
The jsonparse package
A handy way to parse, store and access JSON data from files or strings in
LaTeX documents

Jasper Habicht *

Version 0.9.2, released on 2 October 2024

1 Introduction

Hello guys, I am Jason, the JSONparsing horse. JSONdata ismy favorite thing to parse! But I found
that converting JSON to TeX can be a bit tricky. Therefore, I created this package which I am happy
to introduce to you.

The jsonparse package provides a handy way to read in JSON data from files or strings in
LaTeX documents, parse the data and store it in a user-defined token variable. The package allows
accessing the stored data via a JavaScript-flavored syntax.

This package is still in a beta stage and not thoroughly tested. Bugs or improvements can be
issued via GitHub at https://github.com/jasperhabicht/jsonparse/issues.

2 Loading the package

To install the package, copy the package file jsonparse.sty into the working directory or into
the texmf directory. After the package has been installed, the jsonparse package is loaded by
calling \usepackage{jsonparse} in the preamble of the document.

The package does not load any dependencies.

debug

The package can be loaded with the option debug . It will then output to the log file every instance
of a string, a boolean (true or false) value, a null value, a number as well as the start and end of every
object and the start and end of every array that is found while parsing the JSON string or JSON file.

This key can be set either as package option or using \JSONParseSet . It can also be set locally
as option to the commands \JSONParse and \JSONParseFromFile .

* E-mail: mail@jasperhabicht.de. I am grateful to Joseph Wright, Jonathan P. Spratte and David Carlisle who helped me
navigating the peculiarities of TeX and optimizing the code. Jason, the JSON parsing horse: Copyright 2024Hannah Klöber.

1

https://github.com/jasperhabicht/jsonparse/issues
mailto:mail@jasperhabicht.de

3 Escaping and special treatment of the input

In general, the package reads the JSON source as string, which means that all characters have cat-
egory code 12 (other), except for spaces which have category code 10 (space). The \endlinechar
value is set to −1. Furthermore, if PDFLaTeX is used, the upper-half of the 8-bit range is set to
“active”. JSON, however, defines a small set of escape sequences and in order to be able to process
these, the category code of the backslash is set to 0 (escape).

JSON strings cannot contain the two characters " and \ . These two characters need to be
escaped with a preceding backslash (\). This package therefore redefines locally the TeX control
symbols \" , \/ , \\ , \b , \f , \n , \r , \t and \u . These control symbols are prevented from
expanding during parsing. For example, \" is first defined as \exp_not:N \" and only when
typeset, \" is expanded to " , which ensures that strings are parsed properly.

Similarly, the control symbol \/ expands eventually to / and \\ to \c_backslash_str (i. e.
a backslash with category code 12). The escape sequence \u followed by a hex value consisting of
four digits eventually expands to \char" followed by the relevant four hex digits. The JSON escape
sequences \b , \f , \n , \r and \t eventually expand to token variables of which the contents
can be set using the relevant replacement key. See more on setting options below in section 4.2.

It is possible to insert TeXmacros to the JSON source that will eventually be parsed when type-
setting. Backslashes of TeX macros need to be escaped by another backslash. The TeX macros \"
and \\ must be escaped twice in the JSON source so that they become \\\" and \\\\ respec-
tively.

\x{‹token variable name›}{‹key›}

Using the control sequence \x , it is possible to nest JSON strings into each other. The control se-
quence takes two arguments delimited by curly braces. The first argument represents the name of
the token variable that holds the parsed JSON data where the inserted JSON string should be taken
from. The second argument sets the key that should be selected. The following example shows a
simple use case:

c

\JSONParse{\myJSONdataA}{
{ "a" : { "b" : "c" } }

}

\JSONParse{\myJSONdataB}{
{ "d" : \x{myJSONdataA}{a} }

}

\JSONParseValue{\myJSONdataB}{d.b}

Note that the control sequence \x is replaced by the value exactly. Therefore, if the value hap-
pens to be a string, the control sequence \x should be placedbetweenquotationmarks (") in order
for the resulting string to be valid JSON.

escape={all}
escape={none}
escape={number sign}
escape={dollar sign}
escape={percent sign}
escape={ampersand}
escape={circumflex accent}
escape={low line}
escape={tilde}

2

The key escape can be used to convert characters that don’t require escaping in JSON but in TeX
into the relevant TeX escape sequences. Apart from the backslash and curly braces that need to be
escaped anyways, these are the number sign, the dollar sign, the percent sign, the ampersand, the
circumflex accent, the low line and the tilde. The characters can be selected individually separated
by a comma (for example escape={dollar sign, circumflex accent, low line} . With
escape={all} , all escaping sequences are selected, with escape={none} , none is selected.

