first copied to the APA before been used.
But this is fairly a little overhead.

2This access speed improvement can be achieved without sacrificing too much machine
independence because these fixed addresses can be made localized so as they can be easily
tuned to a particular machine configuration.

Chapter 3

Implementation design of
the language constructs

3.1 Introduction

Before discussing how the language constructs (i.e. rules, actions, expres-
sions) will be implemented, it is useful to introduce an interesting notation
for representing these language constructs. Throughout the remainder of
this document, we will make use of these notations in order to provide a clear
and machine independent way to represent how the language constructs are
coded. This notation makes use of basic constructs which constitutes the
(machine) language of an abstract machine.

3.2 Box notation and abstract machine language

A boz notation represents either an expression or an action. There exist
two kinds of boxes: elaborate boxes and terminal boxes. Elaborate boxes
represent compound constructs so they can be refined by breaking them
into several boxes whose execution amounts to executing the original ones.
Terminal boxes cannot be further refined. A terminal box represents a
(basic) instruction of the abstract machine. It is internally coded as a set of
contiguous storage locations. For each type of constructs, we will give the
corresponding box notation.

A terminal box contains the following components:

1. an identifier that indicates an action to be performed (e.g. , assign,
multiply, add, jump, ... etc);

2. a list of operands that depends on the action. These operands are
absolute object addresses;

3. alist of branch addresses that indicates which abstract instruction will
be executed next. In fact there is always only one branch address ex-
cept for boolean expressions where there are two possible constructs

to be executed next depending on the truth value of the expression.

As a result, a complex construct can be progressively refined in order to
obtain a chained list of terminal boxes that forms a program in the abstract
machine language.

Notation

Let cons be a construct (either a rule, an action or an expression). Sup-
pose that the next construct to be executed afterwards is at address a and
that 8 is the address of the first abstract machine instruction to be executed
for cons, then the box notation for cons is:

B : ri(cons,a)

Figure 3.1: Abstract machine statement

where the box stands for the set of all abstract machine instructions
constituting the internal code for cons.

3.3 Internal codes

This section deals with internal codes for expressions. For each kind of ex-
pression, we provide the corresponding internal code as well as the graphical
notation. A formal proof of the consistency with the abstract semantics is
presented as an example.

3.3.1 Simple expressions
Recall that
expr ::= <literal> | <variable> | <parameter> | <field_name>.

In this case, an internal representation already exists and need not be cre-
ated. For instance, a local variable is allocated a storage memory inside
the LVA area and an audit data is referenced through a pointer inside the
current record table. Consequently, the value of a literal, a variable, a pa-
rameter or a field name is already available and no internal code is generated
for its evaluation. Let a be the address of the next statement to be executed
and G the internal representation address of the literal, variable, parameter
or field name. Since the evaluation amounts to do nothing, we have a = .
It follows from the above discussion a notation convention given hereafter:
If @ = B, no memory storage is allocated for the statement internal repre-
sentation in question. However, for the sake of generality, we still use the
notation in Figure 3.2 (then the box stands for an empty set of abstract
instructions)

10

B | ri(cons,a)

Figure 3.2: Convention

3.3.2 Compound arithmetic expressions

First of all, let us introduce the parameters used by such a statement:

1. ezpr is the expression to be evaluated with respect to a certain envi-
ronment. It is supposed to return integer or string value;

2. a is the location of the next construct to be executed;

3. the evaluation of an expression often involves the evaluation of subex-
pressions. Those subexpression values must be saved somewhere in
order to be retrieved and used later. As a result, we provide a spe-
cial storage area called the working area WA where these temporary
results are stored.

wa_ptr

v |

used unused

Figure 3.3: The working area

0in denotes a pointer to the first free (unused) element of WA before
execution of ezpr;

4. B is the location of the internal code corresponding to ezpr itself;
5. 7 is the location of the value returned by the expression;

6. 0ou: denotes the pointer to the first free element of WA after execution

ezpr.

Under the above conditions, the graphical notation chosen for ezpr is:

G | ri(expr,a,in) |

Figure 3.4: Box notation for integer and string expressions

11

The resulting v and oy are functions of the structure (simple or com-
pound) and the type (string or integer) of the expression.

1. suppose that ezpris either a literal, a parameter, a variable or a field
name. In this case, an internal code for ezpr already exists so there
is no need to generate it. Also, no intermediary results are needed for
evaluating the expression because its value is directly available (inside
the current record, the local environment or somewhere else.) As a
result:

o = f3, bout = 6in and < is the location of rifezpr);

2. otherwise, the expression is a compound one and intermediary results
have to be stored in WA before evaluating the rest of the expression.
In this case,

5out - 5in + l’U,

where [vdenotes a value length, i.e., the pointer to the first free element
must be advanced by one position.

Let us now examine in detail the different possible cases. Later, we will see
how these cases can be reduced to a single one:

Suppose that
eTpr ::= eIrpr; w eTpry where w is an arithmetic operator.

Let 6;n; and 6ous,; be the pointers to the next free element of WA respectively
before and after evaluation of expr; (i=1, 2).

1. 5out,1 > 5'in,l (: 51.11) and 5out,2 - 5in,2

In this case, expr; corresponds to case 2 and ezprp corresponds to
case 1 above. The resulting decomposition is :

Bi: Ba:
B: | ri(expry,B2,6in)| || W | bin bin| 72| @ ||

where ¥ = 6;n , Sout = 6in + vl (a value length).

The second box means applying the operator w to the values located
in 8;, and 72 and storing the result in address 6;5,; the next construct
to be executed being at location «;

12

Bi: Ba:
5. (Fleprann) | [Tl]|

2. 5out,1 - 51'11. and 5out,2 > 51'11.

This case is symmetrical to the first one where ezpr; and ezpry play
opposite roles. The decomposition is then:

7= 5in 3 5out - 5in + ’Ul,

3. 5out,1 - 5out,2 - 5in
Both expressions correspond to the above first case. Let ; and 7, be
the addresses of their respective values. The resulting decomposition
is then:

/31:
B: |[w [bin] 11 [2] @ ||

7= 6in 3 5out - 5in + ’Ul,

4. 5out,2 > 5out,l > 6’in
In this last case, both expressions correspond to the second case. The
value of ezpr; and ezpry are at §;, , 0ou: respectively. The decomposi-
tion is: Y= 51'117 5out = 5in + ol.

Pu: Ba: Ba:
| ri(expr1 7/B2a5'in)| | ri(eXPT2:/B3:50ut) | || w | 61.’I'L| 51.11' 5ou4 a ||

As announced before, it is in fact possible to have all of these four cases be
reduced to a single one.

Let v, and 73 be respectively the location of the values of ezpr; and ezprs.
The decomposition is shown in Figure 3.5. Again, v = 6 , Oout = Oin +
vl;

3.3.3 Compound conditions

Let cond be a compound condition of the form:
cond; w condy where w € {or, and}

Let oy (resp. ay) be the address of the next statement to be executed if
cond is evaluated to true (resp. false).

13

B Ba: Bs:
/3: | Ili(exprl 7/3275in)| | ri(eXPT%/BSaéout) | || w | 51.11' 71 | 72| o ||

Figure 3.5: General case

Ba: Ba:
G: |ri(cond1,ﬂ2,af)| |ri(cond2,at,af)|

Figure 3.6: Conjunction

Suppose w = and, the corresponding graphical notation is shown in Figure
3.6. In case w = or, we have the representation given in the figure 3.7. Note
that evaluation is terminated as soon as the truth value is known without
taking into account the rest of the compound condition. For instance, if w is
and and cond; evaluates to false, then cond is evaluated to false whatever
the value of cond; is and no matter if this evaluation is defined or not.

3.3.4 Consistency with the abstract semantics

The above implementation design must still be proved coherent with the
abstract semantics given in [1]. However, although this can be very inter-
esting, the purpose of this document is not to provide a formal proof of
the comsistency of each construct internal representation with its abstract
semantics. Nevertheless, a sample proof schema for conditional expressions
is given below in order to illustrate the main ideas. This proof is straight-
forward thanks to the box notation.

Base case: Simple condition

The base case is trivial since the value of a literal (X literal or Cliteral), a
variable, parameter or a field name (audit data) coincides with the value of
its internal representation.

