
From MuPAD 1.4 to MuPAD 2.0

written by

Klaus Drescher, SciFace Software GmbH, drescher@sciface.com

and

Winfried Fakler, University of Paderborn, fakler@mupad.de

This document summarizes the most important changes from MuPAD 1.4 to
MuPAD 2.0 including the changes in the library and the programming lan-
guage. It also describes various tools to support users in converting code writ-
ten for version 1.4 to version 2.0.

i

ii

Contents

1 Introduction 1

2 Version Changing Support 3
2.1 Utilities in the New Library . 3
2.2 Converting Programs . 3

3 What is new in the MuPAD 2.0 Library? 5
3.1 Basic Mathematics and Calculus 5
3.2 Special Functions . 7
3.3 Graphics . 8
3.4 Linear Algebra . 8
3.5 Linear Optimization . 9
3.6 Numerics . 10
3.7 Statistics and Probability . 11
3.8 Generating Fortran Code . 11
3.9 Utilities . 12
3.10 Data Types, Domains and Categories 13

4 What has changed in the MuPAD 2.0 Library? 15

5 The new MuPAD Language 25
5.1 Lexical Scoping . 26

5.1.1 The Funarg-Problem . 26
5.1.2 The Closure-Problem, option escape 27
5.1.3 The LEVEL-Problem . 28
5.1.4 Symbols and Variables . 29
5.1.5 Accessing Arguments with args 31

5.2 Procedures and their Environments 31
5.2.1 Default Argument Values 31
5.2.2 Accessing the Domain a Procedure Belongs To 32
5.2.3 Variable Type Declarations 33
5.2.4 Operands of Procedures 33
5.2.5 Procedure Environments 33

5.3 Special Identifiers (Environment Variables) 34
5.4 No Pure Functions Any Longer 35
5.5 The $-Operator . 35
5.6 New Operator in . 36
5.7 Slots instead of domattr s and funcattr s 36

iii

0 Contents

5.7.1 Accessing Slots Using the :: -Operator 37
5.7.2 Overloading the slot Function 38
5.7.3 No Keywords as Operands of :: 38

5.8 Deleting Values . 38
5.9 User-Defined Operators . 39
5.10 Scope of Aliases and User-Defined Operators 39
5.11 Domains, Categories and Axioms 40
5.12 No subs of Domains Any Longer 42
5.13 Functions eval and hold Work as Expected 43
5.14 Operands and Output of Sets . 43
5.15 History contains Inputs and Outputs 44
5.16 Renamed Functions and Variables 45
5.17 Conditional Compilation . 45
5.18 Grammar . 47

5.18.1 Statements . 47
5.18.2 Expressions . 48
5.18.3 Factors . 50
5.18.4 Procedures . 50
5.18.5 Domains, Categories, and Axioms 51

5.19 Parallel Statements . 53
5.20 Debugging . 53

iv

1 Introduction

Version 2.0 of MuPAD differs significantly from the previous versions. The
new version features enhanced user interfaces, a new debugger frontend for
the MuPAD Pro version under Windows, the support of dynamic modules, a
more detailed documentation, and many other things.

In this document, the changes concerning the mathematical power of Mu-
PAD are described. This power resides in the library as well as in the program-
ming language provided by the system. Both have changed significantly.

Some library functions were renamed or moved from one library package
to another in order to achieve a more consistent naming and a more system-
atic library structure. Other functions still exist, but have a changed or en-
hanced functionality. Many new functions were introduced with version 2.0.
An overview of all library changes is given in the chapters

• What is new in the MuPAD 2.0 Library?

• What has changed in the MuPAD 2.0 Library?

With the introduction of lexical scoping in version 2.0, the programming lan-
guage has changed. The domains concept has got its own language constructs
and is now completely integrated into the MuPAD language. A detailed de-
scription together with the new grammar is given in the chapter

• The new MuPAD Language

of this document. Reading this particular chapter is essential for anybody writ-
ing MuPAD code.

Due to the changes in the library and the programming language, it may
happen that existing MuPAD code written for previous versions needs to be
adapted to the new syntax. For this conversion, various support facilities are
available. They are described in the chapter

• Version Changing Support

Some of the most noticeable changes in the library are the completely re-
designed property mechanism and the introduction of conditionally defined
objects which are integrated into the solver concept. This significantly influ-
ences MuPAD’s solve facilities as well as various system functions such as the
integrator int or limit . As an example, let us solve the general linear equa-
tion ax + b = 0 with respect to x. In version 2.0, solve produces a complete
answer considering all possible cases:

1

1 Introduction

>> solve(a*x + b = 0, x)

/ { b }
piecewise| { - - } if a <> 0, C_ if a = 0 and b = 0,

\ { a }

\
{} if a = 0 and b <> 0 |

/

The result of an integration may depend on assumptions on the parameters
and the integration variable. E.g., for the indefinite integral

∫
1/
√

ax2 + bx + c dx:

>> assume(a > 0): int(1/sqrt(a*x^2 + b*x + c), x)

2 1/2
ln(b + 2 a x + 2 (a (c + b x + a x)))

1/2
a

>> assume(a < 0): int(1/sqrt(a*x^2 + b*x + c), x)

/ b + 2 a x \
arcsin| --------------- |

| 2 1/2 |
\ (b - 4 a c) /

- -------------------------
1/2

(-a)

2

2 Version Changing Support

2.1 Utilities in the New Library

There is a “compatibility mode” between the MuPAD version 1.4 and 2.0.
With the call prog::changes() , “dummy” versions of functions existing in
1.4 and not existing in 2.0 are created and added to the 2.0 library. Whenever
such “old” functions are called, they notify you about the fact that they are ob-
solete. If a corresponding new function with the same functionality exists, it is
called automatically. Thus, you stand a fair chance that your old code runs in
version 2.0, even if it uses library functions that do not exist any more. How-
ever, the warnings give you a hint, which calls inside your old code should be
adapted to the new library. See the help page of prog::changes for further
details.

A special preference Pref::warnChanges was introduced with version
2.0 to support the porting of old MuPAD code to the new version. After call-
ing Pref::warnChanges(TRUE) , old code running in version 2.0 produces
warnings if environment variables such as DIGITS are used in a way that is
not consistent with the new kernel. The preference warnChanges is set to
FALSE by default. It may enabled by a call Pref::warnChanges(TRUE)
during a session. Alternatively, on UNIX or LINUX systems, the command
line option -P Wmay be used when calling MuPAD as in xmupad -P W.

2.2 Converting Programs

A command line program is provided which converts MuPAD programs
written for version 1.4.x to version 2.0. It parses files containing old MuPAD
code and makes syntactical changes nesseccary to run the programs under
version 2.0. In particular, it converts pure functions defined by fun and func
into procedures (fun and func are obsolete and do not exist in 2.0 anymore).
Additionally, it automatically converts certain obsolete names. For example,
the identifier this is replaced by the new special variable dom. The functions
funcattr and domattr are changed to slot . Also names of renamed library
functions are adapted.

The name of the command line program is version20 (version20.exe
under Windows). You find it in the directory where the MuPAD binaries are
installed. At the same location, you find a brief help file for the program in
HTML format, called version20.html .

The program must be run from the command line. Its syntax is
version20 [-h] [-v] [-s] [-l logfile] [-o outfile] [infile]

3

2 Version Changing Support

The options are described in version20.html .
Please note that the semantics of some MuPAD procedures has changed

with version 2.0. The conversion program version20 cannot check whether the
semantics of the translated programs is still correct! It is only an aid for the syntac-
tical changes. It is necessary to inspect the translated programs manually to detect
any semantical problems!

It is strongly recommended to create a log file using the option -l . It
will contain information about all changes which version20 applied to your
code. The log file should be inspected carefully.

4

3 What is new in the MuPAD 2.0
Library?

The MuPAD 2.0 library has many new features. For example, the plot library
was completely rewritten and enhanced with new features.

In the following, the new functions are listed in tables grouped according
to various mathematical areas:

• Basic Mathematics and Calculus

• Special Functions

• Graphics

• Linear Algebra

• Linear Optimization

• Numerics

• Statistics and Probability

• Generating Fortran Code

• Utilities

• Data Types, Domains and Categories

3.1 Basic Mathematics and Calculus

New Function Description

detools::arbFuns number of arbitrary functions in the
general solution of an involutive partial
differential equation

detools::autoreduce autoreduction of a system of differential
equations

detools::cartan Cartan characters of a differential
equation

5

3 What is new in the MuPAD 2.0 Library?

New Function Description

detools::characteristics characteristics of partial differential
equation

detools::charODESystem characteristic system of partial
differential equation

detools::charSolve solve partial differential equation with
the method of characteristics

detools::detSys determining system for Lie point
symmetries

detools::derList2Tree minimal tree with a given list of
derivatives as leaves

detools::euler Euler operator of variational calculus
detools::hasHamiltonian check for Hamiltonian vector field
detools::hasPotential check for gradient vector field
detools::hilbert Hilbert polynomial of a differential

equation
detools::modode modified equation
detools::ncDetSys determining system for non-classical Lie

symmetries
detools::pdesolve solver for partial differential equations
detools::transform change of variables for differential

equations
ground ground term (zeroth coefficient) of a

polynomial
intlib::byparts perform integration by parts
matrix definition of matrices and vectors
polylib::cyclotomic cyclotomic polynomials
polylib::divisors divisors of a polynomial, polynomial

expression, or Factored element
polylib::elemSym elementary symmetric polynomials
polylib::makerat convert expression into rational function

over a suitable field
polylib::realroots isolate all real roots of a real univariate

polynomial
polylib::representByElemSym represent symmetric by elementary

symmetric polynomials
polylib::sortMonomials sorting monomials with respect to a term

ordering
polylib::splitfield the splitting field of a polynomial
property::hasprop test whether an object has properties
property::implies test whether one property implies

another
property::simpex simplify Boolean expressions
solvelib::conditionalSort possible sortings of a list depending on

