Previous Page Next Page Contents

student::plotSimpson -- plot of a numerical approximation to an integral using Simpson's rule

Introduction

student::plotSimpson(f, x=a..b, n) computes a numerical approximation to the integral int(f(x),x=a..b) using Simpson's rule and returns a plot of the numerical process.

Call(s)

student::plotSimpson(f, x=a..b <, n> <, opt1>...)

Parameters

f - functional expression in x
x - identifier
a, b - arithmetical expressions
n - a positive integer (number of stripes to use)
opt1 - plot option(s) for two-dimensional graphical objects

Returns

a graphical object of the domain type plot::Group.

Related Functions

plot, plot::Group, student::plotRiemann, student::plotTrapezoid, student::simpson

Details

Example 1

The following call returns a visualization of the numerical approximation to the integral int(sin(x),x=0..1) using Simpson's rule and 10 stripes:

>> p := student::plotSimpson(sin(x), x = 0..1, 10)
                               plot::Group()

To display it on the screen, call:

>> plot(p)

Example 2

You can change plot parameters of the visualization returned by student::plotSimpson. For example, to change the color of every second filled stripe to red, we must set the plot option Color of the operands of p with even index to the value RGB::Blue:

>> ((p[2*i])::Color := RGB::Red) $ i = 1..nops(p) div 2:
   plot(p)

Changes




Do you have questions or comments?


Copyright © SciFace Software GmbH & Co. KG 2000