Inductive case: Compound conditions

Let cond be a condition of the form:

Bu: Ba:
G: |ri(cond1,at,ﬂ2)| |ri(cond2,at,af)|

Figure 3.7: Disjunction

14

cond; and cond,

This is represented by the box notation in Figure 3.8

Ba: Ba:
G: |ri(cond1,ﬂ2,af)| |ri(cond2,at,af)|

Figure 3.8: Conjunction

We have to show that the execution of the abstract statement yields the
same truth value as the one given by the abstract semantics of compound
conditions (see [1]). That is to say, when the value is true (resp. false) the
branch address must be oy (resp. af). By the induction hypothesis, since
cond; evaluates to true the branch address is #3. Now, according to the
box notation, the branch address of the whole expression is that of Figure
3.9.

Ba:

[ri(condy, 0y, a¢)|

Figure 3.9: Induction case

Again, by the induction hypothesis and since cond; evaluates to true this
branch address is ;.

Similar proof can be given when cond is evaluated to false.

3.3.5 Relational expressions

Let
cond ::= expr, w expry

be a relational expression where w denotes a relational operator. The two
arithmetic expressions must be evaluated; this has been the purpose of a
previous section, so we don’t have to bother how this is actually done. How-
ever, the relevant parameter to be considered here is which construct is to
be executed next depending on the result of the comparison. Let a; and oy
be respectively the address of the next construct when cond is evaluated to
true and when it is evaluated to false. If §; is the value of waptr (pointer
to the next free element in the work area) before the evaluation and 7; and
72 the locations of the values returned by ezpr; and ezpry, then, the box
notation of condis that of Figure 3.10. The semantics of the last box (which
is a terminal one) is to compare the arguments located at y; and 7,. If the
value of this comparison is true, the construct at address a; is the one to
be executed next; otherwise, the one at address ay is executed.

15

B Ba: Ba:
p: | ri(expry,B2,60) | | Ti(eXPT2,ﬂ3,5out,1)| | | w | 71 | ’)’2| atl af”

Figure 3.10: Box notation for relational expressions

Note

It is interesting to note that use of arguments in the box notation allows
simple and constructive reasoning about the representation.

3.3.6 Simple expression involving the current record

Such an expression has the form:
cond ::= present field_name

This condition is represented by the following terminal box whose arguments
are:

e present is the box type indicator;
e o; and ay are the branch addresses;

e v is merely the location of the current record table entry corresponding
to this field name. Access to the current record is detailed in 4.3.2.

G: || presentl ~y |at|af||

Figure 3.11: Box notation for present field name

3.4 Actions

3.4.1 Introduction

Internal representation of actions and expressions are very similar. The box
notation and naming conventions apply as well. A global view of how actions
are executed against the current record and the current environment will be
given in the next chapter.

3.4.2 Skip statement

No storage is allocated for the empty statement internal code and § = a so
Figure 3.4.2 is equivalent to § = a.

16

G: | ri(skip, a) |

3.4.3 Assignment
Assignment internal representation is equally simple. Let
T ;1= expr

be the assignment to be represented, v the address of the value returned by
the expression ezpr, adr(z) the address of the variable z, the box notation
is given in Figure 3.12

™

1 Ba:
B: | ri(expr,82) | |assign [adr(x) |7 [|

Figure 3.12: Box notation for assignment statement

The second box (which is a terminal one) means assigning the content
of address v to the content of address adr(z). We distinguish two types of
assignment: assignment of integer values and assignment of addresses so the
operator assign have two values: assign_int and assign_addr.

3.4.4 Conditional and repetitive actions

The two types of actions are treated here simultaneously because the cor-
responding internal representations are almost identical thanks to the box
notation.

Let b, — aj; ...; b, — a, be the set of guarded actions contained in either
repetitive or conditional actions. The box notation corresponding to the
conditional action:

ifb]_—)(l,]_,,bn—)a,nﬁ
is given in Figure 3.13:
/31: /Bn:
B: | ri(b1,01,082) e 1i(bp,0m,0)
oy
ap: |ri(a;,a) e ri(an,o)

Figure 3.13: Box notation for conditional actions

while the corresponding repetitive action

17

do b; — ay;...; b, — a, od

has the box notation shown in Figure 3.14

B BOn:
B:
an:

ap: |ri(a1,8)

Figure 3.14: Box notation for repetitive actions

The power of the box notation shows how semantically different actions
can be represented almost the same way. As a result, if either internal
representation is available, it costs almost nothing to implement the other
one.

3.4.5 Compound action

Assuming that we know how to represent a set of actions {ay, ..., a,}, it is
easy to represent the corresponding compound action i.e.:

begin a,; ... a, end

Let §; denote the location of the action a; internal code, the box notation
of the compound action is the following:

B Ba: On:
B:|ri(a1, B2) | [ri(az, B3) | ... ri(an,, o)

Figure 3.15: Box notation for compound action

where o denote the location of the next statement to be executed after
the whole compound action is executed.

3.4.6 Representation of a rule
A rule has the form:

rule ::= rule rule_name(parameter_list);
local_var;
a

Its internal code ri(rule_name) is in Figure 3.16 where nilis a special (ending)
address which means that the whole action part has been executed. The
control has then to be returned to the next rule to be executed (i.e., the rule
at the beginning of either DStrig or DScompl).

18

B:| ri(a, nil)

Figure 3.16: Box notation of a rule

3.4.7 Rule triggering

Rule triggering has in part been discussed in a previous section; more details
about how a rule triggering is actually represented is the purpose of the
present section.

When dealing with a rule triggering, the main objects to be considered are:

e the action part of the corresponding rule schema;

e the list of actual parameter values.

These components define what is called a rule triggering descriptor. In fact
the triggering of a rule amounts to build and add such a descriptor to one of
the linked list corresponding to DStrig, DSnezt or DScompl. The action part
is represented by its box notation as seen before. The list of actual parameter
values is represented by a storage area containing the representation of this
list (see 2.3). If an actual parameter is a field name' the corresponding
string in the current record must be saved in the rule triggering descriptor.
Otherwise, when the next audit record is read, this string will be lost. The
detailed structure of a rule triggering descriptor is given in Figure 3.17 where

| Ig | paramValuesl savedStrings | boxPtr | nextCelll

Figure 3.17: format of a rule triggering descriptor

neztCellis a pointer towards the next rule descriptor, bozPir is a pointer to
the rule internal code, param Values is the list of actual parameter values,
savedStringsis a contiguous area of saved string internal representations and
finally, lgis the length in bytes of the descriptor minus the length of neztCell.
Example

Consider the following rule triggering:

trigger off for_next r(s, ’toto’, EVENT);

Suppose that ¢ = 123 and the value of EVENT (a field name) just before
execution of the above rule triggering is (4, ’open’), then the corresponding
rule triggering descriptor is that of Figure 3.18.

'In fact, if a string variable was previously assigned a the value of a field name, this
string must also be saved. Abstract interpretation techniques can be used to detect such
cases but for the prototype evaluator, we choose to save all string variables as well as field
names.

19

, ¥
[22 | [1]123 [4]open]| | |/]
A

v Y
| 4I toto | internalCode

Figure 3.18: a sample rule triggering descriptor

The internal code generated for a rule triggering is a sequence of boxes
that build up such a descriptor and push it in the appropriate stack of rule
triggering descriptors (DStrig, DSnext or DScompl).

Given the rule triggering:

trigger off trigger_mode rule_name(ezpry, ..., ezpry,)

the internal code generated for it is shown in Figure 3.19. The effect of the

B1: On:
B:

v: |tr_mode Ibothr II |
|

\ [70
cp(expry, az) ... cp(expry, @)

Figure 3.19: Box notation for rule triggering

sequence of boxes of the first line is to evaluate in sequence the expressions
erpry, ..., expr, and to store their values in the Working Area. The box
of the second line allocates a memory area (whose size was computed by
the boxes in the first line) for the rule triggering descriptor to be built; this
descriptor is then pushed in the appropriate stack. Finally, the sequence of
boxes in the third line are responsible for:

e copying the values of ezpry, ..., expr, from the Working Area to the
descriptor;

e copying all strings that must be saved in the descriptor.

The content of a box in the first or the third line depends on the type of
ezpr; and whether it must be saved in the descriptor or not.

o if ezpr; is of type integer
— if the evaluation of ezpr; requires the generation of at least one

box, r(ezpr;, B;+1) is simply rifezpr;, Bit1);

20

— otherwise, ezpr; is a constant or a variable name and no box is
generated for its evaluation, in this case, the value of ezpr; must
be moved to the W.A. so that r(ezpr;, B;+1) is the box of Figure
3.20.