parameters
solvelib::getElement get one element of a set

6

3.2 Special Functions

New Function Description

solvelib::isFinite test whether a set is finite
solvelib::preImage preimage of a set under a mapping
solvelib::Union union of a system of sets
student::plotRiemann plot of a numerical approximation to an

integral using rectangles
student::plotSimpson plot of a numerical approximation to an

integral using Simpson’s rule
student::plotTrapezoid plot of a numerical approximation to an

integral using the Trapezoidal rule
student::riemann numerical approximation to an integral

using rectangles
student::simpson numerical approximation to an integral

using Simpson’s rule
student::trapezoid numerical approximation to an integral

using the Trapezoidal rule
universe the set-theoretic universe

3.2 Special Functions

New Function Description

Ci the cosine integral function
Ei the exponential integral function (used to be

eint)
arg the argument (polar angle) of a complex

number
besselI , besselJ , the Bessel functions
besselK , besselY
combinat::modStirling modified Stirling numbers
lambertV , lambertW lower and upper real branch of the Lambert

function
log the logarithm to an arbitrary base
numlib::invphi the inverse of the Euler phi function
polylog the polylogarithm function
signIm the sign of the imaginary part of a complex

number

7

3 What is new in the MuPAD 2.0 Library?

3.3 Graphics

New Function Description

plot display graphical objects on the screen
plot::Curve2d graphical object for two-dimensional curve plots
plot::Curve3d graphical object for three-dimensional curve plots
plot::Ellipse2d graphical object for two-dimensional ellipses
plot::Function2d graphical object for two-dimensional function plots
plot::Function3d graphical object for three-dimensional function plots
plot::Group graphical object representing a group of graphical

objects
plot::Point graphical object for two- and three-dimensional

points
plot::Pointlist graphical object for a list of either two- or

three-dimensional points
plot::Polygon graphical object for two- and three-dimensional

polygons
plot::Rectangle2d graphical object for two-dimensional rectangles
plot::Scene graphical object for graphical scenes
plot::Surface3d graphical object for three-dimensional surface plots
plot::copy create a copy of a graphical primitive
plot::HOrbital visualization of electron orbitals of a hydrogen atom
plot::implicit implicit plot of smooth functions
plot::inequality generate a 2D plot of inequalities
plot::line graphical object for lines
plot::modify create modified copies of graphical objects
plot::ode plot the numerical solution of an ordinary

differential equation
plot::vector graphical object for vectors

3.4 Linear Algebra

New Function Description

linalg::companion the companion matrix of a univariate
polynomial

linalg::factorLU LU-decomposition of a matrix
linalg::frobeniusForm Frobenius form of a matrix
linalg::hessenberg Hessenberg matrix
linalg::hilbert Hilbert matrix
linalg::inverseLU computing the inverse of a matrix using

LU-decomposition

8

3.5 Linear Optimization

New Function Description

linalg::invhilbert inverse of a Hilbert matrix
linalg::minpoly minimal polynomial of a matrix
linalg::permanent permanent of a matrix
linalg::pseudoInverse Moore-Penrose inverse of a matrix
linalg::smithForm Smith canonical form of a matrix
linalg::substitute replace a part of a matrix by another matrix
linalg::vandermondeSolve solve a linear Vandermonde system
linalg::wiedemann solving linear systems by Wiedemann’s

algorithm
matrix definition of matrices and vectors

3.5 Linear Optimization

New Function Description

linopt::corners return the feasible corners of a
linear program

linopt::plot_data plot the feasible region of a
linear program

linopt::Transparent return the ordinary simplex
tableau of a linear program

linopt::Transparent::autostep perform the next simplex step
linopt::Transparent::clean_basis delete all slack variables of the

first phase from the basis
linopt::Transparent::convert transform the given tableau

into a structure viewable on
the screen

linopt::Transparent::dual_prices get the dual solution belonging
to the given tableau

linopt::Transparent::phaseI_tableau start an ordinary phase one of
a 2-phase simplex algorithm

linopt::Transparent::phaseII_tableau start the phase two of a
2-phase simplex algorithm

linopt::Transparent::result get the basic feasible solution
belonging to the given simplex
tableau

linopt::Transparent::simplex runs the current phase of the
2-phase simplex algorithm to
the end

linopt::Transparent::suggest suggest the next step in the
simplex algorithm

9

3 What is new in the MuPAD 2.0 Library?

New Function Description

linopt::Transparent::userstep perform a user defined
simplex step

3.6 Numerics

New Function Description

numeric::complexRound round a complex number towards the real or
imaginary axis

numeric::cubicSpline interpolation by cubic splines (used to be
spline)

numeric::expMatrix the exponential of a matrix
numeric::fft Fast Fourier Transform (used to be fft)
numeric::fMatrix functional calculus for numerical square

matrices
numeric::fsolve search for a numerical root of a system of

equations
numeric::indets search for indeterminates
numeric::int numerical integration
numeric::invfft inverse Fast Fourier Transform (used to be

ifft)
numeric::lagrange polynomial interpolation (used to be

lagrange)
numeric::linsolve solve a system of linear equations
numeric::matlinsolve solve a linear matrix equation
numeric::odesolve2 numerical solution of an ordinary differential

equation
numeric::polyroots numerical roots of a univariate polynomial
numeric::polysysroots numerical roots of a system of polynomial

equations
numeric::rationalize approximate a floating point number by a

rational number (used to be
sharelib::rational)

numeric::realroot numerical search for a real root of a real
univariate function

numeric::realroots isolate all real roots a real univariate function
numeric::sort sort a numerical list
numeric::solve numerical solution of equations (the float slot

of solve)
numeric::spectralradius the spectral radius of a matrix (used to be

numeric::vonMises)
numeric::sum compute an infinite sum (the float slot of sum)

10

3.8 Generating Fortran Code

3.7 Statistics and Probability

New Function Description

stats::BPCorr Bravais-Pearson correlation
stats::FCorr Fechner correlation
stats::a_quantil alpha-quantile of discrete data
stats::calc apply functions to samples
stats::col select and re-arrange columns of a sample
stats::concatCol concatenate samples column-wise
stats::concatRow concatenate samples row-wise
stats::geometric the geometric mean
stats::harmonic the harmonic mean
stats::kurtosis kurtosis (excess)
stats::modal the modal (most frequent) value(s)
stats::obliquity obliquity (skewness)
stats::quadratic the quadratic mean
stats::reg regression (general least square fit)
stats::row select and re-arrange rows of a sample
stats::sample the domain of statistical samples
stats::sample2list convert a sample to a list of lists
stats::selectRow select rows of a sample
stats::sortSample sort the rows of a sample
stats::tabulate statistics of duplicate rows
stats::unzipCol extract columns from a list of lists
stats::zipCol convert a sequence of columns to a list of lists

3.8 Generating Fortran Code

New Function Description

generate::Macrofort::closeOutputFile close FORTRAN file
generate::Macrofort::genFor FORTRAN code generator
generate::Macrofort::init initialize genFor
generate::Macrofort::openOutputFile open FORTRAN file
generate::Macrofort::setAutoComment automatic comments
generate::Macrofort::setIOSettings set I/O settings
generate::Macrofort::setOptimizedOption set optimization
generate::Macrofort::setPrecisionOption set precision

11

3 What is new in the MuPAD 2.0 Library?

3.9 Utilities

New Function Description

NOTEBOOKFILE Notebook file name
NOTEBOOKPATH Notebook path
Pref::alias controls the output of aliased expressions
Pref::ignoreNoDebug controls debugging of procedures
Pref::timesDot determine the output of products
Pref::typeCheck type checking of formal parameters
Pref::warnChanges warnings about changes wrt. the previous

version of MuPAD
Pref::warnDeadProcEnv warnings about wrong usage of lexical scope
Pref::warnLexProcEnv warnings about usage of variables from lexical

scope
Type::Arithmetical a type representing arithmetical objects
Type::Property type to identify properties
Type::Residue a property representing a residue class
coerce conversion of objects
delete delete the value of an identifier
end the keyword end
fp::unapply create a procedure from an expression
in membership
int2text convert an integer to a character string
lasterror reproduce the last error
lhs the left hand side of equations, inequalities,

relations and ranges
match pattern matching
matchlib::analyze structure of an expression
operator define a new operator symbol
output::ordinal ordinal numbers
output::tree display of trees
package load a package of new library functions
prog::allFunctions overview of all functions
prog::changes generate obsolete functions of MuPAD

version 1.4
prog::check checking MuPAD objects
prog::error error message and internal error number
prog::find find operands of expressions
prog::getname the name of an object
prog::init loading objects
prog::isGlobal information about reserved identifiers
prog::traced find traced functions

12

3.10 Data Types, Domains and Categories

New Function Description

rhs the right hand side of equations, inequalities,
relations and ranges

share create a unique data representation
slot method or entry of a domain or a function

environment
unexport undoes the export of library functions
warning print a warning message
%if conditional creation of code by the parser

3.10 Data Types, Domains and Categories

New Function Description

Cat::Set the category of sets of complex numbers
Dom::Ideal the domains of sets of ideals
Dom::ImageSet the domain of images of sets under

mappings
Dom::MonomOrdering monomial orderings
Dom::MultivariatePolynomial the domains of multivariate polynomials
Dom::SparseMatrixF2 the domain of sparse matrices over the

field with two elements
Dom::UnivariatePolynomial the domains of univariate polynomials
Factored domain of objects kept in factored form
adt::Queue abstract data type “Queue”
adt::Stack abstract data type “Stack”
adt::Tree abstract data type “Tree”
piecewise the domain of conditionally defined

objects
solvelib::BasicSet the basic infinite sets

13

3 What is new in the MuPAD 2.0 Library?

14

4 What has changed in the MuPAD 2.0
Library?

This chapter lists the library changes from version MuPAD 1.4 to MuPAD 2.0.
The table consists of two columns. In the first column, you find the names

of functions or environment variables of version 1.4.
Some of the functions listed here have been renamed in MuPAD 2.0 for

consistency. For these functions, the second column lists the new name of the
corresponding function.