The naming of the relevant characters follows their Unicode names. However, hash exists
as alias for number sign , dollar as alias for dollar sign , percent for percent sign ,
circumflex for circumflex accent and underscore for low line .

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParseValue , \JSONParseArrayValues and \JSONParseArrayValuesMap .

rescan
rescan={‹boolean›}

The key rescan can be used to activate and deactivate rescanning of the output. This key is ac-
tive per default. Rescanning converts all tokens to their default category codes and TeX control se-
quences are expanded before typesetting. Further, during the rescanning process, JSON escape
sequences are replaced and characters that don’t require escaping in JSON but in TeX are replaced
by the relevant TeX escape sequences.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParseValue , \JSONParseArrayValues and \JSONParseArrayValuesMap .

4 Main user commands

\JSONParse[‹options›]{‹token variable›}{‹JSON string›}

The command \JSONParse is used to parse a JSON string and store the parsed result in a token
variable (a property list). The second argument takes the name of the token variable that is created
by the command. The third argument takes the JSON string to be parsed.

For example, using \JSONParse{\myJSONdata}{ { "key" : "value" } } , the relevant
JSONstringwill beparsedand the result stored in the tokenvariable \myJSONdata asproperty list.
In this case, the property list only consists of one entry with the key key and the value value . The
command \JSONParseValue{\myJSONdata}{key} , for example, can then be used to extract
the relevant value from this property list (see the description below).

The first optional argument can be used to pass options to the command that are then applied
locally.

\JSONParseFromFile[‹options›]{‹token variable›}{‹JSON file›}

The command \JSONParseFromFile is used to parse a JSON file and store the parsed result in
a token variable (a property list). It works the same way as \JSONParse , but instead of a JSON
string, it takes as third argument the path to the JSON file relative to the working directory.

\JSONParseKeys{‹token variable›}{‹token variable›}

The command \JSONParseKeys is used to store all top-level keys of a parsed JSON object as array
into a token variable. The command takes as first argument the token variable that holds the parsed
JSON data. The second argument takes the token variable that is assigned a JSON array containing
the top-level keys of the object represented by the token variable in the first argument. The token
variable to store the keys as array is created if it does not exist.

3

\JSONParseValue[‹options›]{‹token variable›}{‹key›}
\JSONParseExpandableValue{‹token variable›}{‹key›}

The command \JSONParseValue is used to select values from the token variable (property list)
that has been created using the commands \JSONParse or \JSONParseFromFile . The first
argument takes the token variable that holds the parsed JSON data. The second argument takes the
key to select the relevant entry from the parsed JSON data using JavaScript syntax.

If the JSON string { "key" : "value" } is parsed into the token variable \myJSONdata ,
using \JSONParseValue{\myJSONdata}{key} would extract the value associated with the key
key , which in this case is value , and typeset it to the document.

Nested objects and arrays are assigned keys that adhere to JavaScript syntax. For example, if
the JSON string { "outer_key" : { "inner_key" : "value" } } is parsed into the token
variable \myJSONdata , to select the value associated with the key inner_key , the command
\JSONParseValue{\myJSONdata}{outer_key.inner_key} can be used. To give an example
for anarray, the command \JSONParseValue{\myJSONdata}{key[0]} selects thefirst valueof
the array associated with the key key in the JSON string { "key" : ["one" , "two"] } .

The first optional argument can be used to pass options to the command, such as escape or
rescan , that are then applied locally. When the option rescan is used, the token list is rescanned
before it is typeset (which means that all category codes that may have been changed before are set
to the default values). This is the default behaviour. If rescanning is not desired, pass the option
rescan=false to the command.

When a key is associated with an object or array, the whole object or array is output as JSON
string. The special key . (or the string defined using the key child sep) returns the whole JSON
object as string.

Whole objects or arrays can also be output as JSON string for further use in other macros using
the expandable command \JSONParseExpandableValue .

\JSONParseArrayValues[‹options›]{‹token variable›}{‹key›}[‹subkey›]{‹string›}

The command \JSONParseArrayValues is used to select all values from an array from a parsed
JSON string or JSON file. The first argument takes the token variable that holds the parsed JSON
data. The second argument takes the key to select the relevant entry from the parsed JSON data
using JavaScript syntax. The third argument is optional and can be used to pass a subkey, i. e. a key
that is used to select a value for every item. The last argument takes a string that is inserted between
all values when they are typeset.

For example, let us assume the following JSON data structure is parsed into the token variable
\myJSONdata :

{
"array" : [
{
"key_a" : "one" ,
"key_b" : "two"

} ,
{
"key_a" : "three" ,
"key_b" : "four"

}
]

}

Then, when using \JSONParseArrayValues{\myJSONdata}{array}[key_a]{, } , ‘one,
three’ is typeset to the document.