Y

move_intl | 8|7 | o

Figure 3.20: move box

in both cases, cp(ezpr;, a;11) is the box of Figure 3.21 which copies
the value of expr; from the W.A. to the descriptor

|-cpy_IntAddr1 |5in,i | _|.,_

Figure 3.21: a box to copy an integer

e otherwise ezpr; is of type string

— if ezpr; is a constant (C or X-literal) no box is needed for its
evaluation since its value is in the table of constants and for the
same reason, its value need not be saved in the descriptor. As
a result, r(ezpr;, B;y1)is the box of Figure 3.22 which moves the

| move_strl | bin i | s | _|'>

Figure 3.22: a box to copy a string address

value of ezpr; from the constant table to the W.A. and cp(ezpr;,
a;41) is the box of Figure 3.23 that copies the address of the
string in the descriptor;

— otherwise, the string must be moved to W.A. and then saved in
the descriptor. As a result, r(ezpr;, Bit1) is the two boxes of
Figure 3.24 where the effect of the second box is to increment the
accumulated size of the area to be allocated for the rule descriptor
while cp(ezpr;, a;11) is the box of Figure 3.25 which copies the
the string #tself in the descriptor and then copies the address of
this string in the descriptor.

21

|-cpy_StrAddr1 |5mﬂ- | —I—"

Figure 3.23: copy a string address in the descriptor

| -move_strll Oin i | i | _I_,I addLenl | Oin i | _I_,

Figure 3.24: evaluate a string and compute its length

A single rule may obviously be triggered off more than once for the cur-
rent record (but with perhaps a different actual parameter values). In this
case, the action part would be duplicated over the linked list (either DStrig,
DSnezt or DScompl). In order to optimize the storage, the chosen imple-
mentation is to allocate a single storage area for the action part. Therefore,
each rule triggering descriptor contains a pointer to this area. However, the
list of actual parameter values will be stored in this descriptor.

A detailed description of the semantic of each of the above boxes is given in
section 3.5.

3.4.8 Predefined procedures

The rule-based language provides explicitly two types of arguments passing:
e “call by value”
e ”call by reference”

which have the same common meaning as for other programming languages
like Pascal. So, when called, a predefined procedure may be handed a value
of its arguments in temporary variables or their addresses. A parameter
passed by value may be any compound expression while it must be a vari-
able when passed by reference.

More precisely, a value parameter may have either an integer type or be a
pointer to a string of bytes, while a passed by reference parameter may be
either a pointer to an integer or the address of a pointer to a string. The
description of the argument passing type is part of a predefined procedure

|-cpy_Str1 |5¢n,i | _|.>

Figure 3.25: evaluate a string and compute its length

22

specification. As a result, in addition to the predefined procedure code, con-
tained in the library, a description of each of its argument passing type is
stored so that calls to this procedure are performed in accordance with this
description.

In fact the predefined library supports two kinds of predefined routines:
those with fixed-length argument list and those with variable-length argu-
ment list. For the latter, that means the number and types of these ar-
guments may vary. In this case, the type of argument passing (value or
reference) is the same for all arguments.

The predefined library is implemented by two tables. The first one ¢fp_descr//
is an array of predefined routine descriptors and the second targ_descr/] is
an array of argument descriptors.

A predefined routines descriptor is a structure of the following fields:

e routine name;

e routine address;

e routine arity;

e the type of the returned value;

e index in targ_descr[] of the first argument descriptor related to this
routine.

If a routine has a variable-length argument list, its arity is (-1) by convention
and the last field of its descriptor (index in targ_descr/[) must be interpreted
as the passing mode which is common to all its arguments.

An argument descriptor (i.e., an entry in targ_descr/]) is a structure of the

following fields:
e the passing mode (reference or value);
e argument type.

Here is the C declarations of these two tables:

typedef struct { /* predefined routine descriptor*/
char *name ; /* function or procedure name */
retfp fp_ptr; /* its address x/
int narg; /* =-1 when variable arity */
enum type rettype; /* type of the returned value x/
int argp; /* index in the table targ_decsr/] */

} fp_descr;

fp_descr tfp.descr[tfp.descrlg];

enum passtype {value, ref}; /* the passing modes x/

typedef struct { /* an argument descriptor x/
enum passtype tpass; /* the passing type x/
enum type targ; /* the type x/

} arg descr;
arg_descr targ. descr[targ descrlgl;

23

Conventions for arguments passing The purpose is to give a precise
specification of the interface between the evaluator and a C-routine. This is
a crucial point since the user writing his/her own C-routine to be integrated
with existing library, must supply the arguments in a well defined format
in order to be handled properly by the evaluator. Conversely, an argument
area supplied by the evaluator must be correctly interpreted by a C-routine
unless something could go wrong.

Since a C-routine may take a variable number of arguments, rather than
supplying a list of arguments, a pointer to a memory area containing the
list of arguments is supplied instead. As a result of this choice, two points
have to be specified:

e how ASAX data types (integer and string) are actually represented;

e how these data are organized in the arguments area so they can be
parsed correctly by a C-routine.

ASAX data representation: The integer type in ASAX is simply rep-
resented as a 4-bytes int in C since the evaluator was written in C. As a
result, since ASAX code is supposed to be completely portable, the user
bears the responsibility to choose the the appropriate scalar type (short,
int, long int) having 4 bytes in size. This integer-size assumption is neces-
sary in order to avoid problems when porting ASAX to an architecture with
a different word size characteristics.

A string s of length [is represented by a pointer to a memory area of two
fields. The first one which is 2-bytes long is the length of s and the second
is the string itself which is 2*%((141) div 2) bytes long. This area is always
aligned on 2 bytes boundaries.

Format of an argument area: A predefined C-procedure p(pi,...,pn)
is implemented by a C-routine which takes a single argument which is the
address of a memory area representing the argument list. This area is al-
ways aligned on a 4 bytes boundaries for compatibility reasons and has two
different formats depending on the kind of the predefined routine: fixed or
variable-length.

1. Fixed arity: (see Figure 3.26)
Consider a given argument p;. If p; is a value argument:

e of type integer, p; is this integer;

e of type string, p; is the pointer representing this string.
if p; is a reference argument:

e of type integer, p; is a 4-bytes pointer to a 4-bytes int;
e of type string, p; is a 4-bytes pointer to a 4-bytes aligned area.

The example of Figure 3.27 illustrates the four above cases. So the
internal code generated for it is shown in Figure 3.28

24

WA:W p1| |Pn|

Figure 3.26: layout of an argument area

212

123 4 |toto

6 totol

Figure 3.27: example of an argument area
2. Variable arity: (see Figure 3.29)

The first field of this area is a 4-bytes int which is the actual number
of arguments passed to the predefined routine and then a contiguous
sequence of pairs (¢;, v;) where ¢; is the type of the 7-th argument and
v; its value whose representation follows the same conventions as for
fixed arity routines.

So the internal code generated for it is shown in Figure 3.30. It is
similar to that of fixed arity except that the actual arity as well as
the type of each argument is determined at compile time. The boxes
ra(expr;, -,-) have the same content as for the fixed arity case. The
first box stores the actual arity at the beginning of the argument area;
the other boxes store the type of each argument right before its value.

B1: On:
'B:l ra‘(a‘rgh 1327 5’in,1) | s | ra‘(a‘rgna /311-}—17 5’in,n) |

Bri1: || callp [T | §ina| @ |

Figure 3.28: Predefined procedure call box notation

25

5in

i

WAV = ool - Toulval

Figure 3.29: layout of an argument area

| mv_int1 | bin0 | 11| | |

On: | mv_intl | 5in,n| tn | | |
|

¥
0G1: | mv_intl | bin,1 | t1 |I |
|

Y e
| ra(argl, 5out,1, ,32) | | ra(argn, 5out,n, ,3) |

G: |ca11 |H |fpp|/|

Figure 3.30: Reference parameter

For both cases (fixed and variable-length argument list), we have the follow-
ing:

® 0in1 = 0in if the routine is a procedure otherwise, 6;n1 = 6in + v
where v is the length in bytes of an int and the returned value of the
predefined function is stored at the address 6;5 1;

® Oinitl = 6out,'i;

e if arg; is a value parameter, and no box is generated for its evaluation
(i.e., arg; is either a constant, a variable or a field name), ra(arg;,
outis Bit+1) is shown in Figure 3.31 where +; is the address of arg;.
The semantics of this box is move the integer value from address 7, to
the address foyz ;. Otherwise, ra(arg;, 8, 6) is simply ri(arg;, 6, 8).

| move_int1 | Oout,i | Yi | _I_..