Other functions have been removed completely or subsumed into some
other function. In these cases, the second column directs you at some function
you may use instead.

For the other functions listed here, the functionality has been extended sub-
stantially or the calling syntax has changed (again, for consistency). Please
refer to the corresponding documentation for further details.

Name in 1.4 New Name & Changed Features

:= , _assign changed
$, _seqgen changed
Cat::CommutativeRing enhanced
Cat::FactorialDomain changed
Cat::FiniteCollectionCat Cat::FiniteCollection
Cat::HomogeneousFinite -
CollectionCat

Cat::HomogeneousFiniteCollection

Cat::HomogeneousFinite -
ProductCat

Cat::HomogeneousFiniteProduct

Cat::MatrixCat Cat::Matrix , changed
Cat::PolynomialCat Cat::Polynomial
Cat::SetCat Cat::BaseCategory , changed
Cat::SquareMatrixCat Cat::SquareMatrix
Cat::UnivariatePolynomialCatCat::UnivariatePolynomial
DIGITS changed
Dom::AlgebraicExtension enhanced
Dom::BaseDomain enhanced
Dom::DistributedPolynomial enhanced, changed
Dom::ExpressionField enhanced, changed
Dom::Fraction enhanced
Dom::Interval changed

15

4 What has changed in the MuPAD 2.0 Library?

Name in 1.4 New Name & Changed Features

Dom::Matrix enhanced
Dom::MatrixGroup enhanced, changed
Dom::Multiset enhanced, changed
Dom::Pade pade , enhanced, changed
Dom::Polynomial enhanced, changed
Dom::Product enhanced
Dom::SquareMatrix enhanced, changed
Dpoly polylib::Dpoly
EVAL_STMT removed
Factor removed, use factor instead
HISTORY changed
Im enhanced
LIB_PATH LIBPATH
Line-Editor enhanced
Network::AddEdges Network::addEdge
Network::AddVertex Network::addVertex
Network::AdmissibleFlow Network::admissibleFlow
Network::AllShortPath Network::allShortPath
Network::ChangeEdge Network::changeEdge
Network::ChangeVertex Network::changeVertex
Network::Complete Network::complete
Network::ConvertSSQ Network::convertSSQ
Network::Cycle Network::cycle
Network::DelEdge Network::delEdge
Network::DelVertex Network::delVertex
Network::ECapacity Network::eCapacity
Network::EWeight Network::eWeight
Network::Edge Network::edge
Network::Epost Network::epost
Network::Epre Network::epre
Network::InDegree Network::inDegree
Network::IsEdge Network::isEdge
Network::IsVertex Network::isVertex
Network::LongPath Network::longPath
Network::MaxFlow Network::maxFlow
Network::MinCost Network::minCost
Network::MinCut Network::minCut
Network::OutDegree Network::outDegree
Network::PrintGraph Network::printGraph
Network::Random Network::random
Network::ResidualNetwork Network::residualNetwork
Network::ShortPath Network::shortPath
Network::ShortPathTo Network::shortPathTo
Network::ShowGraph Network::showGraph

16

Name in 1.4 New Name & Changed Features

Network::TopSort Network::topSort
Network::VWeight Network::vWeight
Network::Vertex Network::vertex
NIL enhanced
NUMERIC Type::Numeric
Poly polylib::Poly
PRETTY_PRINT PRETTYPRINT
Pref::floatFormat changed
Pref::keepOrder enhanced
Pref::printTimesDot Pref::timesDot , changed
Pref::report changed
PRINTLEVEL removed
READ_PATH READPATH
Re enhanced
RootOf changed
TEST_PATH TESTPATH
UNIX enhanced, changed
WRITE_PATH WRITEPATH
alias changed
anames enhanced, changed
acos arccos , enhanced
acosh arccosh , enhanced
acot arccot , enhanced
acoth arccoth , enhanced
acsc arccsc , enhanced
acsch arccsch , enhanced
args changed
array enhanced, changed
asec arcsec , enhanced
asech arcsech , enhanced
asin arcsin , enhanced
asinh arcsinh , enhanced
assume enhanced, changed
asympt enhanced, changed
atan arctan , arg , enhanced
atanh arctanh , enhanced
assign_elems assignElements
bernoulli enhanced
besselK enhanced
besselY enhanced
beta changed
binomial changed
breakmap misc::breakmap
built_in builtin

17

4 What has changed in the MuPAD 2.0 Library?

Name in 1.4 New Name & Changed Features

case enhanced
catalan CATALAN
changevar intlib::changevar
combinat::bell changed
combinat::permute changed
combinat::powerset enhanced
context changed
contfrac numlib::contfrac
cos changed
cosh enhanced, changed
cot changed
coth enhanced, changed
csc changed
csch enhanced, changed
debug changed
decompose polylib::decompose
degreevec enhanced
diff changed
dilog enhanced
dirac enhanced
discont enhanced
discrim polylib::discrim
domain newDomain
domattr removed, use slot instead
eint Ei
erf enhanced
erfc enhanced
eval enhanced
exp enhanced, changed
expr changed
extnops enhanced
extop changed
factor changed
fft numeric::fft , enhanced
for enhanced
fread enhanced
fun , func removed, use -> instead
func_env funcenv
funcattr removed, use slot instead
funcattr(sum, "float") numeric::sum , enhanced
hastype enhanced
heaviside enhanced
history enhanced
if enhanced

18

Name in 1.4 New Name & Changed Features

ifactor changed
ifft numeric::invfft , enhanced
igamma enhanced, changed
igcd changed
ilcm changed
index_val indexval
insert_ordered listlib::insert , changed
int enhanced, changed
io::readdata import::readdata
io::readlisp import::readlisp , changed
is enhanced
lagrange numeric::lagrange , enhanced,

changed
last changed
lcoeff enhanced, changed
length enhanced
level changed
linalg::curl changed
linalg::charMatrix linalg::charmat
linalg::charPolynomial linalg::charpoly
linalg::cholesky linalg::factorCholesky , enhanced
linalg::delCol changed
linalg::delRow changed
linalg::det changed
linalg::dimen linalg::matdim
linalg::divergence changed
linalg::eigenValues linalg::eigenvalues , changed
linalg::eigenVectors linalg::eigenvectors , changed
linalg::expr2Matrix changed
linalg::extractMatrix linalg::submatrix
linalg::factorQR enhanced
linalg::grad changed
linalg::hermiteForm enhanced
linalg::isHermitian linalg::isHermitean
linalg::isOrthogonal linalg::isUnitary
linalg::linearSolve linalg::matlinsolve
linalg::linearSolveLU linalg::matlinsolveLU
linalg::nullSpace linalg::nullspace
linalg::ogSystem linalg::orthog
linalg::onSystem removed, use linalg::orthog instead

(in conjunction with
linalg::normalize)

linalg::randomMatrix enhanced
linalg::vectorDimen linalg::vecdim

19

4 What has changed in the MuPAD 2.0 Library?

Name in 1.4 New Name & Changed Features

linalg::vectorPotential changed
linopt::maximize enhanced, changed
linopt::minimize enhanced, changed
linsert listlib::insertAt
linsolve enhanced
listtools::merge listlib::merge
listtools::removeDupSortedlistlib::removeDupSorted
listtools::removeDuplicateslistlib::removeDuplicates
listtools::setDifference listlib::setDifference
listtools::singleMerge listlib::singleMerge
listtools::sublist listlib::sublist
lmonomial enhanced, changed
ln changed
loadlib use package instead
lterm enhanced, changed
maprec misc::maprec
misc::freeze freeze
misc::genassop changed
misc::makelib prog::makeBinLib
misc::tableForm output::tableForm , enhanced
misc::test prog::test , enhanced
misc::unfreeze unfreeze
nthcoeff enhanced, changed
nthmonomial enhanced, changed
nthterm enhanced, changed
numeric::butcher enhanced
numeric::det changed
numeric::eigenvalues changed
numeric::eigenvectors changed
numeric::factorCholesky enhanced, changed
numeric::factorLU enhanced, changed
numeric::factorQR enhanced, changed
numeric::fint numeric::int , enhanced, changed
numeric::fsolve numeric::realroots , enhanced,

changed
numeric::gldata enhanced
numeric::inverse changed
numeric::minpoly polylib::minpoly
numeric::odesolve enhanced
numeric::quadrature enhanced
numeric::singularvalues changed
numeric::singularvectors changed
numeric::vonMises numeric::spectralradius
numlib::mpqs changed

20

Name in 1.4 New Name & Changed Features

optimize generate::optimize
pdioe solvelib::pdioe
phi numlib::phi
plot2d enhanced
plot3d enhanced
plotOptions2d enhanced
plotOptions3d enhanced
plotfunc plotfunc2d , plotfunc3d , enhanced,

changed
plotlib::contourplot plot::contour , changed
plotlib::cylindricalplot plot::cylindrical , changed
plotlib::dataplot plot::data , enhanced, changed
plotlib::densityplot plot::density , changed
plotlib::polarplot plot::polar , changed
plotlib::sphericalplot plot::spherical , changed
plotlib::fieldplot plot::vectorfield , changed
plotlib::xrotate plot::xrotate , changed
plotlib::yrotate plot::yrotate , changed
point enhanced
primpart polylib::primpart
print enhanced
proc enhanced
profile prog::profile
protocol enhanced
psi enhanced
randpoly polylib::randpoly
rationalize changed
read enhanced
rec enhanced, changed
rectform changed
repcom @@, _fnest , enhanced
repeat enhanced
resultant polylib::resultant
rewrite enhanced
sec changed
sech enhanced, changed
seq removed, use _seqgen instead
series enhanced
setuserinfo enhanced
sharelib::Lsys plot::Lsys
sharelib::animate removed
sharelib::iroots solvelib::iroots , use solve with

option Domain = Dom::Integer
instead

21

4 What has changed in the MuPAD 2.0 Library?

Name in 1.4 New Name & Changed Features

sharelib::plotsetup removed
sharelib::rational numeric::rationalize , enhanced,

changed
sharelib::trace prog::trace , enhanced
sharelib::turtle plot::Turtle
sharelib::untrace prog::untrace
sign changed
sin changed
sinh enhanced, changed
solve enhanced, changed
sort changed
spline numeric::cubicSpline , enhanced
sqrfree polylib::sqrfree , changed
stats::Tdist enhanced
stats::linReg enhanced
stats::mean enhanced
stats::median enhanced
stats::normal changed
stats::stdev enhanced
stats::variance enhanced
string::contains stringlib::contains
string::format stringlib::format
string::formatf stringlib::formatf
string::pos stringlib::pos
string::delete stringlib::remove
string::subs stringlib::subs
string::subsop stringlib::subsop
strlen removed, use length instead
strmatch changed
subs changed
subsex changed
sysorder changed
table changed
tan changed
tanh enhanced, changed
taylor changed
this dom
trace removed, use prog::trace instead
transform::ifourier transform::invfourier , enhanced
transform::ilaplace transform::invlaplace , enhanced
transform::laplace enhanced
unapply fp::expr_unapply
unassign removed, use delete instead
unassume changed