4

The first optional argument can be used to pass options to the command, such as escape or
rescan , that are then applied locally.

\JSONParseArrayValuesMap[‹options›]{‹token variable›}{‹key›}[‹subkey›]
{‹command name›}

The command \JSONParseArrayValuesMap takes the same first three arguments as the com-
mand \JSONParseArrayValues and works in a similar way. However, instead of a string that is
added between the array items, it takes a command name as fourth argument. This command can
be defined beforehand and will be called for every array item. Inside its definition, the commands
\JSONParseArrayIndex , \JSONParseArrayKey and \JSONParseArrayValue can be used
which are updated for each item and output the index, the key and the value of the current item
respectively.

For example, let us assume the same JSONdata structure as defined above parsed into the token
variable \myJSONdata . Then, the following can be done:

• one

• three

\newcommand{\myJSONitem}{
\item \emph{\JSONParseArrayValue}

}

\begin{itemize}
\JSONParseArrayValuesMap{\myJSONdata}

{array}[key_a]{myJSONitem}
\end{itemize}

The first optional argument can be used to pass options to the command, such as escape or
rescan , that are then applied locally.

\JSONParseArrayCount{‹token variable›}{‹key›}

Thecommand \JSONParseArrayCount takes as first argument a token variable holding a parsed
JSON string or JSONfile and as second argument a key. It returns an integer representing the num-
ber of items contained in the selected array.

4.1 Externalising parsed JSONdata

Parsing large JSON files can take quite a while. In order to speed up follow-up compilation runs,
this package provides a way to store parsed JSON data for future use. Once a file for externalization
has been created, the packagewill try to load the data from this file instead of parsing the JSONdata
again.

externalize
externalize={‹boolean›}

With the key externalize set (or set to true), a file will be created in the working directory that
stores the externalization of the parsed JSON data. The file name gets the extension .jsonparse .
The file name is created automatically and consists of the name of the current file followed by an
underscore and the name of the token variable where the JSON data is stored into. If a file with the
same name and file extension already exists, an error will be issued.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile .

5

externalize prefix={‹string›}

With the key externalize prefix , a prefix can be defined that is added to the file name. Per
default this is an empty string.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile .

externalize file name={‹token list›}

The key externalize file name sets the schema for the file name. The default schema is as
follows:

\l_jsonparse_externalize_prefix_str \c_sys_jobname_str
\c_underscore_str \l_jsonparse_current_prop_str

The token variable \l_jsonparse_externalize_prefix_str contains the prefix that is
set using the key externalize prefix . \c_sys_jobname_str holds the name of the cur-
rent file (the current job name), \c_underscore_str is an underscore and the token variable
\l_jsonparse_current_prop_str contains the name of the property list where the relevant
JSON data is stored into.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile .

\JSONParsePut{‹token variable›}{‹key›}[‹JSON string›]

Thecommand \JSONParsePut is used by the externalization procedure to re-read already parsed
JSON data to the main file. It just adds a key-value pair to the property list (where the value part is
read as string). Hence, it can also be used to append more entries to an already existing property
list containing parsed JSON data.

4.2 Changing separators, output and other options

Thepackageprovides a set of keys canbe set to change the separatorsused to select the relevant value
in the JSON structure, the output that is generated from the JSON data as well as other things.

\JSONParseSet{‹options›}

The commands \JSONParseSet can be used to specify options via key-value pairs (separated by
commas). Keys that arepresentedhereas a subkey (i. e. precededbyanotherkeyanda slash) canalso
be set using the syntax key={subkey} andmultiple subkeys belonging toonekey canbe combined
using a comma as separator. Several user commands allow to pass keys directly which are then
applied locally. The following keys are available:

separator/child={‹string›}
separator/array left={‹string›}
separator/array right={‹string›}

With the key separator/child , the separator for child objects that is used in the syntax to select
a specific value in the JSON data structure can be changed. Per default, the child separator is a dot
(.). Changing the separator canbeuseful if keys in the JSONstructure alreadyuse these characters.

With the keys separator/array left and separator/array right , the separators for
arrays that areused in the syntax to select a specific value in the JSONdata structure canbe changed.

6

Per default, the separators are square brackets ([and]). Changing the separators can be useful if
keys in the JSON structure already use these characters. Changing these separators to curly braces
({}) is not supported due to their grouping function in TeX.

These keys can be set using \JSONParseSet . They can also be set locally as option to the com-
mands \JSONParse and \JSONParseFromFile .

zero-based
zero-based={‹boolean›}

If set (or explicitly set to true), the key zero-based sets the numbering of the index of array
items to zero-based. If set to false, the indexing starts with one instead. Per default, the package
uses zero-based indexing to resemble JavaScript notation.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile .

replace/true={‹string›}
replace/false={‹string›}
replace/null={‹string›}

With the keys replace/true , replace/false and replace/null , the string that is typeset
for true, false andnull values can be changed. Thedefault strings that are typeset are true , false
and null respectively. Only strings can be used as replacement. These replacements take place
already during parsing.