Figure 3.31: move box

e if arg; is a reference parameter, ra(arg;, 8, §) consists of the box given
in Figure 3.32 where v is the address of the variable arg;. This abstract
instruction simply moves 7 at location §.

26

|| assign_addrl [§ |y [”

Figure 3.32: Reference parameter

o call € { callpl, call f1}.

— call_p1 if this is a call to a procedure;

— call_f1if this is a call to a function.
e II is the address of the routine p;

The value returned by a C-routine implementing a predefined function is
the one returned by this function. This is always ensured by the evaluator.

3.4.9 Example of a rule internal code

Consider the following sample rule:

rule targetUser(userid, timelmt, flag: string);
begin
if
evt = ’login’ and
userid present and
timestp > timelmt
— sendmsg(Msg;, uid, timestp);
station = ’console’
— sendalarm(Msgy, uid, timestp);
fi;
flag := ’on’;
end

It is used to track a targeted user and sends a message Msg; if this user
tries to log the system later than a certain time limit timelmt. It also sends
an alarm message Msg, if this same user was logging the console. In either
cases, this rule sets a certain flag to >on’.

The corresponding internal code is given in Figure 3.33.

As stated above, when the address nil is reached, the rule execution has

been completed.

3.5 Abstract machine instruction set

This section is an overview of the abstract machine language. The abstract
machine instructions (instruction set) are fully described by their parame-
ters, their effect as well as the C declaration for their representation. The
effect of an abstract machine instruction is explained without relating it to

27

ptr

| = | evt | "login’ | | |

¥
|present |userid| i | _I_,

¥
|:|userid|uid | i | !

Y

Y
| > Itimestp Itimelmtl | | _I—,
|
Y
| call_p | &sendmsgl 61 | _I—,

Y
|: |station| ’console’l | | | |
|

|
v ¥
| call_p | &sendalarm I b9 | _I_,I assign_adr | flag | ‘on’ | nil |

Figure 3.33: Rule internal code: Example

how the instruction contributes to the rule-based implementation.

Every abstract machine instruction (a.m.i) consists of an operation part fol-
lowed by a number of arguments. The value of the operation part fully
identifies the abstract instruction. These values can be divided into the
following classes:

arithmetic arithmetic instructions;
relational relational instructions involving integers or strings;
assignment of integer or string variables;

audit data presence an instruction that simply checks if a given audit
data is part of the current audit record;

rule triggering a set of abstract instructions that initialize and push a rule
triggering descriptor in a stack of active rules;

pre-defined routine call instructions that call a pre-defined procedure or
function;

which are described in the sequel.

3.5.1 arithmetic

The box notation of this a.m.i. is in Figure 3.34 where w denotes an arith-
metic operator (*, div, 4+, —) and 7; and 7, denote addresses of integer

28

B: |[w [bin] 12 [2] @ ||

Figure 3.34: Arithmetic operator

values vy, vs.
The effect of this instruction is to store the value v; w vy at location é;, and
then to execute the a.m.i. at location a.

3.5.2 relational

The box notation of this a.m.i. is shown in Figure 3.5.2 where w denotes a

B |[w [n 2]] ag|

relational operator ({<,<,>,>,=,!=}) and ~; and 7, denote addresses of
integer or string values v1, va. The effect of this instruction is to execute
the a.m.i. at location oy (resp. af) if vi w v, is evaluated to true (resp.
false). There is 12 values of the operation part in this class depending on
the relational sign involved and the type of the argument (integer or string).

3.5.3 assignment

This abstract machine instruction moves pieces of data between two loca-
tions. We distinguish two kinds of assign instructions depending on how the
content of these locations is interpreted.

assignl

The box notation of this a.m.i. is in Figure 3.35

B: || assignl |71|72|a ||

Figure 3.35: integer assignment

where 75 is the address of an integer value. The effect of this instruction
is to move the integer value at location ;5 to location ; and then to execute
the abstract machine instruction at location a.

assign_strl

The box notation of this a.m.i. is given in Figure 3.36 where -y, is the address
of a string. The effect of this instruction is to move the string from location
72 to location <y; and then to execute the abstract machine instruction at
location a.

29

B: || assign_strll Y1 | ’}’2| a ||

Figure 3.36: string assignment

3.5.4 audit data presence

The box notation of this a.m.i. is given in Figure 3.37 where v denotes a

G: ||present |'y |at|af||

Figure 3.37: Current record reference

string address. The effect of this a.m.i. is to execute the a.m.i. at location
oy if the length of the string is not 0 and to execute the a.m.i. at location
a; otherwise.

3.5.5 rule triggering

All boxes in this class assume the following global variables.

o Size
This is an integer variable that eventually holds the size of the rule
triggering descriptor. It is initialized to the size of the parameter area
which is determined at compile time. At run time, it is incremented by
the total size of the strings to be saved in the rule triggering descriptor;

o Eff ptr
This a pointer to the first free position in the parameter area of the
rule triggering descriptor. When an argument value is copied to this
area Eff_ptris advanced by the required number of bytes;

e Str_ptr
This is a pointer to the first free position in the area for saving strings
in the rule triggering descriptor.

1. Set descriptor length

(a) Box notation

setLenl | Size0 |a|

Figure 3.38: set length box

30

(b) arguments

int SizeO;

(c) Effect:

Size = Size0;

(d) Note:

Size0 is the size of the working area after all rule arguments are
evaluated;

2. Increment descriptor length

(a) Box notation (see Figure 3.39)

|addLen1 |'y |a |

Figure 3.39: add length box

(b) arguments

char **~;

(c) Effect:

Size is incremented by the size of the string pointed by 7 (in the
format length, value);

(d) Note:

the incremented size is the size of the string plus the size of the
length field of the string;

3. Push descriptor

(a) Box notation (see Figure 3.40)

(b)

()

| tr_mode | codel o |

Figure 3.40: trigger box

arguments
int tr_mode; /* identifier of the stack of active rules */
Box *code; /* a pointer to the rule internal code */

Effect:

a storage area is allocated for the rule triggering descriptor and
pushed in the appropriate stack depending on the value of ¢r_mode.
Eff ptr and str_ptr are initialized as shown in Figure 3.41 ;

Note:

the argument area as well as saved strings are copied in the rule
triggering descriptor after the latter is pushed in the appropriate
stack of active rules;

31

s Eff ptr str_ptr

L !

| Ig | 'paramVa,luesl savedStrings | boxPtr | nextCelll

Figure 3.41: initialization of Eff ptr and str_ptr

4. Copy integer

(a) Box notation (see Figure 3.42)

|cpy_i11t1 |'y |a |

Figure 3.42: copy integer box

(b) arguments
int *v;
(c) Effect:
the integer pointed by < is copied at address Eff ptr; Eff pir is
incremented by the size of an integer;
(d) Note:
NONE;

5. Copy string address

(a) Box notation (see Figure 3.43)

| cpy_strAddrl |'y | a |

Figure 3.43: copy a string address box

(b) arguments
char **~;

(c) Effect:
the string pointed by < is copied at address Eff pir; Eff ptr is
incremented by the size of a string value;

(d) Note:
NONE;

6. Save string

(a) Box notation (see Figure 3.44)

(b) arguments
char **~;

32

save_strl |'y |a |

Figure 3.44: save a string box

(c) Effect:
the value of str_ptris assigned to Eff ptr; Eff ptr is incremented
by the size of a string value, then the string itself is saved in the
rule triggering descriptor starting from address str_ptr. str_piris
incremented by the size of the saved string;

(d) Note:
NONE;

3.5.6 Pre-defined routine call

The box notation of this a.m.i. is in Figure 3.45

G: || call |H|5 |a||

Figure 3.45: The call box

e if call = call_pl, this is interpreted as a call to a procedure where II
is its address. The effect is to call this procedure with the parameter
list pointed to by é and then to execute the abstract instruction at
address o;

e if call = callf1, this is interpreted as a call to a function where II is
its address. The effect is to call this function with the parameter list
pointed to by § + a size of an integer value. The returned value is
stored at location §. Then the abstract instruction at address a is
executed.