22

Name in 1.4 New Name & Changed Features

userinfo changed
while enhanced
zeta changed

23

4 What has changed in the MuPAD 2.0 Library?

24

5 The new MuPAD Language

Lexical scoping is introduced with version 2.0 of MuPAD. This causes a lot of
semantical changes in the MuPAD language which a library programmer must
be aware of. Because of the big impact, all MuPAD programs must be revised,
so we took the chance to change some other language features, too, which had
been on the wish-list for some time.
The language description is organized as follows:
• Lexical Scoping

• Procedures and their Environments

• Special Identifiers

• No Pure Functions Any Longer

• The $-Operator

• New Operator in

• Slots instead of domattr s and funcattr s

• Deleting Values

• User-Defined Operators

• Scope of Aliases and User-Defined Operators

• Domains, Categories, and Axioms

• No subs of Domains Any Longer

• Functions eval and hold Work as Expected

• Operands and Output of Sets

• History contains Inputs and Outputs

• Renamed Functions and Variables

• Conditional Compilation

• Grammar

• Parallel Statements

• Debugging

• Overview

25

5 The new MuPAD Language

5.1 Lexical Scoping

The most prominent change in the MuPAD language for version 2.0 is the
introduction of lexical scoping instead of dynamic scoping. Consider the fol-
lowing example:
>> x := 3:
>> q := proc() begin x end_proc:
>> p := proc(x) begin q() end_proc:
>> p(1)

In MuPAD version 1.4 or earlier, the call p(1) returns 1. In version 2.0, it
returns 3. Surprise!

The reason is that due to dynamic scoping in MuPAD 1.4, the global vari-
able x in q refers to the value of x in the current calling context, i.e., to the
formal parameter x of p. The formal parameter x of p hides the value of the
global identifier x .

In MuPAD 2.0, the variable x in q refers to the lexical context of q, i.e., to the
global identifier x . The value of the formal parameter x of p does not influence
the call of q.

If q would have been defined inside of p, then the global variable x of q
would refer to the formal parameter x of p. Thus:

>> x := 3:
>> p := proc(x) local q; begin

q:= proc() begin x end_proc;
q()

end_proc:
>> p(1)

would yield 1 in MuPAD version 2.0 as in version 1.4.
Why the change to lexical scoping? Three potential problems are caused

by dynamic scoping, which are cured by lexical scoping. Two of them are
classical ones which also exist in other dynamically scoped languages, such
as some earlier LISP dialects or Perl prior to version 5. The third, particularly
nasty problem is caused by the special evaluation rules of MuPAD.

5.1.1 The Funarg-Problem

This problem occurs if a procedure is used as a parameter for another one
which contains free variables which conflict with local variables of the proce-
dure called.

An example: Suppose we had no function map and want to implement a
procedure which maps a function to the elements of a list:
list_map := proc(l, f) local t, r; begin

r:= [];
for t in l do

r := append(r, f(t))
end_for

end_proc

26

5.1 Lexical Scoping

In MuPAD 1.4, this works as expected on first sight:

>> list_map([1, 2, 3], isprime)

[FALSE, TRUE, TRUE]

Now another user, who does not know about the internals of our list_map ,
wants to use it to map his procedure foo to lists:

foo := proc(x) begin
if x = t then t^2 else x end_if

end_proc:

Here, the global t is used to feed a further parameter to the procedure. Now
he tries with MuPAD 1.4:

>> t := 2:
>> list_map([1, 2, 3], foo)

[1, 4, 9]

It just does not work. The reason is quite clear: The free variable t in foo is
bound to the local variable t of list_map instead of 2, and the local variable
always has the value of the parameter x . But how should he know this without
knowing the implementation of list_map ?

With MuPAD 2.0, the result is as expected:

>> t := 2:
>> list_map([1, 2, 3], foo)

[1, 4, 3]

Here, the global t in foo is bound to the global identifier t in the lexical scope
and not to the local t of list_map in the dynamic scope. Consequently, all
works as expected.

5.1.2 The Closure-Problem, option escape

This problem occurs if a procedure escapes its context, i.e., if a procedure
is returned from another one which contains free variables referring to local
variables of the defining procedure. An example:
fpower := proc(f, n) begin

proc(x) begin f(x)^n end_proc
end_proc:

The intended functionality is, given f and n, to return the function x→ f (x)n.
The call fpower(sin, 3) , for example, should return a procedure calculat-
ing sinˆ3 .

It is clear that with dynamic scoping this cannot work the way shown
above. With MuPAD 1.4, one gets:

27

5 The new MuPAD Language

>> sin3 := fpower(sin, 3):
>> f := cos: n := 2:
>> sin3(x)

cos(x)^2

The free variables f and n of the returned procedure sin3 are dynamically
bound when sin3 is executed and not when sin3 is created (as was intended).

With lexical scoping in MuPAD 2.0, the outcome is as intended, provided
that the procedure fpower is changed slightly:

fpower := proc(f, n) option escape; begin
proc(x) begin f(x)^n end_proc

end_proc

The new procedure option escape states that a procedure may be returned
which refers to the lexical context of the “enclosing” procedure. One must not
forget to define this option, otherwise strange things will happen when the
escaping procedure is executed. Now fpower works as expected:

>> sin3 := fpower(sin, 3):
>> f := cos: n := 2:
>> sin3(x)

sin(x)^3

Here f and n are bound to the context which is current when the procedure
sin3 is created, i.e., to sin and 3.

One can create functions like fpower even in MuPAD 1.4 by substituting
the values of f and n into the procedure returned, but the code of fpower
becomes ugly to read, error-prone and inefficient.

5.1.3 The LEVEL-Problem

This is the main source of trouble and confusion with lexical scoping. It
occurs if identifiers are to be evaluated with a level greater than 1.

Inside of procedures, identifiers are usually evaluated with level 1, but
by using the functions eval or level this may be changed—and sometimes
must be changed in order to cause the simplification of expressions. Note that
level always evaluates local variables in MuPAD 2.0 with level 1, as described
in the next section.

During such evaluations, the values of local variables may conflict with
global identifiers as shown in the following example:
f := proc(y) local x, LEVEL; begin

x := y;
LEVEL := 2;
eval(x);

end_proc:

28

5.1 Lexical Scoping

Here x is evaluated with level 2. Now with MuPAD 1.4:

>> unassign(x):
>> f(x^2 + 1)

2 2
(x + 1) + 1

What one would expect is the result xˆ2+1 because x has no value and thus
the argument of f should not be changed further. What happens instead is
that the expression xˆ2+1 is assigned to the local variable x . Then, with
level 2, the local variable x is first evaluated to xˆ2+1 and in a second step
to (xˆ2+1)ˆ2+1 . The local variable is mixed up with the free identifier x .

This problem is solved in MuPAD 2.0:

>> f := proc(y) local x; save LEVEL; begin
x := y;
LEVEL := 2;
eval(x);

end_proc:
>> delete x:
>> f(x^2 + 1)

2
x + 1

Here the local variable x is evaluated to the expression xˆ2+1 , where x is the
global identifier x . This has no value such that the evaluation is stopped and
xˆ2+1 is returned. (Also note that the function unassign has been changed
to a delete -statement in version 2.0.)

5.1.4 Symbols and Variables

In order to implement lexical scoping, some new data types have been im-
plemented in MuPAD 2.0. The most prominent is the date type DOM_VARfor
local variables and formal parameters of procedures. Local variables and for-
mal parameters are no longer identifiers of type DOM_IDENTbut have this new
type.

The best way is to think of DOM_VARs as programmatic variables. They al-
ways must have a value and are evaluated by simply being replaced by their
value. Their evaluation is not influenced by LEVEL or level —this is a con-
cept strictly restricted to identifiers. A warning is issued if a variable is used
without being initialized. A variable which has not been initialized gets the
value NIL .

Identifiers (DOM_IDENTs) are “names” which are lexically global and not
bound by any local variables or formal parameters. They are evaluated as in
previous MuPAD versions. (This also holds for procedures where identifiers
are usually evaluated with level 1.) Personally, I prefer to think of identifiers
as mathematical symbols which may have a value bound to them.

29

5 The new MuPAD Language

Because identifiers are no longer used as local variables or formal parame-
ters, the concept of environment variables has undergone a significant change: If
a local variable named LEVEL is used in MuPAD 2.0, it is not related in any way
to the global identifier LEVELused to control the evaluation level of identifiers.
(In version 1.4, a local variable which had the same name as a “special iden-
tifier” was initialized with the current value of that identifier.) Nevertheless,
most special identifiers such as LEVEL and DIGITS retain their meaning.

In order to make the temporary change of global identifiers easier, the new
concept of saved identifiers is introduced with MuPAD 2.0. An example:
foo := proc(x, d) save DIGITS; begin

DIGITS := d;
float(x)

end_proc:

When foo is executed, the current value of the global identifier DIGITS is
saved. DIGITS is then changed to float-evaluate x to the precision given by
d. When foo is exited, the value of DIGITS is restored to the value saved on
entry. This works no matter how the saving procedure is exited, may it be via
return , error or some other means.