These keys can be set using \JSONParseSet . They can also be set locally as option to the com-
mands \JSONParse and \JSONParseFromFile .

replace/backspace={‹string›}
replace/formfeed={‹string›}
replace/linefeed={‹string›}
replace/carriage return={‹string›}
replace/horizontal tab={‹string›}

These keys can be used to set the replacement text for the JSON escape sequences \b (backspace),
\f (formfeed), \n (linefeed), \r (carriage return) and \t (horizontal tab). The default replace-
ment string is a space. Only strings can be used as replacement. These replacements take place only
during typesetting.

These keys can be set using \JSONParseSet . They can also be set locally as option to the com-
mands \JSONParseValue , \JSONParseArrayValues and \JSONParseArrayValuesMap .

check num
check num={‹boolean›}

If set to false , the key check num omits an internal check of numerical expressions against the
JSON specification for numbers. Turning off this feature can increase the parsing speed.

This key can be set using \JSONParseSet . It can also be set locally as option to the commands
\JSONParse and \JSONParseFromFile .

4.3 L3 commands

\jsonparse_parse:n {‹JSON string›}

7

The command \jsonparse_parse:n takes as argument a JSON string and populates the token
variable (property list) \g_jsonparse_entries_prop with key-value pairs representing all ele-
ments of the JSON data structure represented by this string. This command does not escape the
input in any way.

\jsonparse_parse_to_prop:Nn ‹token variable› {‹JSON string›}

The command \jsonparse_parse_to_prop:Nn creates the token variable given as the first ar-
guments as property list and, after having called \jsonparse_parse:n using the second argu-
ment, sets this newly createdproperty list equal to \g_jsonparse_entries_prop . If escaping is
activated, this commandwill pre-process the input according to the selected escapingmode before
forwarding it to \jsonparse_parse:n . See more on escaping above in section 3.

\jsonparse_filter:Nn ‹token variable› {‹key›}

The command \jsonparse_parse_to_prop:Nn processes the token variable given as the first
arguments as property list and filters it according to the key given as second argument. Filtering
means that for every entry in the property list, the key of this entry is compared against the key
given to the command. If the key in the property list starts with the given key, the matching part is
removed from the key in the property list. If the keys do notmatch, the entry is completely removed
from the property list.

\jsonparse_if_num:nTF {‹string›} {‹true code›} {‹false code›}
\jsonparse_if_num:nT {‹string›} {‹true code›}
\jsonparse_if_num:nF {‹string›} {‹false code›}
\jsonparse_if_num_p:n {‹string›}

Thecommand \jsonparse_if_num:nTF checkswhether a string is a valid JSONnumber accord-
ing the relevant specification. It executes the true code if the string is a valid JSON number and the
false code if not. The variants \jsonparse_if_num:nT and \jsonparse_if_num:nF work ac-
cordingly. The command \jsonparse_if_num_p:n returns a boolean true or false.

5 Changes

v0.3.0 (2024/04/08)
First public beta release.

v0.5.0 (2024/04/09)
Changed from string token variables to token lists to support Unicode.

v0.5.5 (2024/04/09)
Bug fixes, introduction and enhancement of user functions.

v0.5.6 (2024/04/11)
Bug fixes, escaping of special chars added.

v0.5.7 (2024/04/14)
Bug fixes, key-value option setting added.

v0.6.0 (2024/04/15)
Bug fixes, renaming of several commands.

v0.7.0 (2024/04/18)
Renaming and rearranging of keys, escaping of special JSON escape sequences added.

8

v0.7.1 (2024/04/20)
Access to top-level keys of object added.

v0.8.0 (2024/04/24)
Internal rewrite, escaping procedures changed.

v0.8.2 (2024/04/26)
Bug fixes, externalizing parsed data.

v0.8.3 (2024/04/28)
Escaping of characters with special meaning in TeX.

v0.8.5 (2024/05/05)
Enhanced key management.

v0.8.6 (2024/05/09)
Bug fix in nesting function.

v0.8.7 (2024/08/08)
Corrections in documentation, error messages.

v0.9.0 (2024/08/27)
Adaption to updated verbatim tokenization.

v0.9.1 (2024/09/21)
Added functions to test for valid JSON numbers.

9

	Introduction
	Loading the package
	Escaping and special treatment of the input
	Main user commands
	Externalising parsed JSON data
	Changing separators, output and other options
	L3 commands

	Changes