assign address

This a.m.i is represented by the box in Figure 3.46 where -y, denotes a
variable address. The effect is to assign this address to the variable pointed
by 1 and then to execute the a.m.i pointed by a.

| assign_addrl | Y1 | Ya | a |

Figure 3.46: assign address box

33

move integer box

This a.m.i is represented by the box in Figure 3.47 where source denotes an
integer address. The effect is to move the integer from location source to
location dest and then to execute the a.m.i pointed by «.

| move_ntl | dest |source | o |

Figure 3.47: move integer box

move string box

This a.m.i is represented by the box in Figure 3.48 where source denotes a
string address. The effect is to move the address of the string from location
source to location dest and then to execute the a.m.i pointed by .

| move_strl | dest |source | o |

Figure 3.48: move string box

move integer value box

This a.m.i is represented by the box in Figure 3.49 where source denotes an
integer value. The effect is to store the integer v to the location § and then
to execute the a.m.i pointed by .

|mv_int1 |5 |v |a|

Figure 3.49: move integer value box

3.5.7 C declarations

The purpose here is to define a C type that holds all kinds of abstract ma-
chine instructions. This type is implemented by a structure having three
fields. Two fields are common to all abstract machine instruction internal
codes and the third one depends on each particular kind of abstract instruc-
tion. The common fields are the operator part and the address of the next
instruction to be executed while the third part is interpreted depending on
the operator part and is defined by a union. Let us first give the C decla-
rations for the third part corresponding to each kind of abstract machine
instruction.

34

typedef struct {
int val;
char *deltaln;

} mv_int;

typedef struct {
int *gammal, *gamma2;
} assign_int;

typedef struct {
hole *gammal, *gamma2;
} assign_str;

typedef struct {
char *gammal, *gamma2;
} assign_addr;

typedef struct {
int *deltaln, *gamma;
} un_minus;

typedef struct {
int *deltaln, *gammal, *gamma2;
} arithm;

typedef struct {
void *(*fpptr)();
char *deltaln;

} call;

typedef struct {
char **str_addr;
BoxPtr alphaTrue;

} present_typ;

typedef struct {
BoxPtr ruleCode;

} trigger;

typedef struct {
char **gammal, **gamma2;
BoxPtr alphaTrue;

} StrRelat;

typedef struct {
int *gammal, *gamma2;

35

BoxPtr alphaTrue;
} relational;

typedef struct {
hole *dest, *source;

} move;

typedef struct ami {

enum operation op;

union {
mv_int mv_intbox;
assign_int assign_intbox;
assign_str assign_strbox;
assign_addr assign_addrbox;
un_minus un_minusbox;
arithm arithmbox;
StrRelat StrRelatbox;
relational relationalbox;
present_typ presentbox;
trigger triggerbox;
char *rule_name;
call callbox;
move movebox;
hole *gamma;
int size;

} arg;

BoxPtr alpha;

} Box;

36

Chapter 4

Overview of the syntax
analyser implementation

4.1 Introduction

This part of the document is devoted to the implementation design of the
analyser. The basic functions achieved by the analyser are the following;:

o detect syntactic and semantic errors occurring in the program text and
help the user finding and correcting them;

e in case the program is error free, the analyser has to generate an
internal code for the program. This internal code will be used by the
interpreter in order to execute the program,;

Therefore, the main issues discussed here are:

e the lexical analyser or scanner which offers a set of functions that
transform a program text into a set of words or tokens;

e The syntactic and semantic analyser which provides parsing functions
as well as the primary type checking routines;

e the global data structures as well as the functions handling them.

4.2 Analysis principles

In this section we discuss informally the implementation design principles
and main ideas. In the subsequent sections, we examine in detail the various
steps of the analysis.

The scanner implementation is concerned with recognizing tokens in the
program text to be analysed and replacing them with a more convenient
representation. Tokens are recognized according to their BNF syntax given
in 4.4.3. The last symbol being read is stored in a global variable along with
its type (identifier, integer, C_string,... etc). The main ideas of its imple-
mentation is that the scanner is always one character ahead. At the end of

37

the lexical analysis, the program text is converted from a row sequence of
characters to a sequence of symbols.

The syntax analyser or parser task involves recognizing correct sentences

and detecting possible syntax errors. The parser deals with the symbol se-
quence built up by the scanner. When the parser is executed it examines
one or more symbols and determines whether they form a syntactically le-
gal sentence as described by the language syntax. If the program is error
free, internal code is generated for it. This code is later used to execute the
program appropriately. The parser is always one symbol ahead i.e., it uses
a single-symbol look-ahead method.
The parser uses the external variable symb which holds the internal represen-
tation of the last symbol being read. This symbol along with the remaining
symbol sequence in the program file to be analysed forms what we call the
current symbol sequence that is the sequence of symbols to be treated next
and will be denoted by css throughout. For every BNF rule, the parser con-
tains a subprogram that is dedicated for parsing constructs having such a
BNF grammar. When such a subprogram is activated, the css has (if error
free) a prefix that satisfies this BNF grammar. However, the css may have
many such a prefix. It turns out that the prefix to be considered is in fact
the greatest omne.

Besides syntax checking, the parser has to generate internal code of all
constructs it recognizes. An important feature of the analysis discussed here
is that it is performed in a single pass. Consequently, the generated inter-
nal code is the final one and no intermediate code is needed. The resulting
internal code is ready to use by the interpreter. To achieve this feature, the
parser uses a technique consisting of generating incomplete codes. The main
idea behind this is that at the moment the parser generates an internal code,
it does not know the value of certain data fields yet. For instance, the parser
does not know where certain pointers must go. The point is that the parser
will keep track of these missing data fields until their values are available.
We will examine this in more details in the next section.

Among the other functions of the parser, some are used (as auxiliary
functions) to manage certain global data structures such as:

e the current record table which is used to access the current record;

e the rule descriptors table that contains a descriptor for each rule in
the program;

e external to internal audit data identifier mapping table.

38

4.3 Main global data structures

4.3.1 Rule descriptors table

The set of rules declared in a file are represented by three tables. The first
one trdescr|] is an array rule descriptors, the second tdescr|] is an array of
formal parameter and local variable descriptors and the third targ_types|] is
an array of argument types. A rule descriptor contains the necessary infor-
mation relevant for a rule declaration. When the parser recognizes a rule
declaration, it collects all information about this rule (name, arguments,
local variables, action part, ..., etc), adds a new descriptor for this rule to
trdescr[] and adds to tdescr|] as many parameter and local variable descrip-
tors as there is in this rule declaration.

A rule descriptor is a structure of the following fields:

e rule name;

e a pointer to its internal code;

e number of formal parameters;

e number of local variables;

e the size in bytes of the Actual Parameter Area (A.P.A);

o rule status which is a flag that indicates whether the rule was:

— not declared yet and is triggered for the first time or;
— not declared yet and was triggered at least once;
— already declared.
e index in tdescr]] of the first formal parameter or local variable descrip-
tor related to this rule. The value of this field is undefined if parser

had not yet encountered a declaration for this rule. In this case, the
next field is considered instead;

e index in targ_types|] of the first argument type related to this rule.

If a rule declaration was already encountered in the source file, arity and
type checking are performed using the table tdescr|] otherwise, the table
targ_types|] is used instead. The parser evaluates the statusfield to determine
which table (¢descr|] or targ_types[]) to consult. An entry in tdescr(] is a
structure of the following fields:

e a flag that indicates if this is a formal parameter or a local variable;
e its name;
e its type;

An entry in targ_types|] is simply the type of an argument in a rule triggering.
These three tables must be declared external to at least two functions:

39

e functions that parse a rule declaration and creates a descriptor for it;

e functions which parse a rule call and must check if this call is done
appropriately i.e. correct parameter number and types (type checking
will be addressed in a later section).

The descriptors in trdescr(|, tdescr|] and targ_types|] are stored in the order
they occur in the source file.
Here is the C declarations of these tables:

typedef struct {
char rulename[ident 1g];

Box *Code; /* internal code of this rule */
int Parlre; /* nbre of formal parameters */
int VarNre; /* nbre of local variables */
int APASize; /* size in bytes of A.P.A. x/
int status; /* unknown, known or declared rule */
int nameDescr; /* index into tdescr[] */
int targDescr; /* index into targ_types[] x/
} rdescr;

rdescr trdescr[MaxRuleNr];

enum type {integer, bytestring, fieldstring, undef};
enum var par {var, par};

typedef struct {

enum var_par iname; /* param. or a var. x*/
char name[ident 1g]; /* its name */
enum type tname; /* its type x/

} namedescr;
namedescr tdescr[MaxVarNr];

enum type targ_types[MaxVarNr];

4.3.2 Current record table

The current record table must be visible to all the parsing functions because
field names may occur everywhere in a program:

e as argument of a rule triggering or a procedure call;
e as a subexpression of any expression.