If a free symbol is needed in a procedure, one must either use a (global)
identifier or create a new one with genident . One technique to get a free
unbound symbol is the following:

foo := proc() save x; begin
delete x;
// use symbol x
...

end_proc:

Here x must not be bound by some “lexically outer” procedure, because the
“use symbol x” part would otherwise refer to the lexically enclosing x , even
though save x does refer to the global identifier x . By saving x , one ensures
that the execution of foo does not destroy any value assigned to x . By deleting
it, one gets a free symbol x which may then be used as polynomial indetermi-
nate or free parameter, for example.

Note that properties are also saved and restored with save .

Note: Variables usually must be evaluated in the context (i.e., procedure) where
they are defined. Variables may escape their context by using the option
hold or the function hold , but this will almost never be intended. If one
uses the option hold for a procedure, one should take care to evaluate
the arguments by using the function context . Variables evaluated by
context are evaluated in the calling procedure, where they have been
defined. If they are evaluated by some other means (for example, eval
or level), they are evaluated in the wrong procedure context—which is
calling for trouble.

Marginal Note: Variables should usually not be created or manipulated “by hand”,
but by the MuPAD language parser. They have two operands which are non-negative

30

5.2 Procedures and their Environments

integer indices addressing their values relative to the procedure environment where
they are defined. The first index is the “lexical distance” to the procedure environment
where the variables value is contained in; this index is 0 if the variable is defined in
the procedure where it is used. The second index is the position of the variables value
in its procedure environment; here the first local variable has index 2 and the actual
parameters follow the local variables. (The special variables procname and domhave
index 0 and 1.)

One may create variables by calling DOM_VAR(i, j) , where i and j are non-
negative integers. •

5.1.5 Accessing Arguments with args

Please note that the function args has changed in a quite subtle way: In
MuPAD versions before 2.0, args(i) returned the i th actual parameter of a
procedure call. In version 2.0, args(i) returns the actual value of the variable
holding the i th parameter. Thus the value of args(i) changes when the
variable holding the parameter is changed. This was not the case in former
MuPAD versions. E.g.,
>> f := proc(x) begin x := PI; args(1) end_proc:
>> f(1)

produced the result 1 in MuPAD 1.4, whereas MuPAD 2.0 produces PI .

5.2 Procedures and their Environments

In addition to the introduction of lexical scoping and saved variables, three
new features have been introduced for procedures. Arguments may get de-
fault values, the domain a procedure belongs to may be accessed, and types of
local variables may be declared.
5.2.1 Default Argument Values

Default values may be defined for arguments which are not supplied by
the caller at run-time. The syntax for formal procedure parameters is now
name = default-value : type, where the default value and the type declaration
may be missing:
>> foo := proc(p = 0, v = x : DOM_IDENT) : DOM_POLY

begin
poly(p, [v], Expr)

end_proc:
>> foo(), foo(x+y+1), foo(x+y+1, y)

poly(0, [x]), poly(x + (y + 1), [x]), poly(y + (x + 1), [y])

The actual parameters are assigned to the formal ones in the corresponding
order. If there are formal parameters which are not supplied by actual ones,
the default values are used for them. If no default value was defined, NIL is
used as actual value and a warning is printed. If a type but no default value
is declared for a formal parameter and that parameter is not supplied by an

31

5 The new MuPAD Language

actual value, a run-time error results (but only if parameter type checking is
enabled for the corresponding procedure call).

The default values and type expressions for the parameters and return
value belong to the lexically enclosing context and not to the procedure at
hand. This is also the context where they are bound:

>> otto := proc(x) option escape; begin
proc(x = x) begin x end_proc

end_proc:
>> otto13 := otto(13):
>> otto13(), otto13(14)

13, 14

Here the default value x is bound to otto and not to the procedure returned
by otto . Note that the option escape must be defined here because the es-
caping procedure refers to the argument x of the context of the outer procedure
otto .

The default values, argument types, and return type of a procedure are
evaluated when the procedure definition is evaluated and not when the pro-
cedure is executed. (In version 1.4, the types where evaluated each time the
procedure was executed.) This is shown by the following example:

>> VAL := 3: TYP := DOM_INT:
>> otto := proc(x = VAL : TYP) : TYP begin x end:
>> otto()

3

>> VAL := 10: TYP := DOM_STRING:
>> otto()

3

The procedure otto does not depend on the current values of the identifiers
VAL and TYP.

5.2.2 Accessing the Domain a Procedure Belongs To

If a procedure is an entry of a domain, this domain may be accessed inside
the procedure via the special variable dom: When a procedure is inserted into a
domain, the domain is stored in the procedure definition. When the procedure
is executed, the variable domgets this domain as value; domgets the value NIL
if the procedure was not inserted into any domain.

The domain is only inserted into the procedure definition if the procedure
is directly inserted into the domain. If, for example, the procedure is an ele-
ment of a list which is inserted into a domain, the domain is not inserted into
the procedure definition.

32

5.2 Procedures and their Environments

One may view dom and procname as local variables implicitly declared
for any procedure: The domain a procedure belongs to is only accessible via
dom inside the body of the procedure—not in any procedure called from or
lexically enclosed in the procedure. (The same holds for the special variable
procname .)
Note: The special variable domreplaces the place-holder this in the domains

package. It has the advantage that it needs not to be substituted into the
domain entries when they are created on the fly.

5.2.3 Variable Type Declarations

Types of local variables may now be declared, using the syntax name : type,
as in i : DOM_INT . Types may be defined by arbitrary expressions.

Type declarations for local variables currently do not have any functionality—
so this feature seems to be quite absurd. But it may be useful for future con-
verters from MuPAD language to C or Fortran code, for future debugging tools,
or right now for documentation.

If you declare variable types you should be serious about it because some
day types may be checked or type information may be used in some other
way.
5.2.4 Operands of Procedures

Procedures got five new operands in version 2.0, these are the operands 9
through 13:
9: An expression sequence containing the types of the local variables. If a type

is not defined for a variable, the corresponding entry is NIL . If no type
is defined, the operand is NIL .

10: An expression sequence containing the default values of the formal pa-
rameters. If a default is not defined for a parameter, the corresponding
entry is NIL . If no defaults are defined, the operand is NIL .

11: An expression sequence containing the identifiers to be saved or NIL if no
identifiers are saved.

12: The procedure environment of the procedure instance which was exe-
cuted when the procedure instance was created.

13: The domain a procedure belongs to or NIL if the procedure has not been
inserted into a domain.

One should not need to know the details about the 12th operand, thus you
may skip the following section.

5.2.5 Procedure Environments

Marginal Note: In version 2.0, a distinction is made between a procedure definition and
a procedure instance. A procedure definition is created by the parser or by the function
_procdef . A procedure definition is evaluated to a procedure instance. A procedure

33

5 The new MuPAD Language

instance refers to the procedure environment which was active when the procedure
definition was evaluated.

But what is a procedure environment? Each time a procedure instance is executed,
a procedure environment is created for the instance. The environment contains the
values of the parameters and local variables of a procedure instance during its exe-
cution. Variables refer to procedure environments. Procedure environments have the
new data type DOM_PROC_ENV.

A procedure environment additionally contains the procedure executed, the name
of this procedure, the domain the procedure belongs to, the procedure environment
of the calling procedure instance, and the environment of the procedure which was
executed when the current procedure instance was created.

This last entry allows a variable to refer to an lexically outer context, which just
happens to be the environment of the procedure instance which was active when the
actually executed procedure was instantiated.

Procedure definitions and instances are both of type DOM_PROC. A definition has
the value FAIL as 12th operand, a procedure instance has a procedure environment
or NIL as 12th operand. The procedure environment is the environment of the proce-
dure instance which was executed when the procedure instance at hand was created.
It is inserted into the procedure environment when the instance is executed. The “en-
vironment operand” is NIL if the procedure instance does not contain any variables
referring to an outer lexical scope.

If the option escape is not defined for a procedure, the procedure’s environment
is deleted when the procedure execution has finished. Strange errors will occur if
such a deleted procedure environment is referred to later on. On the other hand, if the
option escape is defined, the procedure environment may still be referred to after
the procedure has been executed—allowing escaping procedures to refer to variables
stored in the environment.

Procedure environments should be regarded as opaque and you should not try to
inspect them (for example, with op), leave alone manipulate them.

•

5.3 Special Identifiers (Environment Variables)

As was described above, the use of environment variables as local variables
of procedures is no longer supported in MuPAD 2.0. One should use the save
declaration to save and restore identifier values.

Nevertheless, most “special identifiers” like DIGITS , TEXTWIDTHor LEVEL
retain their meaning in version 2.0. Only some seldom used identifiers have
been removed: PRINTLEVEL, ERRORLEVELand EVAL_STMTare no longer
supported and have no special meaning any more. Most special identifiers
lost the underscores in their names, so PRETTY_PRINTis now PRETTYPRINT,
READ_PATHis READPATHand so on.

The meaning of HISTORYhas been changed: It is no longer possible to
change the length of the history table of procedures. The history table of a
procedure can no longer be enlarged and always has three entries. Thus the
notation HISTORY := [i,j] is no longer valid, only HISTORY := i with a
non-negative integer i is allowed, controlling how many interactively entered
commands are stored in the global history table. (The access to the global
history table has also been changed, see below.)

The former special identifier procname now is a variable which implicitly
is declared for any procedure, similar to the variable dom.

34

5.4 No Pure Functions Any Longer

5.4 No Pure Functions Any Longer

The concept of pure functions has been abandoned with MuPAD 2.0. The
functions fun and func no longer exist. (Also the internally used functions
newpurefunc and newfuncarg have been removed.) Instead of func , the
arrow operator -> was introduced:
>> f := (x, y) -> x^2 * sin(y):

This operator creates a procedure:

>> f(PI, z)

PI^2 sin(z)

Pure functions existed for efficiency reasons. Due to the changes in version
2.0, procedure execution is now as fast as the execution of pure functions used
to be. This made pure functions obsolete.

Further, pure functions defined by fun were not easy to read because args
had to be used to refer to the arguments. Argument references in pure func-
tions defined by func were created by substituting calls to args into the defin-
ing expression—a quite slow and error-prone method to define a binding.

The consequence was to remove pure functions entirely. As a side-effect,
the function block is of no use any longer and also has been removed.

5.5 The $-Operator

The syntax of the “sequence generator” $ has been changed. Given the
expression f(i) $ i=1..10 , the identifier i was not allowed to hold a value
in MuPAD 1.4. This was very cumbersome, one often had to write f(i) $
hold(i)=1..10 in order to ensure that the index i was a “pure name”.

This syntax has changed in order to resemble the for -loop: Now i must
be an identifier or variable, which may have a value or not.

In the case f(i) $ i=1..10 the $-operator is regarded as a ternary op-
erator with operands f(i) , i , and 1..10 . The new rules for the $-operator
are:

sequence-expression:
$ relation
relation $ relation
relation $ name = relation
relation $ name in relation

Note: It is no longer allowed to use expressions like hold(i) for the in-
dex variable definition. An expression like f(i) $ hold(i)=1..10 is
parsed as binary expression _seqgen(f(i), hold(i)= 1..10) and
results in a run-time error.

35

5 The new MuPAD Language

5.6 New Operator in

A new binary operator in exists which may be used to test if an expression
is member of a given set. The priority of the operator is the same as for other
relations like = or >:
>> x in {3, 5}

x = 3 or x = 5

5.7 Slots instead of domattr s and funcattr s

The functions domattr and funcattr have been unified to a single new
concept, the slot. A slot is a named entry of a MuPAD datum which may hold
a value.

One may access and change the value of a slot using the new function
slot :
slot(d, n) returns the value of the slot named n of the datum d. n may be

an arbitrary datum.

slot(d, n, v) changes the value of the slot named n of the datum d to v .

For most objects, a copy of the original datum d with changed slot is
returned, the original value of d is not changed as a side-effect. The only
exception are domains: their slots are changes as a side-effect. (This is
due to the so-called “reference effect” of domains.)

What happens if a slot named n does not exist? This depends on the do-
main of the datum d:

• If the objects of a domain have open-ended slots, arbitrary new slots may
be created by simply inserting values with new slot names. If a slot is
accessed which does not yet exist, FAIL is returned as the “value” of the
slot.

• If a non-existing slot is accessed for an object of a domain with fixed slots,
an error occurs. This holds for read and write access.

Each datum has a special slot named "dom" . This is a read-only slot which
holds the domain the datum belongs to. Thus slot(d, "dom") is equivalent
to domtype(d) . The value of this slot cannot be changed.

Apart from this special slot, currently only two MuPAD domains have slots:
domains and function environments. The entries of a domain or function en-
vironments are stored in slots and can be accessed and changed with the func-
tion slot . Both domains have open-ended slots: New slots may be created by
simply inserting values with new slot names.

Thus domattr(d, n) becomes slot(d, n) if d is a domain. Similarly,
funcattr(f, n) becomes slot(f, n) if f is a function environment.

Thus the functions domattr and funcattr are no longer needed and
have been removed.

Note that slot is somewhat restricted compared to the former functions:

36

5.7 Slots instead of domattr s and funcattr s

• If the first argument d in domattr(d, n) was no domain and the do-
main of d did not have a method "elemattr" , then the domain entry n
of the domain of d was returned. This is no longer the case with slot .
Now the domain of d must be used explicitly, as in slot(domtype(d),
n) .

• If the first argument f in funcattr(f, n) was no function environ-
ment, then a function environment with executing function f was cre-
ated implicitly by funcattr . This is no longer the case with slot . Now
a function environment for f must be created explicitly, as in slot(funcenv(f),
n) . (Note that funcenv , which used to be the function func_env in
version 1.4, now may be called giving the executing function only, the
output function may be omitted.)

One may define slots for other domains by overloading the function slot .
For domains there is a special mechanism to create new slot values on de-

mand: If a slot is read which does not yet exist, the method "make_slot" of
the domain is called in order to create the slot. (If such a method does not exist,
FAIL is returned as for other open-ended slots.) The method "make_slot"
works exactly as the former domain method domattr , but has been renamed
for obvious reasons.

5.7.1 Accessing Slots Using the :: -Operator

Similar to the former function domattr , the :: -operator is a shorthand to
access a slot. The expression d::n , when not appearing on the left hand side of
an assignment, is equivalent to slot(d, "n") . Thus, in order to access a slot
"n" of the domain of a datum d, one may simply write d::dom::n instead of
slot(domtype(d), "n") .

One may not only access but also change the value of a slot using the :: -
operator. Similar to an indexed assignment, an assignment of the form d::n
:= v assigns the value v to the slot named "n" of d. (An equivalent syntax
for such an assignment to a slot is slot(d, "n") := v .)

Please note that there is a subtle semantical difference between a slot as-
signment using the call d := slot(d, "n", v) and a slot assignment of
the form d::n := v . The function slot evaluates its arguments as usual,
but the left hand side of a slot assignment d::n := v is evaluated as for an
indexed assignment a[b] := c . This means that d is not fully evaluated and
then v assigned to the slot n of the result, rather the slot of the value of the
variable or identifier d is changed and the result assigned to d.

This is different to the former function domattr : In version 1.4, the datum
d on the left hand side of an assignment of the form d::n := v (which was
equivalent to domattr(d, "n") := v) was fully evaluated and then the en-
try of the resulting domain was changed. (To complicate things further: If d
did not evaluate to a domain the domain of the resulting datum was changed.)
This was possible because domains show the so-called “reference effect”: their
entries were changed by the assignment as side-effect.

37

5 The new MuPAD Language

In order to get the same functionality as the former assignment to do-
mattr , one may change a domain slot by a call of the form slot(d, "n",
v) , which as a side-effect changes the domain d as described above.

At the bottom line, the new slot assignment is much more regular than the
former assignment to domain entries. Furthermore, it is consistent with the
indexed assignment.
5.7.2 Overloading the slot Function

By overloading the slot function, slot access and slot assignment can be
implemented for other objects than domains or function environments. The
domain method "elemattr" is no longer needed, overloading slot does a
better job. One may even overload slot for basic domains other than domains
and function environments.

The following function defines the fixed slots "numer" and "denom" for
the rational numbers:
unprotect(DOM_RAT):
DOM_RAT::slot :=

proc(r : DOM_RAT, n : DOM_STRING, v=null(): DOM_INT)
local i : DOM_INT;

begin
i := contains(["numer", "denom"], n);
if i = 0 then error("unknown slot") end;
if args(0) = 3 then

subsop(r, i = v)
else

op(r, i)
end

end_proc:
protect(DOM_RAT, Error)

5.7.3 No Keywords as Operands of ::

In version 1.4, the second operand of the :: -operator was allowed to be a
keyword, like in Z7::name . This was quite crude. In version 2.0, keywords
are no longer allowed, the second operand must have the syntax of an identi-
fier.

The following two standard names for domain entries have been changed
accordingly:

name now called Name,
not now called _not .

5.8 Deleting Values

Values of identifiers and variables may be deleted by using the delete
statement instead of the former function unassign :
>> delete a, T[1]

38

5.9 User-Defined Operators

Please refer to the grammar below for the exact syntax of the delete statement.
By using the “underline function” _delete , values can also be deleted in

a functional manner.

5.9 User-Defined Operators

The user may now define new unary or binary operators. A user-defined
operator may be a unary pre- or postfix operator or a binary infix operator. A
binary infix operator may be associative or not. The priority of the operator
may also be defined.

New operators are defined by using the function operator . The syntax is
operator(name, function, type, priority)

where name is a string with the operator token, function the operator of the
function call created by the parser, type the type of the operator and priority its
priority. The priority must be a number between 1 and 1999. The following
operator types exist:

Prefix unary prefix
Postfix unary postfix
Binary binary non-associative infix
Nary binary associative infix

Thus given an operator defined by operator("**", foo, Postfix, 500) ,
the expression x** is parsed as foo(x) . With the definition operator("**",
foo, Binary, 500) the expression x**y**z is parsed as foo(foo(x, y),
z) (non-associative binary operators bind left-to-right). Given the definition
operator("**", foo, Nary, 500) , the expression x**y**z is parsed
as foo(x, y, z) .

The operator name may be up to 32 characters long, and it must not start
with whitespace nor with a backslash (\). The function operator does not
check these restrictions, operators thus defined simply won’t work.

This new concept has made the &-operator and the function bin_op obso-
lete. Both have been removed from the language.

5.10 Scope of Aliases and User-Defined Operators

When reading a file, the scope of an alias-definition or user-defined opera-
tor depends on the way the file is read.

A new option Plain has been implemented for the function read which
restricts the scope of aliases and user-defined operators: If this option is given,
the file is read in a “fresh” parser context where no aliases and user-defined
operators initially exist. Aliases and user-defined operators defined in the file
read in are restricted to the scope of that file, they are not “exported” into the
context where the file is read.

Additionally, there exists no history table when the file is read Plain , thus
the history table of the reading context is not changed by reading the file.

39

5 The new MuPAD Language

The reason for introducing this option is that library files are read as side-
effect during evaluation. Thus, if the scope of aliases and user-operators would
not have been restricted, they could change the meaning of the files read in an
uncontrolled way.

On the other hand, if the file is not read with option Plain , it is parsed
in the context of the call of read . Thus aliases and user-operators take effect
when executing the files commands and alias or user-operator definitions in
the file are “exported” into the reading context. Additionally, the files com-
mands are entered into the history table.

5.11 Domains, Categories and Axioms

New language constructs have been introduced with MuPAD 2.0 for domain-
, category and axiom constructors. They replace awkward functions such as
DomainConstructor::new used to define constructors in version 1.4. The
syntax of the new constructor statements is described below. The former new-
methods of the constructors no longer exist.