As mentioned in the previous section, all references to a current record field
in a rule declaration is converted into an indirection through the current
record table. Consequently, this table must be declared external to the
following functions:

40

e all parsing functions;
e all subprograms that create internal codes;
e all functions that initialize and update this table.

This last category of functions add new entries in the indirection table as
new references to audit data are encountered during the parsing process. At
the end of the parsing, all references to the current audit record will have
been registered in the indirection table.

Furthermore, because this table must be sorted with respect to audit data
identifiers, a newly encountered field name is inserted in this table so as this
order is maintained after insertion.

As a result, this table is implemented as an array where each entry is related
to an audit data and have the following items:

e the audit data identifier;
e a pointer to this audit data inside the current record;
Finally, here is the C declaration of a current record table entry:

typedef struct {
unsigned short ad_id; /* audit data id */
char *ad_value; /* audit data value */
} CR_table_entry;

CR_table entry CR_table[Max ad id];

A field name reference contained in a construct internal code (for instance
an expression involving the current record fields) is then replaced by the
address of the indirection table entry that contains the pointer to the field
inside the current record i.e., the address of the field ad_value in this table.
This address is fully determined at the end of the analysis. (See Figure 4.1).
Rules for accessing and updating this table are described in more details in
the next sections.

|id1|11|V1 | |1d1|11 |V1; |idi_|_2|11’_|_2 |V1;_|_2 ||1dn|1n|vn |

[0]

A

id; o i, |idis o i,

Figure 4.1: The current record table

41

Note

It is interesting to note that although the physical location of a particular
audit data can vary from an audit record to another, the indirection table
allows direct and constant access to audit data.

4.3.3 Standard library table

The standard library table must be declared external to the function that
parses predefined procedure calls. It is used to make the necessary checks
to make sure the call is done correctly i.e:

o there exist a standard library table entry corresponding to this call;
e the arguments are used accordingly i.e:

— same arity (number of arguments);
— argument type (integer or string of bytes);

— argument passing type (call by reference or by value);

See the previous chapter for the C declaration of the standard library table.

4.3.4 Holes and list of holes

The problem of incomplete internal representation was outlined in a previous
section. To examine this in more details, let us introduce some definitions.
A hole is simply a location that has not yet been assigned a value. Suppose
we know for some reasons that a set of holes have to be assigned the same
value at a certain point during execution. To keep track of all these holes,
we form what we call a list of holes which is simply a linked list where each
hole is assigned the location of the next hole in the list; the last hole been
simply non instantiated. As soon as the missing value is obtained (as a
return value of a given routine or whatever), it is easy to scan this list and
assign each of its holes this given value.

The problem of incomplete internal code is based on managing holes
and lists of holes. The box notation of an internal code always contains the
location of the next statement to be executed. Therefore the parser must
generate an internal code for a given statement although it lacks the location
of this next statement. For example, the corresponding box notation for the
condition:

present user_id or present process_id

is internally coded as shown in Figure 4.2.
At the moment the subexpression:

present user_id
is parsed and an internal code generated for it, there is no internal code for

the second subexpression:

42

G1: Ba:
B: || presentl uidl afl ﬂ2|| || presentl pidl atl afl

Figure 4.2: Box notation

present process_id

and therefore, the address of this internal code is not known. Clearly, 85 is
a hole.

In general, the internal code of a given construct cons is a set of one
or more (terminal) boxes containing possibly some holes. To cope with this
situation, we associate to each construct internal representation one or more
lists of holes. All holes of one such a list must later be assigned the same
address as soon as this address is known. As the parsing proceeds, new lists
of holes are created and others are instantiated. In fact, either a construct is
a condition and we have exactly two lists of holes one related to the branch
address o; and the other to the branch address ay. Or the construct is
not a condition and in this case a unique list of holes is associated to the
corresponding internal code. This list must be assigned the location of the
next statement to be executed. Let us see this in examples.

Example 1

Consider the following condition:
aorborc

where a, b and ¢ denotes conditions. The box notation of the corresponding
internal code is of the form:

ptr

B Ba: Bs: 7
B: |eval |adr(a)] ~]B2| [eval |adr(b)|[, [B3| [eval [adr(c)| , [oy
[} | 4 |

Figure 4.3: Example of list of holes
Clearly, we have two lists of holes. The first one is related to a; and the
other to ay. Note that an elementary condition has two lists of holes of one

element each.

Example 2

43

Consider the conditional action:
ifbl —> A1y - . 4 bn—> a’nﬁ

where by, ..., b, denotes conditions and a;, ..., a, denotes actions. The
corresponding internal code is of the form:

[eal[ba] [J—[oallba] T~ ... —[eal]b]],]

Figure 4.4: Conditional action incomplete internal code

which has a list of holes of n+1 elements. The location of the next state-
ment to be executed after the if fi statement is related to this list.

Similarly, references to the current audit record cannot be determined
until all the rules are parsed. When a reference to a particular audit data is
encountered during the parsing, it is inserted as a member of a list of holes
related to this reference. At the end of the analysis, when all the the current
audit record references are known and registered in the current record table,
all holes belonging to a particular list of holes are updated to point to the
related current record table entry.

Note that the implementation of lists of holes uses these very holes to
keep track of them and no additional auxiliary data structures are used to
store them.

At any time of the parsing we have either one or two lists of holes. These
lists must be external to all parsing functions because a list of holes created
(or extended) by a given function must be passed to the parsing function
handling the next statement.

4.3.5 Names mapping table

For the sake of efficient condition evaluation, field names are coded into in-
ternal form which is simply the audit data identifier. This table is a mapping
between external and internal field names.

Given an external field name, we can search this table to get the corre-
sponding field name identifier. Note that this table is based on the audit
data description file generated by the format adaptor (see [6]) and must be

44

external to all parsing functions. Here is the C declaration of such a table:

typedef struct {
unsigned short ad_id;

char *field name;

} map_slot;

map_slot mapping table[Max_ad_id];

4.4 The lexical analyser

4.4.1 Introduction

/* audit data id */
/* audit data name */

In this section, the scanner is examined and specified in detail. After recall-
ing the rule-based language concrete syntax, we will discuss the scanning
principle, the global data structures and related functions as well as the
specification of the main scanning functions. Here is the concrete syntax of

a token:

(token) (identifier)
| (constant)
| (special symbol)

(identifier) = (letter)
| (identifier) (digit)
| (identifier) (letter)
| (identifier) (underscore) (letter)
| (identifier) (underscore) (digit)

(constant) (integer constant)
| (Cliteral)
| (X literal)

(integer constant) = (digit)
| (integer constant) (digit)

(Cliteral) :=’ (C_sequence)’

(C_sequence) (empty)
| (C_sequence) (C_character)

(C_character) ::= any printable ASCII character except simple

quote (’) | *?

(X literal) X’ (X sequence)’

45

(X sequence) ::= (empty)
| (X_sequence) (X_symbol)

(Xsymbol) = (X_character) (X_character)
(X _character) :==0|... |9 |[A/B|C|D|E|F
(digit) ==01]1]2]3]4|5|6|7]|8]9
(letter) ==a |[.. |z2|A|... |Z

(special symbol) ==+ |~ | ¥ [(|) | > | < |1=]<| [>]:
| %= |3;|=]|->]:=|, | and | at_completion
| begin | div | do | end | false | fi | for_current
| for_next | not | od | off | or | present | rule | skip
| string | if | integer | mod | trigger | true | var

4.4.2 Lexical analysis principle

The scanner recognizes the tokens in accordance with the above syntax and
returns for each token an internal code which will be described here. The
scanner is always one character ahead i.e., at the time it returns a token, it
has already read the character ahead of this token.