Even more important is the new implementation of the constructors. Con-
structor parameters and local values are now variables (DOM_VARs) bound by
their lexical scope. Entries defined inside domain- and category constructors
access the constructor parameters and locals as if they were defined in an lexi-
cally outer procedure.

Constructor parameters and local values are no longer simply substituted
into the domain entries. This means, for example, that parameters and locals
of methods may have the same names and hide the constructors names—a
source of nasty errors in version 1.4. Another consequence is that parameters
and locals may be changed by domain methods—they are in fact variables
which are local to the domain but global to the domain’s methods (similar to
static class members in C++).

The special name this has been replaced by the special variable dom, as
has been described above.
Marginal Note: The actual domain is no longer inserted into a methods body by
substituting the identifier this , instead dom is used to access the actual domain.

Constructor parameters and local values are now defined by the parser when the
constructor is read. Each domain method is enclosed by a procedure environment
which is unique for the domain or category which defined the method.

This means that domain entries are created much faster and need less memory,
because the bodies of the methods need not be changed by substitutions any longer. •

Some examples are shown which explain the new syntax. The exact gram-
mar is described below.

The simplest case is a constructor without parameters:
domain d

Name := "simple_domain";
info := "a simple example";

end_domain;

Here a domain with key d is created and assigned to the identifier d as a side-
effect. Additionally, two entries named Nameand info are defined for the
domain.

40

5.11 Domains, Categories and Axioms

Note: The former domain-creating function domain has been renamed be-
cause domain is a keyword now. The function is called newDomain
now.

Apart from the renaming of the function domain , no other changes have been
introduced for domains (data type DOM_DOMAIN). Only domain constructors
are affected by the changes.

A mathematically more meaningful domain has a super-domain it inherits,
categories it belongs to, and axioms which are stated:

domain Dom::Integer
inherits Dom::Numerical;
category Cat::EuclideanDomain, Cat::FactorialDomain, ...;
axiom Ax::canonicalRep, Ax::systemRep, ...;

info_str := "domain of integer numbers";
testtype := i -> if domtype(i) = DOM_INT then TRUE

else FAIL end_if;
...

end_domain;

Here the domain with key Dom::Integer is defined and assigned to Dom::Integer .
It inherits the entries of the domain Dom::Numerical (which is its direct
super-domain) and belongs to the categories Cat::EuclideanDomain etc.
Further, the axioms Ax::canonicalRep etc. are assumed. The first entry de-
fined for the domain is info_str .

A domain may inherit from only one single direct super-domain. State-
ments defining the super-domain, categories and axioms may be given in any
order, multiple category or axiom statements are allowed. The entries must
follow these statements.

A domain constructor may have formal parameters and local variables:

domain Dom::IntegerMod(Mod: Type::PosInt)
local zero;
inherits Dom::BaseDomain;
category if isprime(Mod) then Cat::Field

else Cat::CommutativeRing end_if;
axiom Ax::canonicalRep, ...;

// entries:
characteristic := Mod;
size := Mod;
...

begin
if Mod < 2 then error("modulus must be > 1") end;
zero := new(dom, 0);

end_domain;

41

5 The new MuPAD Language

Here the domain constructor Dom::IntegerMod with parameter Modand lo-
cal variable zero is defined. Parameters may defined as for procedures, de-
fault values and type declarations are allowed. The types of local variables
may also be defined.

Please note that local variables must be declared first, in front of the other
declarations. Like in procedures, the default values and type declarations are
parsed in the outer lexical context, whereas any other definitions are parsed in
the lexical context of the constructor.

When a domain is created by the constructor, the actual parameters are as-
signed to the formal ones, then the statements between begin and end_domain
are executed. This defines the context where the domain entries are evalu-
ated. Thus an entry like the category definition if isprime(Mod) then
Cat::Field ... above is evaluated in a context where Modhas the value of
the actual parameter of the domain constructor. If Mod is prime, the domain
gets the category Cat::Field , otherwise Cat::CommutativeRing .

The parameters and local variables of a domain context may be changed in
the methods of the domain. One may regard these values as variables which
are global to the domain entries but local to the domain.

The syntax for category constructors is very similar to that for domains.
Only the inherits -statement must not exist:

category Cat::UnivariateSkewPolynomial(R: DOM_DOMAIN)
local hasField;
category Cat::Ring, Cat::LeftModule(R), ...;
axiom Ax::normalRep, ...;

// entries:
_plus; ore_mult; _mult; ...
...

begin
hasField := bool(R::hasProp(Cat::Field));

end_category;

The definition of an entry may be missing in a category constructor. This
means that this is a required entry which must be defined in a sub-category- or
domain constructor.

Axioms are much easier. They allow only parameters and local variables,
but no other attributes:

axiom Ax::efficientOperation(oper: DOM_STRING)
begin

if args(0) <> 1 then error("wrong no of args") end_if;
end_axiom;

5.12 No subs of Domains Any Longer

The substitution functions subs and subsex do no longer change do-

42

5.13 Functions eval and hold Work as Expected

mains, they are simply ignored.
In earlier versions, subs and subsex changed domains as side-effect, as in:

>> d := domain("d"):
>> d::a := b:
>> d2 := subs(d, b = 13):
>> d::a

13

In most cases, this behavior was undesired, causing confusion. Now domains
are no longer touched by subs and subsex .

5.13 Functions eval and hold Work as Expected

In version 2.0, the function eval works for any argument: It evaluates its
argument as usual and then evaluates the result again. The result of the second
evaluation is returned.
Marginal Note: In former versions eval did only evaluate twice if the argument
was an expression of a certain type, for example, if it was a call of last or subs . This
was a constant source of confusion. Now eval works as expected and evaluates any
argument twice. •

The function hold has also been changed: Now hold simply returns its
arguments without evaluating them.
Marginal Note: This was true in former versions only if hold was not called inside
hold . If hold was called inside of hold , the inner calls could disappear under certain
circumstances. It was not true that a call of eval would cancel a call of hold in any
case. •

5.14 Operands and Output of Sets

The ordering of elements of finite sets (kernel domain DOM_SET) depends
on the insertion ordering of the elements. This was always the case, but is
much more obvious now due to a changed implementation of sets. Thus two
equal sets (equal in the sense of the system function _equal) may have a dif-
ferent ordering of their elements.

This seems to be quite confusing to most users. In order to avoid this con-
fusion, the elements of sets are now sorted for output and indexed access. (The
ordering used for sorting the elements is the one given by sysorder .) When
accessing the elements with the function op , the internal ordering of the set
elements is used.

The following sets A and B have the same output and are considered equal
by _equal :
>> A := {a}: A := A union {b}

{a, b}

>> B := {b}: B:= B union {a}

43

5 The new MuPAD Language

{a, b}

>> bool(A=B)

TRUE

Indexed access yields the same elements:

>> A[i] $ i=1..2

a, b

>> B[i] $ i=1..2

a, b

Only op reveals that the “internal” ordering of the sets is different:

>> op(A)

a, b

>> op(B)

b, a

One may change the ordering of sets for output and indexed access by chang-
ing the slot "sort" of DOM_SET.

One should bear in mind:

• The ordering of set elements for output and indexed access is different
from the ordering obtained by op .

• Indexed access is much slower than access with op because the set ele-
ments are sorted first.

5.15 History contains Inputs and Outputs

Since version 2.0, both the inputs and the results of interactively entered
statements are stored in the global history table. A call of history() no
longer prints out the history table as a side-effect but returns the number of
commands entered interactively. A call of history(i) returns a list contain-
ing the i-th input and result if that command still is contained in the history
table. (The i-th command is removed from the history table if i is less than
history() - HISTORY .)

Please note that only the final result of an interactively entered statement
is entered into the history table. In former versions of MuPAD, any results of
statements which where executed at the interactive level where entered into

44

5.16 Renamed Functions and Variables

the history table. The following for-statement, for example, entered the values
2, 3 and 4 into the history table. Now only the result of the whole for-statement,
which is 4, is entered into the history table:
>> for i from 1 to 3 do i+1 end_for:
>> %

4

One may assign 0 to HISTORY, which disables the insertion of commands
into the history table.

Commands executed when reading a file are also entered into the history
table. This may be suppressed by using the new option Plain of the function
read .

5.16 Renamed Functions and Variables

Several kernel functions and special variables have been renamed because
the former names did not adhere to the naming conventions.

Old Name New Name
PRETTY_PRINT PRETTYPRINT

READ_PATH READPATH
WRITE_PATH WRITEPATH

LIB_PATH LIBPATH

Table 5.1: Renamed Special Identifiers

Old Name New Name
assign_elems assignElements

built_in builtin
domain newDomain

domattr slot
func_env funcenv
funcattr slot

index_val indexval

Table 5.2: Renamed Kernel Functions

5.17 Conditional Compilation

MuPAD 2.0 has a new type of control statement, called %if . It controls the
generation of code by the parser, that is, with %if you can exclude statements
from ever reaching the internal form of your program. The syntax of an %if
statement is the same as of an if statement, only the keyword if must be
replaced by the string %if :

pre-if-statement:

45

5 The new MuPAD Language

%if condition then statement-seq elif-seqopt else-partopt end-if

elif-seq:
elif-part
elif-part elif-seq

elif-part:
elif condition then statement-seq

else-part:
else statement-seq

end-if:
end_if
end

The semantics is as follows:

• First, the condition following the %if is parsed and evaluated directly
by the parser. This evaluation must return a Boolean value; otherwise,
an error is raised.

• If the result is TRUE, the then-part (i.e., the statement sequence following
the keyword then) is returned by the parser. The remaining parts of the
%if statement are ignored by the parser.

• If the condition does not evaluate to TRUE, the then-part is ignored. If an
elif -part exists, the condition of that part is evaluated.

• If that condition returns TRUE, the corresponding then-part is returned
by the parser and the rest of the %if statement is ignored.

• If the condition does not evaluate to TRUE, the then-part is ignored and
the remaining parts are parsed as described before.