4.4.3 Specification of the scanner

The scanner getsymb reads the next token in the standard input (stdin). It
has the following external objects:

e specsymbtab]]
which is a table of all special symbols stored as strings:
char * specsymbtab[]={"and”,”at_completion”,”begin”
,7div”?,”do”,”end”,”false” ,”fi”,” for current”,

"for next”,”if” ”integer”,”mod”,”not”,

770d77 ,77 Oﬁ')) ,77 OI_” ,”pI‘esent” ,77 I‘u].e” ,)7 Skip” ,17 String” ,

"trigger”,”true” ,”var” };

e symb which holds the last read symbol. Its type is defined as follows:

typedef struct symb {
enum index ibsymb; /#* index in specsymbtab[] x/
int X 1g; /* length of X literal */
union bsymbval {
char svalue[MAXS]; /#* identifier, spec. symbol */
/* C or X literal; */
int ivalue /* an integer or a boolean */

46

};

The variable tbsymb indicates the type of the token which is defined by
the set {identifier, special_symbol, X literal, C_literal, integer, boolean}.
The second member of the structure is the token itself and is repre-
sented by a union.

e nectchar the last character been read;

A scanner call has the following effect:
Let a be the current input stream. a can be uniquely decomposed into the
form:

a'B

where o' is a possibly empty sequence of spaces and 3 a possibly empty
character sequence not beginning with a space character.
If there exists a greatest prefix ¢ of g such that:

e 0 is a token;
e [is of the form ov;

The effect of getsymb is to assign the internal representation of o to symb;
after this call, the content of the input stream is 7; the first character of
been returned in neztchar.

If B is of the form ?3’, the effect of the call is to assign the value nosymb to
symb.ibsymb; the content of stdin been §'.

otherwise, getsymb assign symb.ibsymb the value errsymb leaving the input
stream in an undefined state.

The scanner module contains the following main functions:
e get_char;

e skipspaces;

e get_identifier;

e get Cstring;

e get Xstring;

e get_integer;

which are here under specified:

47

4.4.4 Auxiliary functions specification

Each of the above functions has the following external objects:
e specsymbtabl[];
e symb;
e nextchar;
e morechar;

Let ¢ = nextchar i.e., the last character been read and o the current input
stream; in the following, ca is called the current character sequence.

get_char

precondition
the current input stream is a possibly empty character sequence ¢;

postcondition
If a is empty:
e a special character ’?’ is returned in nextchar;

e morechar is set to 0.
Otherwise, a = ca’

e the first character of a is returned in nextchar;
e morechar is set to 1;

o the current input stream is o’.

skipspaces

precondition
the current input stream is a possibly empty character sequence ¢;

postcondition

e If o is empty, skipspaces has no effect;

e Otherwise, a is of the form o'B where o' is a possibly empty
sequence of spaces or end of lines and 8 is a possibly empty
sequence of characters not beginning with a space or an end of
line character;

o the effect of skipspaces is to put the current character sequence
in the form g.

48

get_identifier

precondition
the current character sequence is ca where c is a letter and a is a
possibly empty character sequence;

postcondition
e ca = oy where o is the greatest prefix of ca such that o corre-

sponds to an identifier;

o the effect of get_identifier is to return the internal representation
of o in symb and set the current character sequence to be ~.

get_integer

precondition
the current character sequence is ca where

e c is a decimal character;

e o is a possibly empty character sequence.
postcondition

e ca = o7y where

— o is the greatest prefix of ca such that ¢ is a sequence of
decimal characters representing an integer constant;

— 7 is a possibly empty character sequence.

o the effect of get_identifier is to return in symb the internal rep-
resentation of ¢ and put the current character sequence to be

v.

get_C literal
precondition
the current character sequence is ca where
e cis 7

e o is a possibly empty character sequence.
postcondition

e if ca = '3’y where
— B is a C sequence (see 4.4.1);
— 7 is a possibly empty character sequence.

— the effect of get_C_literal is to return in symb the internal
representation of the C literal represented by 8 and put the
current character sequence to be 7;

e otherwise, the value errsymb is returned in symb.ibsymb.

49

4.5 Functions handling the global data structures
4.5.1 add_rule_descriptor
The rule descriptor table trdescr|] is a set of rule descriptors
rdescry, ..., rdescry, (n>0)
where
rdescr; = (rule_name;, for_par;, loc_var;, action_part;) (i=1, ..., n).

As a result, a rule descriptor table can be defined by the corresponding set
of rule descriptors.

precondition

e RDg is a rule descriptor table associated to the set of rule de-
scriptors {rdecry, ...,rdecr,} (n > 0);

e rdecr = (rule_name, for_par, loc_var, action_part) where

— rule_name is a pointer to the rule name internal code;

— for_par is a pointer to a formal parameter descriptor;

— loc_var is a pointer to a local variable descriptor;

— action_part is a pointer to the internal code of the rule rule_name
action part.

postcondition
the effect of this function is to update the rule descriptor table trdescr]]
so that it corresponds to the set RD; = RDg U {rdecr}.

4.5.2 add_field_name

This function adds a new entry to the current record table. Recall that this
table is implemented as a linked list of cells each one related to an audit
data.

The current record table is defined by the corresponding set of cells:

{celly, ..., cell,} (n > 0).
A cell is a triple:
e audit data identifier;
e pointer inside the current record;
e pointer to the next cell.
This set is sorted with ascending audit data identifiers.

precondition

50

e CRTy is the current record table defined by the corresponding
set of cells Co = {celly, ..., cell, } (n > 0). This set is sorted
with ascending audit data identifiers;

e idis an audit data identifier.

postcondition
the effect of this function is to return a pointer to a current record
table defined by the set of cells

Cl = Co U {cell}
where cell have id as its audit data identifier.

4.5.3 get_audit_data_id

The purpose of this function is to search the table of external into internal
field names mapping for the audit data identifier corresponding to a given
audit data external name.

global objects
table of external into internal field name mapping;

precondition

e the names mapping table is instantiated;
e it is sorted with external names;

o field name is a string;
postcondition

e the names mapping table is unchanged;

e if there exists a table entry (external name;, audit_data_id;) such
that field_name = external_name;, a pointer to id; is returned;

e otherwise, the value -1 is returned.

4.5.4 insert_incomplete
The purpose here is simply to add a new hole to a list of holes.
precondition

e hole list ptr is a pointer to a list of holes;

e hole ptr is a pointer to a hole i.e., the address of an non instan-
tiated pointer;

postcondition

e the hole pointed to by hole ptr is added at the beginning of the
hole list pointed to by hole 1ist ptr.

51

4.5.5 concate_incomplete

Given two lists of holes, the effect of this function is to concatenate them
and return a pointer to the resulting list of holes.

precondition
hole 1ist _ptr; and hole 1list ptry are two hole lists pointers;

postcondition
e let last hole be the last hole of the hole list pointed to by

hole list ptry;

e The effect of this function is make this pointer point to the second
list i.e.,Jast hole = hole list ptr; and return hole 1list ptr;.

4.6 Specification of the parser functions

4.6.1 Common features

Before giving the specification of the main parsing functions, it would be
useful to set up a terminology that will allow us to provide classes of speci-
fications instead of a specification for each particular function.

For each syntactical category (condition, expression, action, rule, ...etc),
a parsing function is provided for its handling. A table giving the set of
syntactical categories and the corresponding functions is given below.

1. let v be the current character sequence, (see 4.4.4). Suppose v has a
greatest prefix o such that o is a sequence of legal symbols

S2, .. Sn (n>0)

Suppose the last symbol been read is s; (returned in the external
variable symb). The symbol sequence sy, g, ..., sp is called the current
symbol sequence. This means we are always one symbol ahead.

2. consider a function corresponding to a given syntactical category and

let
® S, ... Sp (n > 1) be the current symbol sequence at a given
time of execution;
® 51,..., 5 (1<j<n)beanon empty prefix of this sequence.

we say that at that moment this function has the effect of handling the
symbol sequence s;, ..., s; if s;41, ..., 8, is the current symbol sequence
after call to this function and if the following conditions hold:

1. let

e v be the current character sequence before the call;

52

e o be the greatest prefix of y corresponding to the symbol sequence

82, -+ Sp.
then v is of the form af where 8 is an arbitrary character sequence.

e if j < n, the current character sequence after execution is of the
form o'B where o’ is the character sequence corresponding to the
symbol sequence s;3, ..., Sp;

e if j = n, and B is of the form ?3’, after execution, the current
input stream is 8’ and symb.ibsymb = nosymb;

e if j = n and B is not of the form ?8’, the execution is undeter-
mined and symb.ibsymb = errsymb.