• Finally, if no condition evaluates to TRUE, the else-part is returned by the
parser. If no else-part exists, NIL is returned.

Note that even if a part of the %if statement is ignored, it must be syntactically
correct. Thus the conditional compilation is not handled on the lexical level,
rather on the grammar level of the language.

The conditions are parsed in their lexical context, but are evaluated by the
parser in the context where the parser is executed. Therefore one must not
refer to local variables from the enclosing lexical context in the conditions. The
parser does not check this.

46

5.18 Grammar

5.18 Grammar

A new parser had to be implemented for lexical scoping. This opportunity
was taken to change the grammar in several ways to make it somewhat more
user-friendly and regular.

Most of the changes are compatible to the previous version 1.4. The most
serious incompatibility is the change of the syntax of the $-operator as de-
scribed above.

Other points of interest are:
• Interactively entered statements need no longer be closed by a separator

(; or :).

• Functions may be defined by the arrow-operator -> .

• Program control statements and procedure definitions may be optionally
followed by end instead of end_if , end_while and so on.

• Program control statements are grammatically handled like names or
literals. This means one can enter statements like x := if x >= 0
then x else -x end; without needing to enclose the if-statement
into brackets.

• Expressions like a := b := c and a::b::c are now syntactically valid.

• One may use arbitrary strings as identifier and variable names by quot-
ing them with ‘ (back-quote character), such as ‘ü‘ or ‘+‘ . (The
latter is predefined to the function _plus .) Two consecutive back-quotes
must be used to insert a back-quote into the name, as in ‘Tom‘‘s back-
quote‘ .

5.18.1 Statements

A legal MuPAD input entered interactively or read from a file must be a
statement-seq:

statement-seq:
statementopt separator statement-seq
statementopt separatoropt

separator:
;
:

The last statement entered interactively or read from a file need not be
closed by a separator ; or : any longer. (If the last separator is missing, the
output of the last statement is printed if entered interactively.) In addition
to statements, help and system commands may be entered during interactive
input as before.

47

5 The new MuPAD Language

statement:
expression-seq
expression := statement
delete expression-seqopt

expression-seq:
function
function , expression-seq

function:
expression
name -> function
(name-seqopt) -> function

name-seq:
name
name , name-seq

Please note that the left hand side of assignments are of course not arbitrary
expressions. The correctness of left hand sides if decided partly by attributes
computed by the parser and partly by the _assign function at run-time. The
former grammar had a problem here, it was not LL(n) for any n.

5.18.2 Expressions

The basic rules for expressions are the following:
expression:

factor
sequence-expression
prefix-operator expression
expression infix-operator expression
expression postfix-operator
expression (expression-seqopt)

expression [expression-seqopt]

sequence-expression:
$ expression
expression $ expression
expression $ name = expression
expression $ name in expression

The actual implementation uses operator precedences to parse expressions.
The predefined operators are shown in table 5.3. The operator type “n-ary”
means an associative binary operator. Function call and indexed access may
also be considered as operators and thus also have a priority.

The higher the precedence, the more “tightly” the operators bind their ar-
guments, so that for example 1+2*3=7 .

48

5.18 Grammar

Token Type Priority
or n-ary 100

and n-ary 200
not prefix 300

$ prefix, binary, 3-nary 300
=, <, <=, >, >=, <>, in binary 400

.. binary 500
union n-ary 600
minus binary 700

intersect n-ary 800
mod, div binary 900

+ prefix, n-ary 1000
- prefix, binary 1000
* n-ary 1100
/ binary 1100
ˆ binary 1200
! postfix 1300
@ n-ary 1500

@@ binary 1600
. n-ary 1700

f (x) , a[i] see grammar 1800
’ postfix 1900

:: see grammar 2000

Table 5.3: Predefined Operators

49

5 The new MuPAD Language

The precedences are incremented by 100 to allow for user-defined opera-
tors which “fit between” predefined ones. The user may additionally define
his own pre-, post- and infix operators, these must have a precedence between
1 and 1999.

5.18.3 Factors

Control statements are now factors instead of top-level statements:
factor:

(statement-seq) domain-entryopt
control-statement
procedure-definition
domain-constructor
category-constructor
axiom-constructor
[expression-seqopt]

{ expression-seqopt }

name domain-entryopt
%integer
literal

domain-entry:
:: name
:: name domain-entry

The syntax of the control statements containing statement sequences (if-,
case-, for-, while- and repeat statement) has been extended with respect to the
closing keywords. One may now also optionally use simply end instead of
end_if , end_case , end_for , end_while and end_repeat to close these
statements.

There is a new control statement for conditional code inclusion. It has the
same syntax as an if -statement, only the keyword if is replaced by the token
%if .

The syntax of the “atomic” control statements (next and break state-
ments) and literals like names and numbers has not been changed. The syntax
for names has been extended by additionally allowing arbitrary strings.

5.18.4 Procedures

Several new features have been added to procedure definitions as described
above. The grammar rules have been extended accordingly:

procedure-definition:
proc (argument-seqopt) typeopt
declaration-seqopt

begin statement-seq end-proc

argument-seq:

50

5.18 Grammar

formal-argument
formal-argument , argument-seq

formal-argument:
name default-valueopt typeopt

default-value:
= expression

type:
: expression

declaration-seq:
declaration ;
declaration ; declaration-seq

declaration:
name expression
local local-var-seq
save name-seq
option option-seq

local-var-seq:
local-var
local-var , local-var-seq

local-var:
name typeopt

option-seq:
option
option , option-seq

option:
hold
remember
escape
arrow
noDebug

end-proc:
end
end_proc

5.18.5 Domains, Categories, and Axioms

New language constructs have been defined for domain-, category- and ax-

51

5 The new MuPAD Language

iom constructors. Constructor parameters and local variables are now bound
lexically, their scope is the constructor definition:

domain-constructor:
domain factor local-seqopt domain-definition end-domain
domain factor (argument-seqopt) local-seqopt domain-definition end-domain

local-seq:
local local-var-seq ;
local local-var-seq ; local-seq

domain-definition:
domain-declaration-seqopt domain-entry-seqopt initializeropt

domain-declaration-seq:
domain-declaration ;
domain-declaration ; domain-declaration-seq

domain-declaration:
inherits expression
category expression-seq
axiom expression-seq

domain-entry-seq:
name := statement ;
name := statement ; domain-entry-seq

initializer:
begin statement-seq

end-domain:
end
end_domain

The first factor defines the name of the constructor. It must be valid as a
left-hand-side of an assignment. Only one domain may be inherited from.

category-constructor:
category factor local-seqopt category-definition end-category
category factor (argument-seqopt) local-seqopt category-definition end-category

category-definition:
category-declaration-seqopt category-entry-seqopt initializeropt

category-declaration-seq:
category-declaration ;
category-declaration ; category-declaration-seq

52

5.19 Parallel Statements

category-declaration:
category expression-seq
axiom expression-seq

category-entry-seq:
name ;
name := statement ;
name ; entry-seq
name := statement ; entry-seq

end-category:
end
end_category

axiom-constructor:
axiom factor local-seqopt initializeropt end-axiom
axiom factor (argument-seqopt) local-seqopt initializeropt end-axiom

end-axiom:
end
end_axiom

5.19 Parallel Statements

Currently, neither SciFace Software nor the MuPAD Group at the Univer-
sity of Paderborn have the resources to further develop the concepts of micro-
parallelism for MuPAD. These were intended to allow for an easy parallel pro-
gramming on shared-memory architectures supported by parallel language
constructs. Thus, the parallel language constructs and their underlying system
functions have been removed from the kernel. These constructs were the par-
allel for-loops and the parallel statement sequence. As a consequence, also the
sequential statement sequence (seqbegin . . . end_seq) has been removed.

The concepts of macro-parallelism (parallel execution of loosely coupled
kernels communicating via messages) are currently re-designed by the Mu-
PAD Group. Because this is a research project, the former specifications of
macro-parallelism have been withdrawn. The functions intended to imple-
ment macro-parallelism (global , topology and the functions for pipes and
queues) have been removed from the production kernel.

5.20 Debugging

The trace functionality intended to be used for debugging (command line
option -t and function trace) have become obsolete because of the debug-
ger. They have been removed. The same holds for the special identifiers ER-
RORLEVELand PRINTLEVEL. (Please note that there exists a tracing function
prog::trace which produces more compact output than the former kernel
function trace .)

53

5 The new MuPAD Language

Overview

A summary of the language changes for version 2.0 as described in the
previous sections:
New Features

• lexical scoping for procedures, new option escape ,

• programmatic variables (DOM_VAR) vs. identifiers (DOM_IDENT),

• saving of identifiers via save ,

• default values for parameters of procedures,

• type declarations for local variables,

• access to the domain a procedure belongs to via dom,

• functions may be defined via the arrow-operator -> ,

• new operator in ,

• user-defined operators,

• slots may hold values of objects,

• arbitrary strings as names,

• special syntax for domain-, category- and axiom constructors,

• control statements and procedure definitions may end with end ,

• conditional compilation with %if

Changes

• args returns the current value of the variable holding an input parame-
ter,

• the index used with the $-operator must be a name, not an expression,

• this is replaced by the variable dom in the domains package,

• procname is an implicitly declared variable,

• domattr and funcattr have been replaced by slot ,

• use delete instead of unassign to delete values,

• eval works for any argument,

• subs and subsex do no longer change domains,

• history gives access to previous input and output,

54

5.20 Debugging

• input needs not end with ; or : ,

• statements need not be enclosed in brackets,

• minor grammar changes.

Removed Features

• no pure functions any longer (the functions fun , func , block , new-
purefunc and purefuncarg were removed),

• PRINTLEVEL, ERRORLEVEL, EVAL_STMTwere removed,

• the HISTORYfor procedures may no longer be changed,

• keywords are no longer allowed as names for slots entered via the :: -
operator,

• & and bin_op have been removed in favor of operator ,

• parallel statements and functions were removed,

• tracing via trace or the -t command line option were removed.

55