2. in the first two cases (j < nand j = n), we have the following conditions:

(a) 1. in absence of syntactic or semantics errors (a list of semantics
errors will be given later), the function returns a pointer to
the internal code corresponding to the language construct
represented by the sequence s1, ..., s;;

ii. for every field name occurring in s1, ..., s;, the current record
table is updated to contain a new entry (if this reference has
not been previously encountered.) for this audit data;

ili. a pointer to the list of holes (two lists of holes in case of con-
ditions) corresponding to the generated incomplete internal
code;

iv. in case that s;, ..., s; represents a rule declaration, the table
of rule descriptors is updated to include an additional entry
corresponding to this rule descriptor;

(b) in case of errors (syntactic or semantics) an error message is sent.
Every error is identified by a code which is a character string.

Now, we are in position to give the specification of parsing functions.

4.6.2 Parsing functions specification

These functions are local to the syntactic and semantic module, they are
declared in an environment containing the following external objects:

o symb of type bsymb (see 4.4.3);

e szerror a boolean variable which is set to 1 if an error has been en-
countered and to 0 otherwise;

o the declaration of the external objects described so far (rule descriptor
table, current record table, table of names mapping, ..., etc);

e the definition of the needed types such as:

— bsymb;

53

— internal codes data structure.

The specification of such functions is then the following:
Let

e szcat be the name of such a function;
e cat the corresponding syntactic category;
e S the current symbol sequence before call to szcat:

If there exist a greatest prefix C of S representing a construct belonging to
the syntactical category cat, the effect of szcat is to handle this prefix.
Otherwise, the call to szcatr generates one or more error messages describing
the encountered error.

Tables of correspondence

sxrule rule declaration
sxlparam parameter group
sxlocal_var | variable declaration part
sxaction action part

sxcondition | condition

em sxcat cat

The function sxaction has the following auxiliary functions each one cor-
responding to a particular item of the action BNF syntax:

sxskip skip action

sxassign assignment

sxconditional | conditional action
sxrepetitive repetitive action
sxcompound | compound action
sxrule_trig rule triggering

sxcall predefined procedure call

Similarly, sxcondition has the following auxiliary functions:

54

sxconj
sxsimple_cond
sxtrue

sxfalse
sxpresent
sxrelational
sxnegation

conjunction

simple condition

true

false

present <field name>
relational expression
negation

55

Appendix A

System parameters

This appendix describes some limit figures of the system parameters. An
error message is output whenever one of these limits is exceeded in which
case the execution is aborted. This can occur either during the parsing of
the source file (compile time) or during the audit file analysis process (run
time). The columns of the following table are hereunder described:

name the name of the system parameter for which the limit is imposed;
max. the maximum value that must not be exceeded;
description an explanation of what is represented by this parameter;

line the line number of the source line in the source file ASAX param.h.
This make it possible to easily maintain system parameter values.

name max. | description line
MAXS 100 length of a C or X literal 1
ident 1g! 20 length of an identifier 2
MaxRuleNr 50 number of rule declarations 3
MaxVarNr? 150 total number of par. or var. 4
MaxVarRuleNr | 30 number of var./rule declaration | 5
MaxParRuleNr | 30 number of par./rule declaration | 6
Ext_Int Nre 50 number of global var. 7
MAX files 20 number of opened NADF files 8
Max_ad.id 1200 | audit data ids 9
lgIntConst 200 number of integer constants 10
lgStrConst 200 number of string constants 11
NbreBoxes 1000 | number of generated boxes 12
Notes

1. ident_lg is the maximum number of initial characters in an identifier
that are significant;

56

2. MazVarNr is the maximum number of local variables and formal pa-
rameters that can be declared in all rule declarations of a source file
while MazVarRuleNr and MazParRuleNr are respectively the maxi-
mum number of variables and parameters that can be declared in a
given rule declaration;

3. the type integer supported by the evaluator is assumed to be a 4-bytes
int;

57

Appendix B

Compiler error messages

The ASAX compiler diagnostic messages fall into three classes: lexical, syn-
tactic or semantic errors.

BoxPtrArray table overflow
Indicates that the maximum number of abstract instructions has been
reached. In this case, the constant NoreBoxes mentionned in the pre-
vious Annex must be set to a higher value;

Severe error: duplicate audit data
The named field name in audit data description file has two distinct
audit data ids;

action expected
an action was expected. This error is often generated when the last
action in a compound, repetitive or conditional action is semicolon
terminated;

audit data identifiers must be < 65536
Audit data ids are represented as unsigned short, this maximum
value is assumed for 2-bytes shorts;

check arity
A rule or predefined function or procedure was called with a wrong
number of arguments. The rule triggering, or the procedure or function
call must be performed in accordance with the rule declaration or
predefined procedure or function specification respectively;

error in expression
An error occurred during compilation of an arithmetic expression.
This can be caused for example by a missing operator or operand;

function not a procedure!
A function call was used as a procedure call. The returned value of a
function must be used as an expression;

58

identifier expected
An identifier was expected here but not found. An identifier is ex-
pected after the reserved word rule, as a left side of an assignment
action and as a passed by reference parameter in a predefined function
or procedure call;

invalid line
The source line given by its line number in the audit data description
file is invalid. See audit data description file syntax;

mapping_table overflow
Indicates that the maximum number of field names was exceeded. In
this case, the constant Max_ad_id mentionned in the previous Annex
must be set to a higher value;

not a field name
The token after the reserved word present is not a legal field name.
See your audit data description file to have the list of legal field names;

not a left value
The left hand side of assignment operator as well as a passed by ref-
erence parameter to a pre-defined routine must be the name of a local
variable. A passed by reference parameter is not allowed to be a field
name (nor a formal parameter of the rule) because this means the
audit file could be modified by the analyser;

out of memory
The total working storage is exhausted. Compile the file on a machine
with more memory or simplify the source file;

procedure not a function!
A procedure call was used as a function call: The procedure does not
return a value;

redeclared rule
the source file contains at least two rule declarations with the same
rule name;

semicolon expected
A semicolon was expected;

table of integer constants overflow
Indicates that the maximum number of integer constants in the pro-
gram text was exceeded. In this case, the constant 1gIntConst men-
tionned in the previous Annex must be set to a higher value;

table of string constants overflow
Indicates that the maximum number of string constants in the program
text was exceeded. In this case, the constant 1gStrConst mentionned
in the previous Annex must be set to a higher value;

59

too long line
A line typed 5 in the audit data description file must not be more than
256 characters long. If needed, such a line could be broken into several
consecutive lines of type 5;

type mismatch
The compiler detected an expression having a wrong type. This can
occur if the sides of an assignment operator are not the same type or
if the actual parameter (of a rule triggering or a pre-defined routine
call) is not the same type as the corresponding formal parameter;

type name expected
A name other than integer and string was used as a type name in a
local variables or formal parameters group declaration;

undefined function or procedure
The named function or procedure is not a part of the pre-defined
library. This could be caused by a misspelling either at this point or
at the declaration of this function or procedure as part of the pre-

defined library;

undefined rule
The named rule has no declaration. This could be caused by a mis-
spelling either at this point or at the declaration;

unknown identifier
The named identifier has no declaration. This could be caused by a
misspelling at this point or the declaration. An identifier must be a
local variable name, a parameter name or a field name;

warning: too long name
The identifier in lines typed 2, 3, or 4 of the audit data description file
is more than 30 characters long. This name is truncated to its first 30
characters;

60

Bibliography

[1] N.Habra, B. Le Charlier, A. Mounji. Preliminary report on Advanced
Security Audit Trail Analysis on Uniz 15.12.91. 34 pages

[2] I. Mathieu. Advanced Security Audit Analyser on Uniz 13.09.91. 40
pages

[3] F. Libion. Towards “intelligent” Security Audit Trail Analysis Tools..
MS Thesis. FUNDP Namur 1990-91. 130 pages.

[4] A. Baur, W. Weib. Analysis of protocol data using Al techniques. ZFE
IS SOF 4. 07.11.89.

[6] SAT team. Security Audit Trail stepl. 104.52.7 REV7. 22.11.91. 213
pages.

[6] E. Van Meerbeck, I. Mathieu. SAT X Format Adaptor REV0 42.01.92.
35 pages.

[7] W. Kernighan, M. Ritchie. The C programming language 1978. 228
pages

[8] B. Le Charlier. Language Simple Didactique (LSD/80) 1980. 149 pages

61

